首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A yeast mitochondrial deoxyribonuclease stimulated by ethidium bromide   总被引:4,自引:0,他引:4  
Several DNase activities, with different substrate and pH requirements, have been identified in yeast mitochondria. One of them is active on double stranded DNA at neutral pH and stimulated by Ethidium Bromide and other DNA intercalating drugs. This activity could be responsible for the yeast mitochondrial DNA degradation induced during mutagenesis by Ethidium Bromide.  相似文献   

2.
3.
4.
5.
Summary Ethidium bromide blocks ascus formation in the yeast Saccharomyces cerevisiae. This may mean that the presence of the mitochondrial genome is required for sporulation in this organism.  相似文献   

6.
A novel reaction of mitochondrial DNA with ethidium bromide   总被引:1,自引:0,他引:1  
  相似文献   

7.
Summary Cells of the human line VA2-B in suspension culture have been treated with very low concentrations of ethidium bromide for the purpose of reducing the amount of mitochondrial DNA (mit-DNA) per cell. Cells maintained in the presence of 5 ng/ml ethidium bromide grew at a normal rate for three days; thereafter, their doubling time gradually increased to a stable value of about 60 h. In these cells, the rate of 3H thymidine incorporation into mit-DNA decreased very rapidly to 60% of the normal, and remained thereafter at this level, while the amount of mit-DNA per cell stabilized around a level of 70–80% of the control. In cells long-term treated with 5 ng/ml ethidium bromide, the rate of mitochondrial protein synthesis was about 35% of the normal, and the cytochrome c oxidase activity about 50% of the control. Cells treated with 20 ng/ml of the drug underwent 3–4 cell doublings at control rates, then gradually stopped growing, and eventually died. In these cells, the rate of incorporation of 3H thymidine into mit-DNA was reduced to 50% of the control value after 10 min treatment with ethidium bromide, and became barely detectable after three cell doublings. At this time, the cells had on the average less than 10% of the control amount of mit-DNA, the rate of mitochondrial protein synthesis was reduced to 3% of the normal, and the specific activities of cytochrome c oxidase and rutamycin-sensitive ATPase were less than 20% of the control values. In spite of these marked changes, the cells exhibited only a 20–30% loss in cell viability, as estimated by cloning efficiency, after three days of exposure to the drug. Cells treated with ethidium bromide at 20 ng/ml for three days, and then transferred to drug-free medium, recovered a near-to-normal growth rate and cloning efficiency and a near-to-normal rate of synthesis and amount of mit-DNA in about five days.  相似文献   

8.
9.
10.
11.
12.
The [14C]-labeled monoazido analog of ethidium, 3-amino-8-azido-5-ethyl-6-phenylphenanthridinium chloride, when mixed with yeast cells and photolyzed, produced covalent adducts with both nuclear and mitochondrial DNA via the light-generated nitrene. The binding efficiency was about 12 times higher in mitochondrial than nuclear DNA. Moreover, the parent ethidium bromide at a 5-fold excess was an effective competitor for the binding of the monoazide analog with mitochondrial DNA, but not with nuclear DNA.  相似文献   

13.
14.
We have studied the effects on the yeast mitochondrial genome of four analogues of ethidium bromide, in which the phenyl moiety has been replaced by linear alkyl chains of lengths varying from seven to fifteen carbon atoms. These analogues are more efficient than ethidium bromide in inducing petite mutants inSaccharomyces cerevisiae. The drugs also cause a loss of mtDNA from the cellsin vivo; however these analogues are in fact less effective inhibitors of mitochondrial DNA replicationper se, as shown by directin vitro studies. It is concluded that these analogues are more efficient than ethidium bromide in causing the fragmentation of mitochondrial DNA inS. cerevisiae.  相似文献   

15.
Summary Ethidium bromide and other cationic dyes have been found to inhibit movalent cation uptake. This dye also produces in a K+-free medium an efflux of K+ which could be of the electrogenic type.The study of the effects of the same cationic dyes on Ca2+ uptake showed a large stimulation of the uptake rate of the divalent cation of more than tenfold.The analysis of the effects of one of the cationic dyes on Ca2+ uptake indicated that the efflux of K+ is of the electrogenic type and can drive the uptake of the divalent cation.Kinetic data on Ca2+ uptake indicate that, both under normal or under stimulated conditions, the divalent cation is taken up by the same transport system.The addition of ethidium bromide, besides, can stimulate the uptake of Mn2+ and14C-glycine and could be a good weapon to magnify and study some of the characteristics of ion transport systems in yeast.  相似文献   

16.
The interaction of ethidium bromide with single-stranded synthetic and natural polynucleotides at high temperatures (t = 70 degrees C) and low pH values (pH 3.0) was studied. The isotherms of adsorption of ethidium bromide on single-stranded DNA were obtained. Two modes of binding of single-stranded DNA, strong and weak, were revealed. The values of the corresponding constants of interaction of this ligand and the number of bases per one binding site were determined.  相似文献   

17.
The in vivo effects of ethidium bromide on the integrity of mitochondrial DNA have been studied in a mouse L-cell system in which this DNA may be nearly exclusively radiolabelled. This allows the detection of mitochondrial DNA in the presence of contaminating nuclear DNA and eliminates the need for extensive purification of mitochondria or the use of deoxyribonuclease. The mitochondrial DNA in treated cells rapidly attains a high negative superhelix density and is not substantially nickel or degraded over the course of several days.  相似文献   

18.
19.
The interaction of the ethidium cation with calf thymus DNA is investigated in solutions of different ionic strength and temperature by observation of the enhancement of fluorescence of ethidium upon intercalation in the duplex structure. The quantum yield of the fluorescence of the intercalated dye is found to increase either upon lowering the Na+ concentration or upon increasing the temperature. The existence of a correlation between the geometry of the intercalation complex and the features of the secondary structure of DNA is suggested. Binding isotherms under corresponding environmental conditions are also quantitated by fluorescence enhancement and interpreted in terms of the neighbor exclusion model. Large contributions from change in hydration to the thermodynamics of binding are demonstrated by the temperature dependences of the equilibrium constants. The neighbor exclusion range is found to be practically independent of the salt concentration but its value increases from an average of 2.4 around room temperature to 4-5 at 80 degrees C, as inferred from the binding curves in 0.15 and 0.5 M [Na+] or from the DNA hypochromism vs temperature profiles of complexes at 10(-3) M [Na+]. All the data point to a possible sequence-conformation specificity in the intercalation of ethidium which in heterogeneous DNA is mediated by environmental changes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号