首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the protein-only hypothesis proposes that it is the conformation of abnormal prion protein (PrP(Sc)) that determines strain diversity, the molecular basis of strains remains to be elucidated. In the present study, we generated a series of mutations in the normal prion protein (PrP(C)) in which a single glutamine residue was replaced with a basic amino acid and compared their abilities to convert to PrP(Sc) in cultured neuronal N2a58 cells infected with either the Chandler or 22L mouse-adapted scrapie strain. In mice, these strains generate PrP(Sc) of the same sequence but different conformations, as judged by infrared spectroscopy. Substitutions at codons 97, 167, 171, and 216 generated PrP(C) that resisted conversion and inhibited the conversion of coexpressed wild-type PrP in both Chandler-infected and 22L-infected cells. Interestingly, substitutions at codons 185 and 218 gave strain-dependent effects. The Q185R and Q185K PrP were efficiently converted to PrP(Sc) in Chandler-infected but not 22L-infected cells. Conversely, Q218R and Q218H PrP were converted only in 22L-infected cells. Moreover, the Q218K PrP exerted a potent inhibitory effect on the conversion of coexpressed wild-type PrP in Chandler-infected cells but had little effect on 22L-infected cells. These results show that two strains with the same PrP sequence but different conformations have differing abilities to convert the same mutated PrP(C).  相似文献   

2.
Conversion of large heterologies in Streptococcus pneumoniae   总被引:1,自引:0,他引:1  
In genetic transformation, long deletions dramatically increase the frequency of wild-type recombinants in 2-point crosses. In 3-point crosses in which the deletion was localized between 2 point mutations we demonstrated that this hyper-recombination was the result of genetic conversion extending over several scores of bases outside the deletion. As this conversion did not require an active DNA polymerase A gene, it was proposed that the mechanism of conversion involves breakage and ligation between DNA molecules. A similar hyper-recombination was observed when donor DNA carried an insertion. These results suggest that long heterologies participated in recombination so that surrounding homologous regions are almost completely paired and that these long heterologies are converted. It appears that it is a process that evolved to correct errors of replication which lead to long deletions and which are not eliminated by other systems.  相似文献   

3.
Accuracy of intrachromosomal gene conversion in mouse cells.   总被引:4,自引:0,他引:4       下载免费PDF全文
Results of several recent studies suggest that homologous recombination and related processes in mammalian cells are highly mutagenic. We have examined the products of intrachromosomal gene conversion events that encompassed the last intron of the chicken thymidine kinase gene. Following plasmid rescue and DNA sequencing, we find no mutations associated with twenty conversion events representing 5380 total base pairs of which 2414 base pairs are intron sequence. Based on these studies we conclude that intrachromosomal gene conversion in mouse cells is not a highly mutagenic process but rather it operates with fidelity.  相似文献   

4.
A. R. Godwin  R. M. Liskay 《Genetics》1994,136(2):607-617
We examined the effects of insertion mutations on intrachromosomal recombination. A series of mouse L cell lines carrying mutant herpes simplex virus thymidine kinase (tk) heteroalleles was generated; these lines differed in the nature of their insertion mutations. In direct repeat lines with different large insertions in each gene, there was a 20-fold drop in gene conversion rate and only a five-fold drop in crossover rate relative to the analogous rates in lines with small insertions in each gene. Surprisingly, in direct repeat lines carrying the same large insertion in each gene, there was a larger drop in both types of recombination. When intrachromosomal recombination between inverted repeat tk genes with different large insertions was examined, we found that the rate of gene conversion dropped five-fold relative to small insertions, while the rate of crossing over was unaffected. The differential effects on conversion and crossing over imply that gene conversion is more sensitive to insertion mutation size. Finally, the fraction of gene conversions associated with a crossover increased from 2% for inverted repeats with small insertions to 18% for inverted repeats with large insertions. One interpretation of this finding is that during intrachromosomal recombination in mouse cells long conversion tracts are more often associated with crossing over.  相似文献   

5.
Heterozygous mutations in the JAG1 gene, encoding Notch ligand Jagged1, cause Alagille syndrome (ALGS). As most of the mutations are nonsense or frameshift mutations producing inactive truncated proteins, haplo-insufficiency is considered the major pathogenic mechanism of ALGS. However, the molecular mechanisms by which the missense mutations cause ALGS remain unclear. Here we analyzed the functional properties of four ALGS missense mutant proteins, P163L, R184H, G386R and C714Y, using transfected mammalian cells. P163L and R184H showed Notch-binding activities similar to that of the wild-type when assessed by immunoprecipitation. However, their trans-activation and cis-inhibition activities were almost completely impaired. These mutant proteins localized mainly to the endoplasmic reticulum (ER), suggesting that the mutations induced improper protein folding. Furthermore, the mutant proteins bound more strongly to the ER chaperone proteins calnexin and calreticulin than the wild-type did. C714Y also localized to the ER, but possessed significant trans-activation activity and lacked enhanced binding to the chaperones, indicating a less severe phenotype. The properties of G386R were the same as those of the wild-type. Dominant-negative effects were not detected for any mutant protein. These results indicate that accumulation in the ER and binding to the chaperones correlate with the impaired signal-transduction activities of the missense mutant proteins, which may contribute to the pathogenic mechanism of ALGS. Our findings, which suggest the requirement for cell-surface localization of Jagged1 for cis-inhibition activities, also provide important information for understanding the molecular basis of Notch-signaling pathways.  相似文献   

6.
Several lines of evidence suggest that the presence of the wild-type tumor suppressor gene p53 in human cancers correlates well with successful anti-cancer therapy. Restoration of wild-type p53 function to cancer cells that have lost it might therefore improve treatment outcomes. Using a systematic yeast genetic approach, we selected second-site suppressor mutations that can overcome the deleterious effects of common p53 cancer mutations in human cells. We identified several suppressor mutations for the V143A, G245S and R249S cancer mutations. The beneficial effects of these suppressor mutations were demonstrated using mammalian reporter gene and apoptosis assays. Further experiments showed that these suppressor mutations could override additional p53 cancer mutations. The mechanisms of such suppressor mutations can be elucidated by structural studies, ultimately leading to a framework for the discovery of small molecules able to stabilize p53 mutants.  相似文献   

7.
In a previous report, herpes simplex virus type 2 (HSV-2) was shown to increase the frequency of mutation at the hypoxanthine phosphoribosyltransferase (hprt) locus of nonpermissive rat XC cells (L. Pilon, A. Royal, and Y. Langelier, J. Gen. Virol. 66:259-265, 1985). A series of 17 independent mutants were isolated after viral infection together with 12 spontaneous noninfected mutants to characterize the nature of the mutations induced by the virus at the molecular level. The DNA of the mutants isolated after viral infection was probed with cloned HSV-2 fragments representing the entire genome. In these mutants, no authentic HSV-2 hybridization could be detected. This was indicative of a mechanism of mutagenesis which did not require the permanent integration of viral sequences in the host genome. The structure of the hprt gene was determined by the method of Southern (J. Mol. Biol. 98:503-517, 1975), and the level of hprt mRNA was analyzed by Northern blots. Except for the identification of one deletion mutant in each of the two groups, the HPRT- clones showed no evidence of alteration in their hprt gene. A total of 7 of 12 spontaneous mutants and 11 of 15 mutants isolated from the infected population transcribed an hprt mRNA of the same size and abundance as did the wild-type cells. Thus, the majority of the mutants seemed to have a point mutation in their hprt structural gene. Interestingly, the proportion of the different types of mutations was similar in the two groups of mutants. This analysis revealed that HSV-2 infection did not increase the frequency of rearrangements but rather that it probably induced a general increase of the level of mutations in the cells. This type of response is thought to be compatible with the biology of the virus, and the possible mechanisms by which HSV-2 induces somatic mutations in mammalian cells are discussed.  相似文献   

8.
Chimeric oligonucleotides are synthetic molecules comprised of RNA and DNA bases assembled in a double hairpin conformation. These molecules have been shown to direct gene conversion events in mammalian cells and animals through a process involving at least one protein from the DNA mismatch repair pathway. The mechanism of action for gene repair in mammalian cells has been partially elucidated through the use of a cell-free extract system. Recent experiments have expanded the utility of chimeric oligonucleotides to plants and have demonstrated genotypic and phenotypic conversion, as well as Mendelian transmission. Although these experiments showed correction of point and frameshift mutations, the biochemical and mechanistic aspects of the process were not addressed. In this paper, we describe the establishment of cell-free extract systems from maize (Zea mays), banana (Musa acuminata cv Rasthali), and tobacco (Nicotiana tabacum). Using a genetic readout system in bacteria and chimeric oligonucleotides designed to direct the conversion of mutations in antibiotic-resistant genes, we demonstrate gene repair of point and frameshift mutations. Whereas extracts from banana and maize catalyzed repair of mutations in a precise fashion, cell-free extracts prepared from tobacco exhibited either partial repair or non-targeted nucleotide conversion. In addition, an all-DNA hairpin molecule also mediated repair albeit in an imprecise fashion in all cell-free extracts tested. This system enables the mechanistic study of gene repair in plants and may facilitate the identification of DNA repair proteins operating in plant cells.  相似文献   

9.
HCC2998 is a highly differentiated human colon carcinoma cell line, which has been shown to be converted to a poorly differentiated one after expression of a constitutively active phosphatidylinositol 3-kinase (PI3' kinase). These cells express aberrant sizes of a regulatory subunit of PI3' kinase, p85alpha, with molecular weights of 50 and 76 kDa at a very low level. To elucidate how these cells express these proteins, we analyzed mutations within the p85alpha gene. DNA sequencing analysis revealed that these mutant proteins were generated by independent point mutations in the two alleles of the p85alpha gene: one in the coding sequence, and the other in the acceptor sequence for splicing. Introduction of wild-type p85alpha into HCC2998 cells induced slight rounding of the cells and enhancement of mucin secretion. At the same time, a membrane receptor, ErbB3, was phosphorylated on tyrosine, which in turn, binds to PI3' kinase. Since ErbB3 is upstream of PI3' kinase, it is likely that there is an autocrine loop in which PI3' kinase is activated by ErbB3, which may contribute to dedifferentiation of the cells.  相似文献   

10.
We used ends-in gene targeting to generate knockout mutations of the nucleosome assembly protein 1 (Nap1) gene in Drosophila melanogaster. Three independent targeted null-knockout mutations were produced. No wild-type NAP1 protein could be detected in protein extracts. Homozygous Nap1(KO) knockout flies were either embryonic lethal or poorly viable adult escapers. Three additional targeted recombination products were viable. To gain insight into the underlying molecular processes we examined conversion tracts in the recombination products. In nearly all cases the I-SceI endonuclease site of the donor vector was replaced by the wild-type Nap1 sequence. This indicated exonuclease processing at the site of the double-strand break (DSB), followed by replicative repair at donor-target junctions. The targeting products are best interpreted either by the classical DSB repair model or by the break-induced recombination (BIR) model. Synthesis-dependent strand annealing (SDSA), which is another important recombinational repair pathway in the germline, does not explain ends-in targeting products. We conclude that this example of gene targeting at the Nap1 locus provides added support for the efficiency of this method and its usefulness in targeting any arbitrary locus in the Drosophila genome.  相似文献   

11.
The Rad51 paralog Rad51C has been implicated in the control of homologous recombination. To study the role of Rad51C in vivo in mammalian cells, we analyzed short-tract and long-tract gene conversion between sister chromatids in hamster Rad51C(-/-) CL-V4B cells in response to a site-specific chromosomal double-strand break. Gene conversion was inefficient in these cells and was specifically restored by expression of wild-type Rad51C. Surprisingly, gene conversions in CL-V4B cells were biased in favor of long-tract gene conversion, in comparison to controls expressing wild-type Rad51C. These long-tract events were not associated with crossing over between sister chromatids. Analysis of gene conversion tract lengths in CL-V4B cells lacking Rad51C revealed a bimodal frequency distribution, with almost all gene conversions being either less than 1 kb or greater than 3.2 kb in length. These results indicate that Rad51C plays a pivotal role in determining the "choice" between short- and long-tract gene conversion and in suppressing gene amplifications associated with sister chromatid recombination.  相似文献   

12.
CPT-11 is a prodrug that is converted in vivo to the topoisomerase I poison SN-38 by carboxylesterases (CEs). Among the CEs studied thus far, a rabbit liver CE (rCE) converts CPT-11 to SN-38 most efficiently. Despite extensive sequence homology, however, the human homologues of this protein, hCE1 and hiCE, metabolize CPT-11 with significantly lower efficiencies. To understand these differences in drug metabolism, we wanted to generate mutations at individual amino acid residues to assess the effects of these mutations on CPT-11 conversion. We identified a Bacillus subtilis protein (pnb CE) that could be used as a model for the mammalian CEs. We demonstrated that pnb CE, when expressed in Escherichia coli, metabolizes both the small esterase substrate o-NPA and the bulky prodrug CPT-11. Furthermore, we found that the pnb CE and rCE crystal structures show an only 2.4 A rmsd variation over 400 residues of the alpha-carbon trace. Using the pnb CE model, we demonstrated that the "side-door" residues, S218 and L362, and the corresponding residues in rCE, L252 and L424, were important in CPT-11 metabolism. Furthermore, we found that at position 218 or 252 the size of the residue, and at position 362 or 424 the hydrophobicity and charge of the residue, were the predominant factors in influencing drug activation. The most significant change in CPT-11 metabolism was observed with the L424R variant rCE that converted 10-fold less CPT-11 than the wild-type protein. As a result, COS-7 cells expressing this mutant were 3-fold less sensitive to CPT-11 than COS-7 cells expressing the wild-type protein.  相似文献   

13.
The ability to bypass DNA lesions encountered during replication is important in order to maintain cell viability and avoid genomic instability. Exposure of mammalian cells to UV-irradiation induces the formation of DNA lesions that stall replication forks. In order to restore replication, different bypass mechanisms are operating, previously named post-replication repair. Translesion DNA synthesis is performed by low-fidelity polymerases, which can replicate across damaged sites. The nature of lesions and of polymerases involved influences the resulting frequency of mutations. Homologous recombination represents an alternative pathway for the rescue of stalled replication forks. Caffeine has long been recognized to influence post-replication repair, although the mechanism is not identified. Here, we found that caffeine delays the progress of replication forks in UV-irradiated Chinese hamster cells. The length of this enhanced delay was similar in wild-type cells and in cell deficient in either homologous recombination or nucleotide excision repair. Furthermore, caffeine attenuated the frequency of UV-induced mutations in the hprt gene, whereas the frequency of recombination, monitored in this same gene, was enhanced. These observations indicate that in cells exposed to UV-light, caffeine inhibits the rescue of stalled replication forks by translesion DNA synthesis, thereby causing a switch to bypass via homologous recombination. The biological consequence of the former pathway is mutations, while the latter results in chromosomal aberrations.  相似文献   

14.
Gene therapy has been hindered by the low frequency of homologous recombination in mammalian cells. To stimulate recombination, we investigated the use of triple-helix-forming oligonucleotides (TFOs) to target DNA damage to a selected site within cells. By treating cells with TFOs linked to psoralen, recombination was induced within a simian virus 40 vector carrying two mutant copies of the supF tRNA reporter gene. Gene conversion events, as well as mutations at the target site, were also observed. The variety of products suggests that multiple cellular pathways can act on the targeted damage, and data showing that the triple helix can influence these pathways are presented. The ability to specifically induce recombination or gene conversion within mammalian cells by using TFOs may provide a new research tool and may eventually lead to novel applications in gene therapy.  相似文献   

15.
16.
Gene modification by homologous recombination is one of the techniques that may eventually be used in gene replacement therapy. We tested whether small, synthetic single-stranded oligodeoxynucleotides are capable of participating in homologous recombination in human cells. A plasmid carrying a mutant neomycin phosphotransferase (neo) gene was cotransfected with a 40-nucleotide single-stranded oligomer that contained the wild-type neo gene sequence into human cells. Cells expressing neo were selected in the antibiotic G418. These cells contained wild-type molecules, which resulted from recombination between the two molecules. The results indicate that this approach may be useful in correcting or introducing single point mutations into the genomes of mammalian cells.  相似文献   

17.
Spontaneous and double-strand break (DSB)-induced allelic recombination in yeast was investigated in crosses between ura3 heteroalleles inactivated by an HO site and a +1 frameshift mutation, with flanking markers defining a 3.4-kbp interval. In some crosses, nine additional phenotypically silent RFLP mutations were present at approximately 100-bp intervals. Increasing heterology from 0.2 to 1% in this interval reduced spontaneous, but not DSB-induced, recombination. For DSB-induced events, 75% were continuous tract gene conversions without a crossover in this interval; discontinuous tracts and conversions associated with a crossover each comprised approximately 7% of events, and 10% also converted markers in unbroken alleles. Loss of heterozygosity was seen for all markers centromere distal to the HO site in 50% of products; such loss could reflect gene conversion, break-induced replication, chromosome loss, or G2 crossovers. Using telomere-marked strains we determined that nearly all allelic DSB repair occurs by gene conversion. We further show that most allelic conversion results from mismatch repair of heteroduplex DNA. Interestingly, markers shared between the sparsely and densely marked interval converted at higher rates in the densely marked interval. Thus, the extra markers increased gene conversion tract lengths, which may reflect mismatch repair-induced recombination, or a shift from restoration- to conversion-type repair.  相似文献   

18.
Chimeric oligonucleotides consisting of RNA and DNA residues have been shown to catalyze site-directed genetic alteration in mammalian cells both in vitro and in vivo. Since the frequency of these events appears to be logs higher than the rates of gene targeting, a process involving homologous recombination, we developed a system to study the mechanisms of chimera-directed gene conversion. Using a mammalian cell-free extract and a genetic readout in Escherichia coli, we find that point mutations and single base deletions can be corrected at frequencies of approximately 0.1% and 0.005%, respectively. The reaction depends on an accurately designed chimera and the presence of functional hMSH2 protein. The results of genetic and biochemical studies reported herein suggest that the process of mismatch repair functions in site-directed gene correction.  相似文献   

19.
Targeted gene repair directed by chimeric RNA/DNA oligonucleotides has proven successful in eukaryotic cells including animal and plant models. In many cases, however, there has been a disparity in the levels of gene correction or frequency. While the delivery of these chimera into the nucleus and the long-term stability or purity of these molecules may contribute to this variability, understanding the molecular regulation of conversion is the key to improving or stabilizing frequency. To this end, we have identified genes that control targeted repair, using the genetically tractable organism, Saccharomyces cerevisae and a bank of yeast mutants. Results from experiments in cell-free extracts focused our attention on RAD52, RAD1 and RAD59 as central regulatory factors. RAD1 and RAD59 appear to be required for high levels of conversion whereas RAD52 appears to act, surprisingly, in a suppressive fashion. Results from the in vitro experiments were translated into targeting experiments in vivo. Here, mutations in a fusion construct, containing a marker gene, were converted to wild type, evidenced by the expression of green fluorescence in converted cells. Because the repaired fusion gene contains a corrected neomycin sequence, cells were subsequently placed under G418 selection and conversion confirmed at the genetic level. Taken together, these results establish, for the first time, genes that participate in the regulation of targeted gene repair and provide a novel system for evaluating true frequencies of correction. Importantly, this system enables visualization of corrected (green) and uncorrected (clear) cells enabling measurements of conversion in real time.  相似文献   

20.
Prion diseases are fatal neurodegenerative diseases, which can be acquired, sporadic or genetic, the latter being linked to mutations in the gene encoding prion protein. We have recently described the importance of subdomain separation in the conversion of prion protein (PrP). The goal of the present study was to investigate the effect of increasing the hydrophobic interactions within the H2-H3 subdomain on PrP conversion. Three hydrophobic mutations were introduced into PrP. The mutation V209I associated with human prion disease did not alter protein stability or in vitro fibrillization propensity of PrP. The designed mutations V175I and T187I on the other hand increased protein thermal stability. V175I mutant fibrillized faster than wild-type PrP. Conversion delay of T187I was slightly longer, but fluorescence intensity of amyloid specific dye thioflavin T was significantly higher. Surprisingly, cells expressing V209I variant exhibited inefficient proteinase K resistant PrP formation upon infection with 22L strain, which is in contrast to cell lines expressing wild-type, V175I and T187I mPrPs. In agreement with increased ThT fluorescence at the plateau T187I expressing cell lines accumulated an increased amount of the proteinase K-resistant prion protein. We showed that T187I induces formation of thin fibrils, which are absent from other samples. We propose that larger solvent accessibility of I187 in comparison to wild-type and other mutants may interfere with lateral annealing of filaments and may be the underlying reason for increased conversion efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号