首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Interaction with eIF5B is essential for Vasa function during development   总被引:5,自引:0,他引:5  
The DEAD-box RNA helicase Vasa (Vas) is required for germ cell development and function, as well as for embryonic somatic posterior patterning. Vas interacts with the general translation initiation factor eIF5B (cIF2, also known as dIF2), and thus may regulate translation of specific mRNAs. In order to investigate which functions of Vas are related to translational control, we have analyzed the effects of site-directed vas mutations that reduce or eliminate interaction with eIF5B. Reduction in Vas-eIF5B interaction during oogenesis leads to female sterility, with phenotypes similar to a vas null mutation. Accumulation of Gurken (Grk) protein is greatly reduced when Vas-eIF5B interaction is reduced, suggesting that this interaction is crucial for translational regulation of grk. In addition, we show that reduction in Vas-eIF5B interaction virtually abolishes germ cell formation in embryos, while producing a less severe effect on somatic posterior patterning. We conclude that interaction with the general translation factor eIF5B is essential for Vas function during development.  相似文献   

2.
The vasa gene (vas) is essential for germline development in Drosophila melanogaster. Zygotic vas is expressed in pole cells earlier than any other pole cell-expressing genes thus far identified, and VAS protein is continuously present in germline cells throughout development. Here, we report the identification of a regulatory region that directs germline-specific vas expression. A genomic fragment containing the vas locus was linked to enhanced green fluorescent protein (egfp)-vas fusion gene, and the resulting gene was introduced into fly genome. Developmental vas expression was assessed by monitoring the expression of EGFP-VAS in these transformants. The spatio-temporal expression pattern of EGFP-VAS is essentially identical to that of endogenous VAS throughout germline development. By dissecting the vas promoter, we identified a 40-bp regulatory element, which is necessary and sufficient for germline-specific expression during oogenesis. This region interacts specifically with ovarian protein(s). Furthermore, this region is also required for vas expression in pole cells during embryogenesis. These results suggest that a similar mechanism regulates vas expression both in oogenesis and embryogenesis.  相似文献   

3.
In C. elegans, a population of proliferating germ cells is maintained via GLP-1/Notch signaling; in the absence of GLP-1 signaling, germ cells prematurely enter meiosis and differentiate. We previously identified ego (enhancer of glp-1) genes that promote germline proliferation and interact genetically with the GLP-1 signaling pathway. Here, we report that iffb-1 (initiation factor five B) is an ego gene. iffb-1 encodes the sole C. elegans isoform of eukaryotic translation initiation factor 5B, a protein essential for translation. We have used RNA interference and a deletion mutation to determine the developmental consequences of reduced iffb-1 activity. Our data indicate that maternal iffb-1 gene expression is sufficient for embryogenesis, and zygotic iffb-1 expression is required for development beyond late L1/early L2 stage. Partial reduction in iffb-1 expression delays larval development and can severely disrupt proliferation and differentiation of germ cells. We hypothesize that germline development is particularly sensitive to iffb-1 expression level.  相似文献   

4.
The Dmnk (Drosophila maternal nuclear kinase) gene, encoding a nuclear protein serine/threonine kinase, is expressed predominantly in the germline cells during embryogenesis, suggesting its possible role in the establishment of germ cells. We report here that Dmnk interacts physically with Drosophila RNA binding protein Orb, which plays crucial roles in the establishment of Drosophila oocyte by regulating the distribution and translation of several maternal mRNAs. Considering similar spatiotemporal expression pattern of Dmnk and orb during oogenesis and early embryogenesis, it is suggested that Dmnk plays a role in establishment of germ cells by interacting with Orb. Although there are two forms of Dmnk proteins, Dmnk-L (long) and Dmnk-S (short) via the developmentally regulated alternative splicing, Orb can associate with both forms of Dmnk proteins when expressed in culture cells. However, immunohistochemical analysis revealed that Dmnk-S, but not Dmnk-L, can affect the subcellular localization of Orb in a kinase activity-dependent manner, suggesting differential functions of Dmnk-S and Dmnk-L in the regulation of Orb.  相似文献   

5.
The development of a functional germline is essential for species propagation. The nanos (nos) gene plays an evolutionarily conserved role in germline development and is also essential for abdominal patterning in Drosophila. A small fraction of nos mRNA is localized to the germ plasm at the posterior pole of the Drosophila embryo, where it becomes incorporated into the germ cells. Germ plasm associated nos mRNA is translated to produce a gradient of Nos protein that patterns the abdomen, whereas the remaining unlocalized RNA is translationally repressed to allow anterior development. Using transgenes that compromise nos mRNA localization and translational regulation, we show that wild-type body patterning can ensue without nos mRNA localization provided that nos translation is properly modulated. In contrast, localization of nos to the germ plasm, but not translational regulation, is essential for nos function in the developing germ cells. We propose that an imperative for nos localization in producing a functional germline has preserved an inefficient localization mechanism.  相似文献   

6.
In Drosophila, the RNA helicase VASA (VAS) is required for both germ line formation and oocyte differentiation. While the murine VAS homologue is required for spermatogenesis, it is dispensable for germ line formation. The molecular basis for this apparently dual role of VAS in germ line ontogeny is, however, unclear. Recent evidence indicates that fish, like flies, employs VAS both in early and late stages of the germ line development and that there is a sex-linked differential expression of splice variants. We show here that the longer of two splice variants of zebrafish vas is transiently downregulated in the germ line around the time when the germ cells reach the developing gonad. Using transgenic vas::EGFP fish lines, which allow us to distinguish between male and female individuals, we show that the long splice variant reappears in both sexes at around day 25 and is subsequently downregulated during male gonadal development. Our data further suggest that there is a switch from maternal to zygotic expression of the long splice variant of vas as sexual dimorphic development commences.  相似文献   

7.
The interaction between turnip mosaic virus (TuMV) viral protein linked to the genome (VPg) and Arabidopsis thaliana eukaryotic initiation factor (iso)4E (eIF(iso)4E) was investigated to address the influence of potyviral VPg on host cellular translational initiation. Affinity chromatographic analysis showed that the region comprising amino acids 62-70 of VPg is important for the interaction with eIF(iso)4E. In vitro translation analysis showed that the addition of VPg significantly inhibited translation of capped RNA in eIF(iso)4E-reconstituted wheat germ extract. This result indicates that VPg inhibits cap-dependent translational initiation via binding to eIF(iso)4E. The inhibition by VPg of in vitro translation of RNA with wheat germ extract did not depend on RNase activity. Our present results may indicate that excess VPg produced at the encapsidation stage shuts off cap-dependent translational initiation in host cells by inhibiting complex formation between eIF(iso)4E and cellular mRNAs.  相似文献   

8.
9.
J. I. Horabin  D. Bopp  J. Waterbury    P. Schedl 《Genetics》1995,141(4):1521-1535
Unlike sex determination in the soma, which is an autonomous process, sex determination in the germline of Drosophila has both inductive and autonomous components. In this paper, we examined how sexual identity is selected and maintained in the Drosophila germline. We show that female-specific expression of genes in the germline is dependent on a somatic signaling pathway. This signaling pathway requires the sex-non-specific transformer 2 gene but, surprisingly, does not appear to require the sex-specific genes, transformer and doublesex. Moreover, in contrast to the soma where pathway initiation and maintenance are independent processes, the somatic signaling pathway appears to function continuously from embryogenesis to the larval stages to select and sustain female germline identity. We also show that the primary target for the somatic signaling pathway in germ cells can not be the Sex-lethal gene.  相似文献   

10.
Vasa (Vas) is a conserved DEAD-box RNA helicase expressed in germline cells that localizes to a characteristic perinuclear structure called nuage. Previous studies have shown that Vas has diverse functions, with roles in regulating mRNA translation, germline differentiation, pole plasm assembly, and piwi-interacting RNA (piRNA)-mediated transposon silencing. Although vas has also been implicated in the regulation of germline proliferation in Drosophila and mice, little is known about whether Vas plays a role during the mitotic cell cycle. Here, we report a translation-independent function of vas in regulating mitotic chromosome condensation in the Drosophila germline. During mitosis, Vas facilitates robust chromosomal localization of the condensin I components Barren (Barr) and CAP-D2. Vas specifically associates with Barr and CAP-D2, but not with CAP-D3 (a condensin II component). The mitotic function of Vas is mediated by the formation of perichromosomal Vas bodies during mitosis, which requires the piRNA pathway components aubergine and spindle-E. Our results suggest that Vas functions during mitosis and may link the piRNA pathway to mitotic chromosome condensation in Drosophila.  相似文献   

11.
Members of the nanos gene family are evolutionarily conserved regulators of germ cell development. In several organisms, Nanos protein expression is restricted to the primordial germ cells (PGCs) during early embryogenesis. Here, we investigate the regulation of the Caenorhabditis elegans nanos homolog nos-2. We find that the nos-2 RNA is translationally repressed. In the adult germline, translation of the nos-2 RNA is inhibited in growing oocytes, and this inhibition depends on a short stem loop in the nos-2 3'UTR. In embryos, nos-2 translation is repressed in early blastomeres, and this inhibition depends on a second region in the nos-2 3'UTR. nos-2 RNA is also degraded in somatic blastomeres by a process that is independent of translational repression and requires the CCCH finger proteins MEX-5 and MEX-6. Finally, the germ plasm component POS-1 activates nos-2 translation in the PGCs. A combination of translational repression, RNA degradation, and activation by germ plasm has also been implicated in the regulation of nanos homologs in Drosophila and zebrafish, suggesting the existence of conserved mechanisms to restrict Nanos expression to the germline.  相似文献   

12.
Translation is a fundamental step in gene expression, and translational control is exerted in many developmental processes. Most eukaryotic mRNAs are translated by a cap-dependent mechanism, which requires recognition of the 5′-cap structure of the mRNA by eukaryotic translation initiation factor 4E (eIF4E). eIF4E activity is controlled by eIF4E-binding proteins (4E-BPs), which by competing with eIF4G for eIF4E binding act as translational repressors. Here, we report the discovery of Mextli (Mxt), a novel Drosophila melanogaster 4E-BP that in sharp contrast to other 4E-BPs, has a modular structure, binds RNA, eIF3, and several eIF4Es, and promotes translation. Mxt is expressed at high levels in ovarian germ line stem cells (GSCs) and early-stage cystocytes, as is eIF4E-1, and we demonstrate the two proteins interact in these cells. Phenotypic analysis of mxt mutants indicates a role for Mxt in germ line stem cell (GSC) maintenance and in early embryogenesis. Our results support the idea that Mxt, like eIF4G, coordinates the assembly of translation initiation complexes, rendering Mxt the first example of evolutionary convergence of eIF4G function.  相似文献   

13.
Feng P  Everly DN  Read GS 《Journal of virology》2001,75(21):10272-10280
During lytic infections, the virion host shutoff (Vhs) protein (UL41) of herpes simplex virus destabilizes both host and viral mRNAs. By accelerating mRNA decay, it helps determine the levels and kinetics of viral and cellular gene expression. In vivo, Vhs shows a strong preference for mRNAs, as opposed to non-mRNAs, and degrades the 5' end of mRNAs prior to the 3' end. In contrast, partially purified Vhs is not restricted to mRNAs and causes cleavage of target RNAs at various sites throughout the molecule. To explain this discrepancy, we searched for cellular proteins that interact with Vhs using the Saccharomyces cerevisiae two-hybrid system. Vhs was found to interact with the human translation initiation factor, eIF4H. This interaction was verified by glutathione S-transferase pull-down experiments and by coimmunoprecipitation of Vhs and epitope-tagged eIF4H from extracts of mammalian cells. The interaction was abolished by several point mutations in Vhs that abrogate its ability to degrade mRNAs in vivo. The results suggest that Vhs is a viral mRNA degradation factor that is targeted to mRNAs, and to regions of translation initiation, through an interaction with eIF4H.  相似文献   

14.
15.
The tumor suppressor protein programmed cell death 4 (Pdcd4) has been implicated in the translational regulation of specific mRNAs, however, the identities of the natural Pdcd4 target mRNAs and the mechanisms by which Pdcd4 affects their translation are not well understood. Pdcd4 binds to the eukaryotic translation initiation factor eIF4A and inhibits its helicase activity, which has suggested that Pdcd4 suppresses translation initiation of mRNAs containing structured 5′-untranslated regions. Recent work has revealed a second inhibitory mechanism, which is eIF4A-independent and involves direct RNA-binding of Pdcd4 to the target mRNAs. We have now identified the poly(A)-binding protein (PABP) as a novel direct interaction partner of Pdcd4. The ability to interact with PABP is shared between human and Drosophila Pdcd4, indicating that it has been highly conserved during evolution. Mutants of Pdcd4 that have lost the ability to interact with PABP fail to stably associate with ribosomal complexes in sucrose density gradients and to suppress translation, as exemplified by c-myb mRNA. Overall, our work identifies PABP as a novel functionally relevant Pdcd4 interaction partner that contributes to the regulation of translation by Pdcd4.  相似文献   

16.
Neobenedenia girellae, a monogenean, is an important pathogen in marine cultured fish such as yellowtail and amberjack. An effective control method is required but none has yet been established. Aiming to establish a new control method by interfering with the gametogenesis of N. girellae, we focused on vasa (vas)-related genes that are expressed exclusively in the germline granules in Drosophila, Caenorhabditis elegans and other animals. Three vas-related genes (N. girellae vasa-like gene, Ngvlg1, Ngvlg2 and Ngvlg3) were isolated by PCR and Ngvlg1 and Ngvlg2 were shown to be expressed only in germ cells. We demonstrated that introduction of double-stranded Ngvlg1 or Ngvlg2 RNA by soaking resulted in partial or complete loss of germ cells. Moreover, the hatching rate of eggs from animals showing partial loss of germ cells decreased significantly. These results suggest that Ngvlg1 and Ngvlg2 are essential genes for germ cell quantity and quality. The possibility that a new control method can be developed by controlling gametogenesis of N. girellae was proven, because sterilised N. girellae could be produced.  相似文献   

17.
Most Drosophila mRNAs are actively translated in the early embryo, with the exception of the poorly translated ribosomal protein (r-protein) mRNAs. Two possible mechanisms for this translational discrimination were tested: (1) Translation of r-protein mRNAs is discriminated against by the limited activity of translational initiation factors in the early embryo and (2) translation of r-protein mRNAs is repressed by trans-acting factors that reversibly bind these mRNAs. Exogenously provided initiation factors promoted partial recruitment of r-protein mRNAs into polysomes, suggesting that modulation of initiation factor activity may play a role in the translational discrimination of r-protein mRNAs during embryogenesis. No evidence for involvement of reversibly binding trans-acting factors was obtained, although there are limitations in the interpretation of the latter experiments.  相似文献   

18.
Dcr-1 maintains Drosophila ovarian stem cells   总被引:1,自引:0,他引:1  
Jin Z  Xie T 《Current biology : CB》2007,17(6):539-544
MicroRNAs (miRNAs) regulate gene expression by controlling the turnover, translation, or both of specific mRNAs. In Drosophila, Dicer-1 (Dcr-1) is essential for generating mature miRNAs from their corresponding precursors. Because miRNAs are known to modulate developmental events, such as cell fate determination and maintenance in many species, we investigated whether a lack of Dcr-1 would affect the maintenance of stem cells (germline stem cells, GSCs; somatic stem cells, SSCs) in the Drosophila ovary by specifically removing its function from the stem cells. Our results show that dcr-1 mutant GSCs cannot be maintained and are lost rapidly from the niche without discernable features of cell death, indicating that Dcr-1 controls GSC self-renewal but not survival. bag of marbles (bam), the gene that encodes an important differentiating factor in the Drosophila germline, however, is not upregulated in dcr-1 mutant GSCs, and its removal does not slow down dcr-1 mutant GSC loss, suggesting that Dcr-1 controls GSC self-renewal by repressing a Bam-independent differentiation pathway. Furthermore, Dcr-1 is also essential for the maintenance of SSCs in the Drosophila ovary. Our data suggest that miRNAs produced by Dcr-1 are required for maintaining two types of stem cells in the Drosophila ovary.  相似文献   

19.
Small cytosolic RNAs (scRNAs) from human placenta inhibit translation of poly(A)-rich RNA from Chlamydomonas in the wheat germ cell-free system. The major exception is the mRNA for a nuclear-coded 22-kDa chloroplast heat-shock protein whose translation is much less affected. Evidence is presented which suggests that scRNAs do not directly interact with the mRNAs but with a factor of the wheat germ system instead. It has been found that run-off translation of polyribosomes is not impaired by scRNAs whereas the formation of initiation complexes in vitro, again with the exception of those of the mRNA for the 22-kDa heat-shock protein, is heavily affected. From this evidence we conclude that scRNAs interfere with the action of one or more of the wheat germ initiation factors and that the translation of the mRNA for the 22-kDa heat-shock protein is much less dependent upon this (these) factor(s).  相似文献   

20.
To obtain a reliable molecular probe to trace the origin of germ cell lineages in birds, we isolated a chicken homolog (Cvh) to vasa gene (vas), which plays an essential role in germline formation in Drosophila. We demonstrate the germline-specific expression of CVH protein throughout all stages of development. Immunohistochemical analyses using specific antibody raised against CVH protein indicated that CVH protein was localized in cytoplasm of germ cells ranging from presumptive primordial germ cells (PGCs) in uterine-stage embryos to spermatids and oocytes in adult gonads. During the early cleavages, CVH protein was restrictively localized in the basal portion of the cleavage furrow. About 30 CVH-expressing cells were scattered in the central zone of the area pellucida at stage X, later 45-60 cells were found in the hypoblast layer and subsequently 200-250 positive cells were found anteriorly in the germinal crescent due to morphogenetic movement. Furthermore, in the oocytes, CVH protein was predominantly localized in granulofibrillar structures surrounding the mitochondrial cloud and spectrin protein-enriched structure, indicating that the CVH-containing cytoplasmic structure is the precursory germ plasm in the chicken. These results strongly suggest that the chicken germline is determined by maternally inherited factors in the germ plasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号