首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of supraspinal orphanin FQ/nociceptin   总被引:3,自引:0,他引:3  
Grisel JE  Mogil JS 《Peptides》2000,21(7):1037-1045
The first reported behavioral action of the endogenous ligand for the "orphan" opioid receptor was a seemingly paradoxical increased sensitivity to nociception (i.e. hyperalgesia) after supraspinal injection into the cerebral ventricles of mice. In the continuing absence of an appropriate in vivo receptor antagonist, studies attempting to define the role of orphanin FQ/nociceptin (OFQ/N) in pain modulation and other behaviors have also featured central injection of peptide. This article reviews the findings of such studies. There appears to be concordance around the observation of anti-opioid actions of supraspinally injected OFQ/N, whereas the observations of hyperalgesia and/or analgesia are much less clear. A portion of the discrepant data may be explained in terms of methodological issues, stress-induced analgesia accompanying experimental protocols, and genotypic variation among subjects. Clarification of OFQ/N's role in nociception, as with other putative biologic functions, will probably depend upon the availability of a selective receptor antagonist.  相似文献   

2.
Opiate modulating properties of nociceptin/orphanin FQ   总被引:10,自引:0,他引:10  
Harrison LM  Grandy DK 《Peptides》2000,21(1):151-172
The recently discovered peptide nociceptin/orphanin FQ (N/OFQ) and its receptor NOR share many structural similarities with the opioid peptides and their receptors. The anatomical distributions of N/OFQ and NOR are similar to those of opioid peptides and receptors. In addition, NOR and opiate receptors couple via the same G-proteins to similar effectors, such as Ca(2+) channels, K(+) channels, adenylyl cyclase, and several protein kinases. Thus, the behavioral effects of N/OFQ have been investigated in the context of known opiate effects, and a possible connection has been sought between the effects of these two homologous signaling systems. Originally characterized as a nociception-producing peptide, N/OFQ has now been shown to have diverse effects on nociception, as well as effects on many other behaviors. With regard to nociception, the peptide has been reported to produce hyperalgesia, reversal of opioid-mediated analgesia, analgesia, and allodynia. N/OFQ also has effects on other behaviors, such as locomotion, feeding, anxiety, spatial attention, reproductive behaviors, and opiate tolerance. The relationship between opiates and N/OFQ is strengthened by the fact that opiates also affect these behaviors. However, the exact nature of the relationship of N/OFQ with opiates-opiate-like versus antiopiate-remains controversial. This review will detail the diverse effects of N/OFQ and suggest that this peptide, like other putative antiopiate peptides, can be described as 'opiate modulating. '  相似文献   

3.
Cellular neurophysiological actions of nociceptin/orphanin FQ   总被引:2,自引:0,他引:2  
Moran TD  Abdulla FA  Smith PA 《Peptides》2000,21(7):969-976
Cellular actions of nociceptin/orphanin FQ (N/OFQ) resemble those of micro-, delta-, and kappa-opioids, i.e. activation of inwardly rectifying K(+) conductance, inhibition of high-voltage-activated Ca(2+) channel currents, and impediment of neurotransmitter release. Differences in ORL(1) and micro-receptor distribution lead to: 1) more widespread actions of N/OFQ on periaqueductal gray neurons than opioids and 2) differential effects of N/OFQ and opioids in the brainstem. Also, unlike opioids, N/OFQ inhibits T-type Ca(2+) channel current in sensory neurons. Opioids and N/OFQ may modulate glutamate responses in different ways, and certain actions of N/OFQ are potentiated following nerve injury whereas those of micro-opioids are attenuated. Agonists at ORL(1) receptors may therefore be of clinical interest in the management of neuropathic pain.  相似文献   

4.
Functional studies using antibodies against orphanin FQ/nociceptin   总被引:3,自引:0,他引:3  
Tian JH  Han JS 《Peptides》2000,21(7):1047-1050
Orphanin FQ/nociceptin (OFQ) is a recently discovered endogenous ligand for the novel opioid receptor-like receptor (ORL-1). There are numerous reports in the literature demonstrating paradoxical effects of exogenous OFQ on pain modulation. For example, OFQ produces a pronociceptive effect in the brain and an analgesic effect in the spinal cord. In order to better understand the physiological actions of OFQ, the present study focused on the pain-modulatory effect of endogenously released OFQ measured using antibody microinjection techniques. We found that electroacupuncture analgesia (EA) was increased by intracerebroventricular (i.c.v.) injection of an OFQ-antibody and decreased following intrathecal injection. Furthermore, i.c.v. OFQ-antibody partially reversed tolerance to both chronic morphine and chronic EA. These data suggest that endogenously released OFQ plays an important role in pain modulation, where pain sensitivity in the brain and spinal cord is increased and decreased, respectively.  相似文献   

5.
Polidori C  de Caro G  Massi M 《Peptides》2000,21(7):1051-1062
Nociceptin/orphanin FQ (NC), the endogenous ligand of the opioid receptor-like1 (ORL1) receptor, has been reported to stimulate feeding in rats. The present article reviews the studies so far published on the effect of NC on food intake and reports new findings concerning the sensitivity of brain regions to the hyperphagic effect of NC in rats. The results obtained indicate that the hypothalamic arcuate nucleus is the most sensitive site among the brain regions so far investigated. On the basis of these findings and of the neurochemical and electrophysiological effects of NC, possible mechanisms of action and possible interactions with other neurotransmitter systems affecting feeding are discussed.  相似文献   

6.
Orphanin FQ/Nociceptin (OFQ/N) administered peripherally was an effective analgesic in the tailflick test in mice (ED50 16.3 microg). It had a peak effect at 5 min and lasted up to 30 min. The kappa3 analgesic naloxone benzoylhydrazone was also active peripherally (ED50 3.8 microg). The analgesic actions of both agents were blocked by naloxone. Neither OFQ/N(1-11) nor OFQ/N(1-7) had appreciable peripheral activity. Antisense mapping both compounds against the murine orphan opioid receptor (KOR-3) confirmed the importance of this clone in their actions. Antisense probes targeting the second and third coding exons significantly lowered the analgesic effects of both compounds. However, the antisense targeting the first coding exon blocked only the actions of OFQ/N and not kappa3 analgesia.  相似文献   

7.
The neuropeptide nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid receptor-like 1 (ORL1) receptor, has been shown to play a prominent role in the regulation of several biological functions such as pain and stress. Here we describe the isolation and characterization of N/OFQ binding biostable RNA aptamers (Spiegelmers) using a mirror-image in vitro selection approach. Spiegelmers are L-enantiomeric oligonucleotide ligands that display high affinity and specificity to their targets and high resistance to enzymatic degradation compared to D-oligonucleotides. A representative Spiegelmer from the selections performed was size-minimized to two distinct sequences capable of high affinity binding to N/OFQ. The Spiegelmers were shown to antagonize binding of N/OFQ to the ORL1 receptor in a binding-competition assay. The calculated IC(50) values for the Spiegelmers NOX 2149 and NOX 2137a/b were 110 nM and 330 nM, respectively. The competitive antagonistic properties of these Spiegelmers were further demonstrated by their effective and specific inhibition of G-protein activation in two additional models. The Spiegelmers antagonized the N/OFQ-induced GTPgammaS incorporation into cell membranes of a CHO-K1 cell line expressing the human ORL1 receptor. In oocytes from Xenopus laevis, NOX 2149 showed an antagonistic effect to the N/OFQ-ORL 1 receptor system that was functionally coupled with G-protein-regulated inwardly rectifying K(+) channels.  相似文献   

8.
9.
Foregoing researches made on the N/OFQ system brought up a possible role for this system in cardiovascular regulation. In this study we examined how N/OFQ levels of the blood plasma changed in acute cardiovascular diseases. Three cardiac patient groups were created: enzyme positive acute coronary syndrome (EPACS, n = 10), enzyme negative ACS (ENACS, n = 7) and ischemic heart disease (IHD, n = 11). We compared the patients to healthy control subjects (n = 31). We found significantly lower N/OFQ levels in the EPACS [6.86 (6.21-7.38) pg/ml], ENACS [6.97 (6.87-7.01) pg/ml and IHD groups [7.58 (7.23-8.20) pg/ml] compared to the control group [8.86 (7.27-9.83) pg/ml]. A significant correlation was detected between N/OFQ and white blood cell count (WBC), platelet count (PLT), creatine kinase (CK), glutamate oxaloacetate transaminase (GOT) and cholesterol levels in the EPACS group.Decreased plasma N/OFQ is closely associated with the presence of acute cardiovascular disease, and the severity of symptoms has a significant negative correlation with the N/OFQ levels. We believe that the rate of N/OFQ depression is in association with the level of ischemic stress and the following inflammatory response. Further investigations are needed to clarify the relevance and elucidate the exact effects of the ischemic stress on the N/OFQ system.  相似文献   

10.
Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand for the N/OFQ peptide (NOP) receptors, has been shown to be metabolized into some fragments. We examined to determine whether intrathecal (i.t.) N/OFQ (1-13), (1-11) and (1-7) have antinociceptive activity in the pain-related behavior after intraplantar injection of capsaicin. The i.t. administration of N/OFQ (0.3-1.2 nmol) produced an appreciable and dose-dependent inhibition of capsaicin-induced paw-licking/biting response. The N-terminal fragments of N/OFQ, (1-13) and (1-11), were antinociceptive with a potency lower than N/OFQ. Calculated ID50 values (nmol, i.t.) were 0.83 for N/OFQ, 2.5 for N/OFQ (1-13) and 4.75 for N/OFQ (1-11), respectively. The time-course effect revealed that the antinociceptive effects of these N-terminal fragments lasted longer than those of N/OFQ. Removal of amino acids down to N/OFQ (1-7) led to be less potent than N/OFQ and its fragments, (1-13) and (1-11). Antinociception induced by N/OFQ or N/OFQ (1-13) was reversed significantly by i.t. co-injection of [Nphe1]N/OFQ (1-13)NH2, a peptidergic antagonist for NOP receptors, whereas i.t. injection of the antagonist did not interfere with the action of N/OFQ (1-11) and (1-7). Pretreatment with the opioid receptor antagonist naloxone hydrochloride did not affect the antinociception induced by N/OFQ and its N-terminal fragments. These results suggest that N-terminal fragments of N/OFQ are active metabolites and may modulate the antinociceptive effect of N/OFQ in the spinal cord. The results also indicate that N/OFQ (1-13) still possess antinociceptive activity through NOP receptors.  相似文献   

11.
12.
Nociceptin/orphanin FQ(14-17) (N/OFQ(14-17)) is one of the major fragments that are released from N/OFQ, an endogenous ligand for the opioid receptor like-1 (ORL-1) receptor by endopeptidase 24.11. In the present study, we determined the pharmacological profiles of N/OFQ(14-17) on pain-related behavioral responses in the mouse. Intrathecal (i.t.) administration of N/OFQ(14-17) (5-160 pmol) evoked pain-related behaviors, and these behavioral responses were reduced by i.t. co-administration of an ORL-1 receptor antagonist, [Nphe(1)]N/OFQ(1-13)NH2 (4 pmol). However, in the ligand-binding receptor assay, N/OFQ(14-17) had no affinity for the ORL-1 receptor. Furthermore, i.t. pretreatment with an antiserum against N/OFQ (1:50) diminished the N/OFQ(14-17)-induced pain-related behaviors, suggesting that endogenous N/OFQ is involved in their expression. Therefore, N/OFQ(14-17)-induced pain-related behaviors may be mediated through the release of endogenous N/OFQ in the mouse spinal cord.  相似文献   

13.
Studies showed that nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) agonists produce anxiolytic-like actions, while little is known about the effects of blockade of NOP receptor signaling in anxiety. To this aim, we investigated the behavioral phenotype of NOP receptor gene knockout mice (NOP(-/-)) in different assays. In the elevated plus-maze and light-dark box, NOP(-/-) mice displayed increased anxiety-related behavior. In the novelty-suppressed feeding behavior and elevated T-maze, NOP(-/-) mice showed anxiolytic-like phenotype, while no differences were found in the open-field, hole-board, marble-burying, and stress-induced hyperthermia. Altogether, these findings suggest that the N/OFQ-NOP receptor system modulates anxiety-related behavior in a complex manner.  相似文献   

14.
The hexapeptide acetyl-RYYRIK-amide (Ac-RYYRIK-NH(2)) has recently been reported to act as partial agonist of the nociceptin/orphanin FQ (noc/OFQ) receptor expressed in CHO cells. In addition, this peptide acts as a competitive antagonist of noc/OFQ-stimulated GTPgamma(35)S binding in rat brain membranes as well as of the noc/OFQ-evoked chronotropic effect in rat cardiomyocytes. In contrast to this antagonism, in the present study, Ac-RYYRIK-NH(2) was found to behave as an agonist at noc/OFQ receptors, affecting spontaneous locomotor activity. When administered intracerebroventricularly (i.c.v.), noc/OFQ and Ac-RYYRIK-NH(2) inhibited spontaneous locomotor activity in mice with ID(50) of 1.1 and 0.07 nmol, respectively. Co-administration of both peptides lead to additive effects. The higher potency of Ac-RYYRIK-NH(2) could not be clearly explained by differential metabolism, because in vivo microdialysis in rat striatum and in vitro metabolic inactivation by rat and mouse brain membranes revealed extensive inactivation of both peptides. Similar to Ac-RYYRIK-NH(2), [Phe(1)psi(CH(2)-NH)Gly(2)]noc/OFQ(1-13)-NH(2) ([F/G]NC(1-13)NH(2)) inhibited the noc/OFQ-stimulated GTPgamma(35)S binding in rat brain membranes (Schild constant 3.83 nM) and mouse brain sections, although several reports have shown that this peptide exhibits agonist activity of noc/OFQ in the CNS. Changes in the optimum conditions of the in vitro assay for GTP binding increased low partial agonism of Ac-RYYRIK-NH(2) in GTP binding response. To explain the discrepancy between the in vitro antagonism of G protein coupling of the noc/OFQ receptor and in vivo agonism of Ac-RYYRIK-NH(2) and of [F/G]NC(1-13)NH(2), it is suggested that low partial agonism of receptor/G protein coupling in native systems may be sufficient to evoke full biologic responses. The extent of partial agonism for GTP binding and of coupling reserve may vary in different systems, thus explaining why [F/G]NC(1-13)NH(2) and Ac-RYYRIK-NH(2) were reported to exhibit antagonist, partial agonist, or even full agonist properties, depending on the system studied.  相似文献   

15.
We have studied the effects of naloxone benzoylhydrazone (NalBzoH) at recombinant human OP4 receptors expressed in Chinese hamster ovary (CHO) cells (CHOhOP4) and native OP4 sites in isolated tissues from various species. In CHOhOP4 membranes, nociceptin (NC) and NalBzoH displaced [125I]Tyr14-NC with pKi values of 10.1 and 7.3. In the presence of 100 microM GDP, NC stimulated GTPgamma35S binding (pEC50 = 8.5). NalBzoH was ineffective but antagonized the effects of NC (pA2 = 6.9). At 5 microM GDP, there was an increase in potency (pEC50 = 9.3) and efficacy (4.3-fold) of NC. NalBzOH was a partial agonist (pEC50 = 7.0, Emax = 13% relative to NC). In CHOhOP4 cells, NC and NalBzoH inhibited cAMP formation with pEC50 and Emax values of 9.8 and 100% and 6.0 and 44%, respectively. In the rat vas deferens, NalBzoH (10 microM) did not modify electrically induced twitches but competitively antagonized the inhibitory action of NC (pA2 = 6.2). In the mouse vas deferens (mVD) and guinea pig ileum (gpI), NalBzoH inhibited twitches with pEC50 and Emax values of 7.6 and 78% and 8.5 and 77%, respectively. The effect of 3 microM NalBzoH was fully inhibited by 3 microM naloxone in mVD and 30 microM in gpI. Under these conditions, NalBzoH antagonized the actions of NC in both preparations with pA2 values of 6.3 and 6.8, respectively. Collectively, these data demonstrate that NalBzoH is a nonselective OP4 ligand with system-dependent behaviour.  相似文献   

16.
Nociceptin/orphanin FQ (N/OFQ) modulates various biological functions, including nociception, via selective stimulation of the N/OFQ peptide receptor (NOP). Here we used the NOP selective antagonist UFP-101 to characterize the receptor involved in the spinal antinociceptive effects of N/OFQ evaluated in the mouse tail withdrawal assay and to investigate the mechanism underlying this action by assessing excitatory postsynaptic currents (EPSC) in laminas I and II of the mouse spinal cord dorsal horn with patch-clamp techniques. Intrathecal (i.t.) injection of N/OFQ in the range of 0.1-10 nmol produced a dose dependent antinociceptive effect, which was prevented by UFP-101, but not by naloxone. In contrast the antinociceptive effect of the mu-opioid peptide receptor agonist endomorphin-1 was blocked by naloxone but not by UFP-101. Moreover, N/OFQ and endomorphin-1 induced a significant antinociceptive effect in wild type mice while in mice knockout for the NOP receptor gene only endomorphin-1 was found to be active. In mouse spinal cord slices 1 microM N/OFQ reduced EPSC to 60+/-4% of control values. This inhibitory effect was reversed in a concentration dependent manner by UFP-101 (pA2 value 6.44). The present results demonstrate that N/OFQ-induced spinal antinociception in vivo and inhibition of spinal excitatory transmission in vitro are mediated by receptors of the NOP type.  相似文献   

17.
This study was designed to characterize the role of the newly described endogenous opioid nociceptin/orphanin FQ (NOC/oFQ) in reduced cerebral blood flow (CBF) observed after ischemia-reperfusion (I/R) and combined hypoxia and ischemia-reperfusion (H-I/R), as a function of time after onset of reperfusion in newborn pigs equipped with a closed cranial window. Global cerebral ischemia (20 min) was induced via elevation of intracranial pressure, whereas hypoxia (10 min) decreased PO(2) to 35 +/- 3 mmHg with unchanged PCO(2). I/R elevated cerebrospinal fluid (CSF) NOC/oFQ from 67 +/- 4 to 266 +/- 29 pg/ml within 1 h, whereas values returned to control level within 4 h of reperfusion. H-I/R elevated CSF NOC/oFQ to 483 +/- 67 pg/ml within 1 h, and such values returned slowly to control level within 12 h of reperfusion. Topical NOC/oFQ (10(-8) M, 10(-6) M)-induced vasodilation was attenuated by I/R and reversed to vasoconstriction by H-I/R at 1 h of reperfusion (control, 9 +/- 1 and 16 +/- 1%; I/R, 3 +/- 1 and 6 +/- 1%; H-I/R, -6 +/- 1 and -11 +/- 1%). Such altered dilation returned to control values within 4 h in I/R animals and within 12 h in H-I/R animals. Blood flow in the cerebrum was reduced from 58 +/- 4 to 33 +/- 2 ml x min(-1) x 100 g(-1) within 1 h and returned to control value within 4 h in I/R animals. In animals pretreated with [F/G]NOC/oFQ(1-13)-NH(2) (1 mg/kg iv), an NOC/oFQ antagonist, however, CBF only fell to 43 +/- 3 ml x min(-1) x 100 g(-1) at 1 h of reperfusion. Similar observations were made in H-I/R animals. These data suggest that an elevated CSF NOC/oFQ concentration and altered vascular responsiveness to this opioid contribute to reductions in CBF observed after either I/R or H-I/R.  相似文献   

18.
In the course of establishing a reliable and reproducible binding assay for the orphanin FQ/nociceptin (OFQ/N) ligand-receptor system we used reversed phase-high-performance liquid chromatography (HPLC) (RP-HPLC) to monitor the integrity of [(3)H]OFQ/N obtained from three different manufacturers. This means of analysis revealed that the stability of [(3)H]OFQ/N during storage varied considerably depending on the manufacturer. Furthermore, the integrity of [(3)H]OFQ/N was significantly compromised in the presence of COS-7 cell membranes. Interestingly, if the peptide was added to COS-7 membranes after they had been exposed to low pH it remained intact, suggesting that the peptide's breakdown during binding is, in part, enzymatically mediated. Although a variety of protease inhibitors were tested, none proved completely effective at protecting the tritiated peptide. The intention of the studies presented here was to evaluate OFQ/N binding components, namely the available [(3)H]OFQ/N ligands, in an effort to standardize the binding conditions for this receptor ligand system. Consequently, this study underscores the importance of monitoring the integrity of the trace ligand being used in a given binding assay.  相似文献   

19.
Corboz MR  Fernandez X  Egan RW  Hey JA 《Life sciences》2001,69(10):1203-1211
In vivo studies were conducted in the guinea-pig to investigate the activity of the selective ORL1 receptor agonist nociceptin/orphanin FQ against capsaicin-induced bronchoconstriction, a response mediated by the release of tachykinins from pulmonary sensory nerves. Anesthetized guinea-pigs were ventilated with a rodent ventilator and placed in a whole-body plethysmograph, and pulmonary resistance (R(L)) and dynamic lung compliance (C(Dyn)) were monitored. Intravenous administration of nociceptin/orphanin FQ (0.3 mg/kg) inhibited the capsaicin-induced bronchoconstriction. The new nonpeptide ORL1 receptor antagonist 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (J-113397) administered intravenously (1 mg/kg) produced a significant blockade of the inhibitory effect of nociceptin/orphanin FQ (0.3 mg/kg) on capsaicin-induced bronchoconstriction, whereas the nonselective opioid receptor antagonist naloxone (1 mg/kg) had no effect. Nociceptin/orphanin FQ (0.3 mg/kg) did not affect the bronchoconstriction induced exogenously by the tachykinin NK2 receptor agonist [beta-ala8]-neurokinin A (4-10). We conclude that nociceptin inhibits in vivo capsaicin-evoked tachykinin release from sensory nerve terminals in the guinea-pig by a prejunctional mechanism. This inhibitory action does not involve activation of opioid receptors.  相似文献   

20.
In the present study we describe the in vitro pharmacological characterization of the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) ligand Ac-RYYRWK-NH2 and the synthesis and biological evaluation of 13 Trp5 substituted Ac-RYYRWK-NH2 analogs. Results indicate that Ac-RYYRWK-NH2 behaves as a highly potent and selective partial agonist at the NOP receptors and that the whole indole moiety of the Trp5 side chain is not required, being a phenyl-ethyl side chain already sufficient for maintaining high potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号