共查询到20条相似文献,搜索用时 9 毫秒
4.
Neurochemical Research - Polyphenols from Toona sinensis seeds (PTSS) have demonstrated anti-inflammatory effects in various diseases, while the anti-neuroinflammatory effects still remain to be... 相似文献
5.
Dysfunction of autophagy, mitochondrial dynamics and endoplasmic reticulum (ER) stress are currently considered as major contributing factors in the pathogenesis of Parkinson’s disease (PD). Accumulation of oxidatively damaged cytoplasmic organelles and unfolded proteins in the lumen of the ER causes ER stress and it is associated with dopaminergic cell death in PD. Rotenone is a pesticide that selectively kills dopaminergic neurons by a variety of mechanism, has been implicated in PD. Geraniol (GE; 3,7-dimethylocta- trans-2,6-dien-1-ol) is an acyclic monoterpene alcohol occurring in the essential oils of several aromatic plants. In this study, we investigated the protective effect of GE on rotenone-induced mitochondrial dysfunction dependent oxidative stress leads to cell death in SK-N-SH cells. In addition, we assessed the involvement of GE on rotenone-induced dysfunction in autophagy machinery via α-synuclein accumulation induced ER stress. We found that pre-treatment of GE enhanced cell viability, ameliorated intracellular redox, preserved mitochondrial membrane potential and improves the level of mitochondrial complex-1 in rotenone treated SK-N-SH cells. Furthermore, GE diminishes autophagy flux by reduced autophagy markers, and decreases ER stress by reducing α-synuclein expression in SK-N-SH cells. Our results demonstrate that GE possess its neuroprotective effect via reduced rotenone-induced oxidative stress by enhanced antioxidant status and maintain mitochondrial function. Furthermore, GE reduced ER stress and improved autophagy flux in the neuroblastomal SK-N-SH cells. The present study could suggest that GE a novel therapeutic avenue for clinical intervention in neurodegenerative diseases especially for PD. 相似文献
6.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity and akinesia/bradykinesia resulting from the progressive loss of nigrostriatal dopaminergic neurons. To date, only symptomatic treatment is available for PD patients, with no effective means of slowing or stopping the progression of the disease. Progranulin (PGRN) is a 593 amino acid multifunction protein that is widely distributed throughout the CNS, localized primarily in neurons and microglia. PGRN has been demonstrated to be a potent regulator of neuroinflammation and also acts as an autocrine neurotrophic factor, important for long-term neuronal survival. Thus, enhancing PGRN expression may strengthen the cells resistance to disease. In the present study, we have used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD to investigate the possible use of PGRN gene delivery as a therapy for the prevention or treatment of PD. Viral vector delivery of the PGRN gene was an effective means of elevating PGRN expression in nigrostriatal neurons. When PGRN expression was elevated in the SN C, nigrostriatal neurons were protected from MPTP toxicity in mice, along with a preservation of striatal dopamine content and turnover. Further, protection of nigrostriatal neurons by PGRN gene therapy was accompanied by reductions in markers of MPTP-induced inflammation and apoptosis as well as a complete preservation of locomotor function. We conclude that PGRN gene therapy may have beneficial effects in the treatment of PD. 相似文献
7.
Parkinson’s disease (PD) is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta (SNpc) and a subsequent loss of dopamine (DA) within the striatum. Despite advances in the development of pharmacological therapies that are effective at alleviating the symptoms of PD, the search for therapeutic treatments that halt or slow the underlying nigral degeneration remains a particular challenge. Activin A, a member of the transforming growth factor β superfamily, has been shown to play a role in the neuroprotection of midbrain neurons against 6-hydroxydopamine (6-OHDA) in vitro, suggesting that activin A may offer similar neuroprotective effects in in vivo models of PD. Using robust stereological methods, we found that intrastriatal injections of 6-OHDA results in a significant loss of both TH positive and NeuN positive populations in the SNpc at 1, 2, and 3 weeks post-lesioning in drug naïve mice. Exogenous application of activin A for 7 days, beginning the day prior to 6-OHDA administration, resulted in a significant survival of both dopaminergic and total neuron numbers in the SNpc against 6-OHDA-induced toxicity. However, we found no corresponding protection of striatal DA or dopamine transporter (DAT) expression levels in animals receiving activin A compared to vehicle controls. These results provide the first evidence that activin A exerts potent neuroprotection in a mouse model of PD, however this neuroprotection may be localized to the midbrain. 相似文献
8.
Evidence from clinical and experimental studies indicate that oxidative stress is involved in pathogenesis of Parkinson’s
disease. The present study was designed to investigate the neuroprotective potential of lycopene on oxidative stress and neurobehavioral
abnormalities in rotenone induced PD. Rats were treated with rotenone (3 mg/kg body weight, intraperitoneally) for 30 days.
NADH dehydrogenase a marker of rotenone action was observed to be significantly inhibited (35%) in striatum of treated animals.
However, lycopene administration (10 mg/kg, orally) to the rotenone treated animals for 30 days increased the activity by
39% when compared to rotenone treated animals. Rotenone administration increased the MDA levels (75.15%) in striatum, whereas,
lycopene administration to rotenone treated animals decreased the levels by 24.33%. Along with this, significant decrease
in GSH levels (42.69%) was observed in rotenone treated animals. Lycopene supplementation on the other hand, increased the
levels of GSH by 75.35% when compared with rotenone treated group. The activity of SOD was inhibited by 69% in rotenone treated
animals and on lycopene supplementation; the activity increased by 12% when compared to controls. This was accompanied by
cognitive and motor deficits in rotenone administered animals, which were reversed on lycopene treatment. Lycopene treatment
also prevented release of cytochrome c from mitochondria. Collectively, these observations suggest that lycopene supplementation
along with rotenone for 30 days prevented rotenone-induced alterations in antioxidants along with the prevention of rotenone
induced oxidative stress and neurobehavioral deficits. The results provide an evidence for beneficial effect of lycopene supplementation
in rotenone-induced PD and suggest therapeutic potential in neurodegenerative diseases involving accentuated oxidative stress. 相似文献
9.
Herbal medicines have long been used to treat Parkinson’s disease (PD). To systematically analyze the anti-parkinsonian activity of echinacoside (ECH) in a neurotoxic model of PD and provide a future basis for basic and clinical investigations, male C57BL/6 mice were randomized into blank control, PD model and ECH-administration groups. ECH significantly suppressed the dopaminergic neuron loss ( P?<?0.01) caused by MPTP and maintained dopamine content ( P?<?0.01) and dopamine metabolite content ( P?<?0.05) compared with that measured in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced damage. Additionally, ECH inhibited the activation of microglia and astrocytes in the substantia nigra, which suggested the involvement of neuroinflammation. The relevant cytokines were detected with a Proteome Profiler Array, which confirmed that ECH participated in the regulation of seven cytokines. Given that p38 mitogen-activated protein kinase (p38MAPK) and NF-kappaB (NF-κB) signals are considered to be closely related to neuroninflammation, the gene expression levels of p38MAPK and six NF-κB DNA-binding subunits were assessed. Western blotting analysis showed that both p38MAPK and the NF-κB p52 subunit were upregulated in the MPTP group and that ECH downregulated their expressions. Minocycline was administered as the positive control to inhibit neuroinflammation, and no differences were detected between the minocycline- and ECH-mediated inhibition of the p38MAPK and NF-κB p52 signals. In conclusion, echinacoside is a potential novel orally active compound for regulating neuroinflammation and related signals in Parkinson’s disease and may provide a new prospect for clinical treatment. 相似文献
10.
DNA polymerase-β (DNA pol-β) plays a crucial role in the pathogenesis of Parkinson’s disease (PD). The aim of this study was to investigate the neuroprotective effects of a DNA polymerase-β inhibitor 2′,3′-dideoxycytidine (DDC) in PD models. In the in vitro studies, primary cultured neurons were challenged with 1-methyl-4-phenylpyridinium ion (MPP+). The expression of DNA pol-β was assessed using western blot. The neuroprotective effect of DNA pol-β knockdown and DNA pol-β inhibitor DDC was determined using cell viability assay and caspase-3 activity assay. We found that MPP+ induced neuronal death and the activation of caspase-3 in a dose-dependent manner. The expression of DNA pol-β increased after the neurons were exposed to MPP+. DNA pol-β siRNA or DNA pol-β inhibitor DDC attenuated neuronal death induced by MPP+. In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, MPTP treatment triggered behavioral deficits and nigrostriatal lesions. Pretreatment with DDC attenuated MPTP-induced behavioral deficits, dopaminergic neuronal death and striatal dopamine depletion in the MPTP mouse model. These results indicate that DNA pol-β inhibitors may present a novel promising therapeutic option for the neuroprotective treatment of PD. 相似文献
11.
Neurochemical Research - Parkinson’s disease (PD) is the second most common devastating human neurodegenerative disorder and despite intense investigation, no effective therapy is available... 相似文献
12.
The neuroprotective effects of granulocyte colony-stimulating factor (G-CSF) were reported in several neurological disease models, including Parkinson’s disease (PD). In the present study, we investigated the therapeutic effect of G-CSF after the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD was established. G-CSF was subcutaneously administered into C57BL/6 mice that had undergone systemic MPTP injections. We found that G-CSF treatment markedly increased the number of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the G-CSF-treated group. Consistent with this finding, we found a significant increase in dopamine release under high K + stimulation in the striatum of the G-CSF-treated animals compared to the MPTP-exposed mice. Finally, we observed a persistent recovery of locomotor function in the G-CSF-treated animals. These results suggest the potential therapeutic value of G-CSF in treating PD. However, our bromodeoxyuridine labeling experiment failed to identify any newly generated dopaminergic neurons in SNpc. This might indicate an indirect effect of G-CSF on cell proliferation. The underlying mechanism of G-CSF is under further investigation. 相似文献
13.
Amyloid-β (Aβ)-induced mitochondrial dysfunction has been recognized as a prominent, early event in Alzheimer’s disease (AD). Therefore, therapeutics targeted to improve mitochondrial function could be beneficial. Quercetin, a bioflavanoid, has been reported to have potent neuro-protective effects, but its preventive effects on Aβ-induced mitochondrial dysfunction and cognitive impairment have not been well characterised. Three-month-old APPswe/PS1dE9 transgenic mice were randomly assigned to a vehicle group, two quercetin (either 20 or 40 mg kg ?1 day ?1) groups, or an Aricept (2 mg kg ?1 day ?1) group. After 16 weeks of treatment, we observed beneficial effects of quercetin (40 mg kg ?1 day ?1), including lessening learning and memory deficits, reducing scattered senile plaques, and ameliorating mitochondrial dysfunction, as evidenced by restoration of mitochondrial membrane potential, reactive oxygen species and ATP levels in mitochondria isolated from the hippocampus compared to control. Furthermore, the AMP-activated protein kinase ( AMPK) activity significantly increased in the quercetin-treated (40 mg kg ?1 day ?1) group. These findings suggest that a reduction in plaque burden and mitochondrial dysfunction through the activation of AMPK may be one of the mechanisms by which quercetin improves cognitive functioning in the APPswe/PS1dE9 transgenic mouse model of AD. 相似文献
14.
Aims To investigate the therapeutic effects of tyrosine hydroxylase (TH)-transfected neuronal stem cells derived from bone marrow
stem cells (NdSCs-D-BMSCs) on Parkinson’s disease (PD) through different transplantation protocols, including microinjection
into the cerebral ventricles (CV) and the striatum (ST).
Methods After identification by enzyme digestion, the constructed plasmid pEGFP-C2-TH was transfected into 8-day-cultured NdSCs-D-BMSCs
by electroporation resulting in the coexpression of green fluorescent protein (GFP) and TH. The TH-transfected cells were
injected into either the right ST or CV of PD rats. The changes in locomotor activity of PD rats and the migration of transplanted
cells in cerebral tissue were monitored and cerebral DA levels were assayed by high performance liquid chromatography (HPLC).
Results Five days after plasmid pEGFP-C2-TH transfection into NdSCs-D-BMSCs GFP was expressed in 62.1% of the cells and the rate of
co-expression with TH was 83.5%. Ten weeks following transplantation, the symptoms of PD rats in both groups were significantly
improved and DA levels were restored to 46.6% and 33% of control. The transferred cells showed excellent survival rates in
PD rat brains and distant migration was observed.
Conclusion Both CV and ST transplantation of TH-transfected NDSCs-D-BMSCs has obvious therapeutic effects on PD rats. This study could
provide evidence for future transplantation route selection, possibly leading to stem cell transplantation through lumbar
puncture.
Grant: National natural science grant (30270491), Outstanding Science-technology program of Guangdong Province (2000)25. 相似文献
15.
Persephin (PSPN) is one of the neurotrophic factors of the glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) which have been found to promote the survival of specific populations of neurons. The aim of this study was to assess the potential therapeutic function of gene-modified mesenchymal stem cells (MSCs)-Lv-PSPN-MSCs in 6-OHDA-induced Parkinson’s disease (PD) rats models. Here, we worked on the isolation, purification, identification and amplification of MSCs in vitro. The expression analysis revealed that several of the neural marker proteins like nestin, GFAP and S100 were expressed by rat MSCs. MES23.5 cells co-cultured with Lv-PSPN-MSCs showed less 6-OHDA induced cell death than control cells in vitro. When Lv-PSPN-MSCs were injected into the striatum of PD rats, we observed the survival rate, migration, differentiation and the behavior change of PD rats. We found that Lv-PSPN-MSCs showed higher survival rate in rat brain compared with Lv-null-MSCs. Rotational behavior showed that rats receiving Lv-PSPN-MSCs showed the most significant improvement compared with those in other groups. HPLC results showed the content of DA in striatum of rats which received Lv-PSPN-MSCs was highest compared with those in other groups. In conclusion, our results suggest that transplantation of Lv-PSPN-MSCs can lead to remarkable therapeutic effects in PD rats. 相似文献
17.
Striatal transplantation of dopaminergic (DA) neurons or neural stem cells (NSCs) has been reported to improve the symptoms of Parkinson’s disease (PD), but the low rate of cell survival, differentiation, and integration in the host brain limits the therapeutic efficacy. We investigated the therapeutic effects of intracranial co-transplantation of mesencephalic NSCs stably overexpressing human glial-derived neurotrophic factor (GDNF-mNSCs) together with fetal DA neurons in the 6-OHDA rat model of PD. Striatal injection of mNSCs labeled by the contrast enhancer superparamagnetic iron oxide (SPIO) resulted in a hypointense signal in the striatum on T2-weighted magnetic resonance images that lasted for at least 8 weeks post-injection, confirming the long-term survival of injected stem cells in vivo. Co-transplantation of GDNF-mNSCs with fetal DA neurons significantly reduced apomorphine-induced rotation, a behavioral endophenotype of PD, compared to sham-treated controls, rats injected with mNSCs expressing empty vector (control mNSCs) plus fetal DA neurons, or rats injected separately with either control mNSCs, GDNF-mNSCs, or fetal DA neurons. In addition, survival and differentiation of mNSCs into DA neurons was significantly greater following co-transplantation of GDNF-mNSCs plus fetal DA neurons compared to the other treatment groups as indicated by the greater number of cell expressing both the mNSCs lineage tracer enhanced green fluorescent protein (eGFP) and the DA neuron marker tyrosine hydroxylase. The success of cell-based therapies for PD may be greatly improved by co-transplantation of fetal DA neurons with mNSCs genetically modified to overexpress trophic factors such as GDNF that support differentiation into DA cells and their survival in vivo. 相似文献
18.
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into dopaminergic (DAergic) neurons, which is one of the major cell types damaged in Parkinson’s disease (PD). For this reason, MSCs are considered a potential cell source for PD therapy. It has been proved that hypoxia is involved in the proliferation and differentiation of stem cells. In this study, we investigated the effect of hypoxia on MSC proliferation and DAergic neuronal differentiation. Our results demonstrate that 3% O 2 treatment can enhance rat MSC proliferation by upregulation of phosphorylated p38 MAPK and subsequent nuclear translocation of hypoxia inducible factor (HIF)-1α. During neural differentiation, 3% O 2 treatment increases the expression of HIF-1α, phosphorylated ERK and p38 MAPK. These changes are followed by promotion of neurosphere formation and further DAergic neuronal differentiation. Furthermore, we explored the physiological function of hypoxia-induced DAergic neurons from human fetal MSCs by transplanting them into parkinsonian rats. Grafts induced with hypoxia display more survival of DAergic neurons and greater amelioration of behavioral impairments. Altogether, these results suggest that hypoxia can promote MSC proliferation and DAergic neuronal differentiation, and benefit for intrastriatal transplantation. Therefore, this study may provide new perspectives in application of MSCs to clinical PD therapy. 相似文献
19.
According to epidemiologic studies, smoking appears to downregulate the prevalence of Parkinson’s disease (PD), possibly due to antiinflammatory mechanisms via activation of α7 nicotinic acetylcholine receptors (α7 nAChRs). This receptor also appears to play a role in T-cell differentiation. Recently, it has become apparent that the innate immune system participates in PD pathogenesis. The aim of this study was to evaluate the effects of auricular vagus nerve stimulation (aVNS) on substantia nigra (SN) dopaminergic neurodegeneration and the associated neuroinflammation and immune responses in a rat PD model. Adult male Wistar rats were unilaterally administered 6-hydroxydopamine (6-OHDA) to the medial forebrain bundle, followed by aVNS treatment after surgery. Following motor behavioral tests, the expression of tyrosine hydroxylase (TH) in the SN and the levels of inflammatory cytokines in the ventral midbrain were evaluated. In addition, changes in the trends of subsets of CD4+ T lymphocytes in the SN were measured by immunofluorescence staining. Western blotting was used to evaluate the α7 nAChR protein level. Compared with 6-OHDA treats rats, aVNS treatment significantly improved motor deficits, increased TH and α7 nAChR expression, and reduced the levels of inflammatory cytokines (tumor necrosis factor-a (TNF-α) and interleukin-1β (IL-1β)) (p?<?0.05). Additionally, aVNS increased the numbers of regulatory T (Treg) cells while decreasing T helper (Th)17 cells. aVNS exerted neuroprotective effects against dopaminergic damage, possibly by suppressing the evolution of inflammation and modulating innate immune responses. Thus, aVNS may be a potential promising therapy in the future. 相似文献
|