首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnitude of inbreeding depression in invading plant populations is often presumed to be small and of little consequence. The purpose of this study was to assess the magnitude of inbreeding depression in a pollen-limited, partially self-incompatible, invading plant population. The magnitude and timing of inbreeding depression were compared among ten maternal plants sampled from a population of smooth cordgrass (Spartina alterniflora) invading San Francisco Bay. Selfed and outcrossed progeny were compared for embryo abortion, survival of seedlings, and growth/survival at the end of the first growing season in three greenhouse environments. Estimates of inbreeding depression varied among environments, with competitive environment > high-nutrient environment > low-nutrient environment. Population-level estimates of inbreeding depression ranged from 0.61 to 0.81; however, maternal plants varied significantly in their magnitude of inbreeding depression, ranging from 0.1 to 0.97. The 95% confidence interval for inbreeding depression for some maternal plants included zero. There was a significant negative correlation between the overall magnitude of inbreeding depression and self-fertility rate among maternal plants. The few maternal plants with high self-fertility carried relatively little genetic load, and their selfed progeny are likely to survive on open mudflats. The noncompetitive, pollen-limited growing conditions associated with invasion may allow self-fertility to spread in this population.  相似文献   

2.
Introduced Spartina alterniflora (smooth cordgrass) is rapidly invading intertidal mudflats in San Francisco Bay, California. At several sites, S. alterniflora co-occurs with native S. foliosa (California cordgrass), a species endemic to California salt marshes. In this study, random amplified polymorphic DNA markers (RAPDs) specific to each Spartina species were identified and used to test for hybridization between the native and introduced Spartina species in the greenhouse and in the field. Greenhouse crosses were made using S. alterniflora as the pollen donor and S. foliosa as the maternal plant, and these crosses produced viable seeds. The hybrid status of the crossed offspring was confirmed with the RAPD markers. Hybrids had low self-fertility but high fertility when back-crossed with S. foliosa pollen. Hybrids were also found established at two field sites in San Francisco Bay; these hybrids appeared vigorous and morphologically intermediate between the parental species. Field observations suggested that hybrids were recruiting more rapidly than the native S. foliosa. Previous work identified competition from introduced S. alterniflora as a threat to native S. foliosa. In this study, we identify introgression and the spread of hybrids as an additional, perhaps even more serious threat to conservation of S. foliosa in San Francisco Bay.  相似文献   

3.
We report the discovery and spread of a dwarf ecotype of Spartina alterniflora in San Francisco Bay. Relative to typical S. alterniflora, this dwarf ecotype has one-fifth the tiller height (~21 cm), tenfold the tiller density (~4000 tillers/m(2)), and is restricted to growth in the upper intertidal zone. Chromosome counts of the dwarfs are identical to typical smooth cordgrass (2n = 62), and smooth cordgrass-specific random amplified DNA markers confirm the species identity of the dwarf. Field-collected clonal fragments of the dwarf grown for 2 yr under high-nutrient conditions maintained the dwarf syndrome, as did plants grown from the seed of a dwarf. The dwarf condition is not caused by endophytic fungi. The first dwarf smooth cordgrass patch was discovered in 1991, and by 1996 five separate dwarf patches had appeared within 200 m of the original. Since 1991, total area covered by the dwarf ecotype has increased sixfold to 140 m(2). The ecological range of the dwarf smooth cordgrass ecotype is similar to that of S. patens, a competitor on the Atlantic coast. We suggest that the absence of S. patens from most of San Francisco Bay has allowed the dwarf ecotype of smooth cordgrass to survive and spread.  相似文献   

4.
Hybridization with abundant invaders is a well-known threat to rare native species. Our study addresses mechanisms of hybridization between a rare invader, smooth cordgrass (Spartina alterniflora) and the common native California cordgrass (S. foliosa) in the salt marshes of San Francisco Bay. These species are wind-pollinated and flower in summer. The invader produced 21-fold the viable pollen of the native, and 28% of invader pollen germinated on native stigmas (1.5-fold the rate of the native's own pollen). Invader pollen increased the seed set of native plants almost eightfold over that produced with native pollen, while native pollen failed to increase seed set of the invader. This pollen swamping and superior siring ability by the invader could lead to serial genetic assimilation of a very large native population. Unlike California cordgrass, smooth cordgrass can grow into low intertidal habitats and cover open mud necessary to foraging shorebirds, marine life, navigation, and flood control in channels. To the extent that intertidal range of the hybrids is more similar to the invader than to the native parent, introgression will lead to habitat loss for shore birds and marine life as well to genetic pollution of native California cordgrass.  相似文献   

5.
Rapid evolution in contemporary time can result when related species, brought together through human-aided introduction, hybridize. The significant evolutionary consequences of post-introduction hybridization range from allopolyploid speciation to extinction of species through genetic amalgamation. Both processes are known to occur in the perennial cordgrass genus, Spartina. Here we report the existence of a third recent Spartina hybridization, discovered in 2002, between introduced S. densiflora and native S. foliosa in San Francisco Bay, California, USA. We used nuclear and chloroplast DNA analysis and nuclear DNA content with chromosome counts to examine plants of morphology intermediate between S. densiflora and S. foliosa in a restored marsh in Marin County, California. We found 32 F(1) diploid hybrids and two triploid plants, all having S. densiflora and S. foliosa as parents; there is also evidence of a genetic contribution of S. alterniflora in some hybrids. None of these hybrids set germinable seed. In 2007 we found a hybrid over 30 miles away in a marsh where both parental species occurred, suggesting hybridization may not be a localized phenomenon. The presence of diploid and triploid hybrids is important because they indicate that several avenues existed that may have given rise to a new allopolyploid species. However, such an event is now unlikely because all hybrids are targets of eradication efforts.  相似文献   

6.
Spartina alterniflora has recently been introduced to San Francisco Bay, California, and is rapidly invading open mud flats, growing in circular patches that we found to be individual genetic clones. We collected spikelet samples from more than 200 clones and observed germination rates ranging from 0% to 59%, indicating substantial variation in reproductive output among clones. Several experiments were performed to explore the cause of variation. Pollination manipulations showed that S. alterniflora is outcrossing, but pollen supplements did not increase spikelet germination rates. Exclusion of the only insect herbivore (a phloem feeder, Prokelisia marginata) from developing inflorescences increased the proportion of spikelets containing seed, but failed to increase germinations per spikelet. Spikelets from Willapa Bay, Washington, grown free of insect herbivores, had germination rates similar to San Francisco Bay. These results suggest herbivory is not limiting reproductive output of S. alterniflora. Spikelet viability was not related to clone size; however, clones located lower in the intertidal or far up a drainage slough averaged fewer germinations per spikelet, suggesting clones in areas with lower genet density may have lower spikelet viabilities. Spikelet samples from different sections of clones growing across wide environmental ranges had similar rates of germination, suggesting some genetic influence on spikelet viability. Differential reproductive output among clones and the novel selective environment of San Francisco Bay are expected to cause gene frequency changes in this rapidly expanding population.  相似文献   

7.
Reciprocal hybrid formation of Spartina in San Francisco Bay   总被引:6,自引:0,他引:6  
Diversity in the tRNALEU1 intron of the chloroplast genome of Spartina was used to study hybridization of native California cordgrass, Spartina foliosa, with S. alterniflora, introduced to San Francisco Bay approximately 25 years ago. We sequenced 544 bases of the tRNALEU1 intron and found three polymorphic sites, a pyrimidine transition at site 126 and transversions at sites 382 and 430. Spartina from outside of San Francisco Bay, where hybridization between these species is impossible, gave cpDNA genotypes of the parental species. S. foliosa had a single chloroplast haplotype, CCT, and this was unique to California cordgrass. S. alterniflora from the native range along the Atlantic coast of North America had three chloroplast haplotypes, CAT, TAA, and TAT. Hybrids were discriminated by random amplified polymorphic DNA (RAPD) phenotypes developed in a previous study. We found one hybrid that contained a cpDNA haplotype unknown in either parental species (TCT). The most significant finding was that hybridization proceeds in both directions, assuming maternal inheritance of cpDNA; 26 of the 36 hybrid Spartina plants from San Francisco Bay contained the S. foliosa haplotype, nine contained haplotypes of the invading S. alterniflora, and one had the cpDNA of unknown origin. Furthermore, cpDNA of both parental species was distributed throughout the broad range of RAPD phenotypes, suggesting ongoing contributions to the hybrid swarm from both. The preponderance of S. foliosa cpDNA has entered the hybrid swarm indirectly, we propose, from F1s that backcross to S. foliosa. Flowering of the native precedes by several weeks that of the invading species, with little overlap between the two. Thus, F1 hybrids would be rare and sired by the last S. foliosa pollen upon the first S. alterniflora stigmas. The native species produces little pollen and this has low viability. An intermediate flowering time of hybrids as well as pollen that is more vigourous and abundant than that of the native species would predispose F1s to high fitness in a vast sea of native ovules. Thus, spread of hybrids to other S. foliosa marshes could be an even greater threat to the native species than introductions of alien S. alterniflora.  相似文献   

8.
入侵地和原产地盐沼植物互花米草种子萌发性状的地理变异 种子萌发是植物早期生活史中最重要的阶段,决定了植物的生态位和地理分布范围,对外来植物的入侵潜力有重要影响。盐沼植物互花米草(Spartina alterniflora)在中国沿海滩涂的入侵范围最大,并已入侵到比原产地更低的纬度范围,这为我们研究互花米草在不同地理区域之间以及沿纬度梯度的萌发性状差异和适应提供了契机。在控温培养箱中淡水培养条件下,我们比较研究了来自入侵地(19°–40° N)10 个地点和原产地(27°–43° N)16个地点不同纬度互花米草种群的种子萌发性状差异,以及这种差异与各种 群来源地潮差和气候因素的相关性。原产地互花米草种群种子的萌发率和萌发指数比入侵地种群分别高10%和20%,但入侵地互花米草种群的萌发速度比原产地快3 d。入侵地互花米草种群的萌发率和萌发 指数随着纬度升高呈现线性递增的变化趋势,而原产地呈现线性递减的变化趋势。入侵地和原产地互花米草种群的平均萌发时间都与纬度呈现线性负相关。入侵地互花米草种群的萌发率和萌发指数与年日均温、年日最低均温、和年日最高均温呈现负相关,而在原产地呈现相反的相关关系。入侵地和原产地互花米草种群的平均萌发时间分别与年日均温、年日最低均温和年日最高均温呈现正相关关系。我们的研究结果表明,入侵地和原产地互花米草种群的萌发率和萌发指数已沿纬度进化出不同的渐变群格局,但平均萌发时间进化出与原产地一致的纬度渐变群格局,即在生物入侵过程中沿纬度梯度种子萌发策略会随着入侵时间和过程而发生变化。  相似文献   

9.
Spartina alterniflora, smooth cordgrass, native to the eastern USA, was introduced into south San Francisco Bay ≈ 25 years ago. It has spread by purposeful introduction of rooted plants and dispersal of seeds on the tides. Previous work suggested that S. alterniflora was competitively superior to the native California cordgrass, S. foliosa, and that the two species hybridized. The present study determined the spread of S. alterniflora and S. foliosa × alterniflora hybrids in California and examined the degree of hybridization. We used nuclear DNA markers diagnostic for each species to detect the parental species and nine categories of hybrids. The California coast outside San Francisco Bay contained only the native species. All hybrid categories exist in the Bay, implying that several generations of crossing have occurred and that hybridization is bidirectional. Hybrids were found principally near sites of deliberate introduction of the exotic species. Where S. alterniflora was deliberately planted, we found approximately equal numbers of S. alterniflora and hybrid individuals; S. foliosa was virtually absent. Marshes colonized by water-dispersed seed contained the full gamut of phenotypes with intermediate-type hybrids predominating. The proliferation of hybrids could result in local extinction of S. foliosa. What is more, S. alterniflora has the ability to greatly modify the estuary ecosystem to the detriment of other native species and human uses of the Bay. To the extent that they share these engineering abilities, the proliferation of cordgrass hybrids could grossly alter the character of the San Francisco Bay.  相似文献   

10.
The factors responsible for the reproductive success or failure of individuals in small, founding populations have received little attention. Previous work on a small population of smooth cordgrass (Spartina alterniflora) invading San Francisco Bay, California found that most clones flower prolifically but set little or no seed, while a few clones have high rates of viable seed set, producing most of the seeds in the population. This study first identifies recruitment from seeds as the main source of new smooth cordgrass plants during invasion and then tests the influence of growing conditions and pollination treatment on viable seed set among clones established in San Francisco Bay. Field transplants indicated that a clone's seed set rate was not strongly dependent on its site of establishment. Low and high nutrient greenhouse treatments also had little effect on viable seed set rates within most clones. In contrast, pollination treatment (self-pollination or outcrossing) had a major effect on viable seed set rates. Most clones had high seed set rates after outcross-pollination, but clones varied widely in their selfing capacity. Zero or low viable self-seed set rates were most common; however, a few clones had high viable self-seed set rates, comparable to outcross seed set rates. A clone's selfing capacity was significantly correlated across years (r=0.89, P<0.001), and capacity to set viable self-pollinated seeds in the greenhouse was significantly correlated with the clone's rate of viable seed set in the field . In this growing population where cross-pollination is limited, only the clones with high selfing ability had high viable seed set rates in the field. Among primarily outcrossing plant invaders, variation in self-fertility among individuals may be a common phenomenon, with important implications for genetic differentiation, effective population size and patterns of spatial spread during an invasion.  相似文献   

11.
Since 1972 over 940 ha (2,300 ac) of leveed former salt marsh sites around San Francisco Bay have been restored to tidal action, purposely or through natural processes. The evolution of these sites can inform predictions of rates of marshplain evolution and establishment of tidal channel systems. A review of the history of 15 re‐flooded sites ranging in size from 18 to 220 ha (45 to 550 ac) and in age from 2 to 29 years indicates that marshplain vegetation with more than 50% cover was established at nine of the sites within 4 to 20 years. The remaining six sites aged 2 to approximately 20 years continue to be less than 50% vegetated. The evolution of these sites is consistent with the following simple conceptual model of the physical evolution of restored tidal marshes in subsided breached sites. Initially, deposition of estuarine sediment builds up mudflats that allow vegetation establishment once elevations are high enough for vegetation to survive. Sites that are initially lower in the tidal frame take longer to vegetate than those that are initially higher. Three factors appear to retard the time frame for vegetation establishment: limited estuarine suspended sediment supply, erosion of deposited estuarine muds by internally generated wind waves, and restricted tidal exchange. These factors affect evolution more significantly in larger sites. The comparatively short time frame for vegetation colonization and marshplain evolution experienced in earlier, smaller, and/or less subsided breached levee restorations may not necessarily be replicable by simple levee breaching on larger subsided restoration sites now being planned. Our review of the 15 sites also indicates that the formation of tidal channels within the marshes is greatly dependent on whether and how high the site was filled before breaching. Filled sites at high intertidal elevations (above approximately 0.3 m below mean higher high water) can vegetate quickly but after several decades may show little development of tidal channels.  相似文献   

12.
周虹霞  刘金娥  钦佩 《生态学报》2005,25(9):2304-2311
研究了江苏滨海外来种互花米草的生长对潮间带土壤微生物特征的影响,结果显示:与原有光滩相比,互花米草的大面积生长,使当地潮间带土壤微生物量增加,并随植被的生长状况发生变化,潮间带土壤微生物对碳和营养物质的利用相对较少;同时微生物生理功能群中占优势的活动组分发生了变化,组成可能更复杂。土壤微生物群落生理功能多样性(CLPP)分析结果显示,潮间带土壤微生物群落对碳源底物的利用能力不高,所利用碳源以糖类、氨基酸类、羧酸类占优势;其中互花米草盐沼微生物利用的碳源种类多于光滩,并且不同季节土壤微生物群落碳源利用类型存在差异;潮间带土壤微生物在不同的季节中其生理功能群组成发生着变化,互花米草盐沼的土壤微生物在植被生长减弱时具有与光滩相近的代谢类群,在生理功能上具有一定的相似性;当植被生长旺盛时,其代谢类群增多,代谢强度升高,微生物群落功能多样性增加。外来种互花米草在滨海潮间带的大面积生长,改善了土壤理化性质,为该处土壤微生物提供了不同的碳源,增强了土壤微生物的活动,改变了土壤微生物群落生理功能结构。  相似文献   

13.
Four species of exotic cordgrass (Spartina sp.) occur in the San Francisco estuary in addition to the California native Spartina foliosa. Our goal was to map the location and extent of all non-native Spartina in the estuary. Hybrids of S. alterniflora and S. foliosa are by far the most numerous exotic and are spreading rapidly. Radiating from sites of deliberate introduction, S. alterniflora and hybrids now cover ca. 190 ha, mainly in the South and Central Bay. Estimates of rate of aerial increase range from a constant value to an accelerating rate of increase. This could be due to the proliferation of hybrid clones capable of rapid expansion and having superior seed set and siring abilities. The total coverage of 195 ha by hybrids and other exotic cordgrass species is slightly less than 1% of the Bay's tidal mudflats and marshes. Spartina anglica has not spread beyond its original 1970s introduction site. Spartina densiflora has spread to cover over 5 ha at 3 sites in the Central Bay. Spartina patens has expanded from 2 plants in 1970 to 42 plants at one site in Suisun Bay. Spartina seed floats on the tide, giving it the potential to export this invasion throughout the San Francisco estuary, and to estuaries outside of the Golden Gate. We found isolated plants of S. alterniflora and S. densiflora in outer coast estuaries north of the Bay suggesting the likelihood for the San Francisco Bay populations to found others on the Pacific coast.  相似文献   

14.
Naturalization of Schinus molle (Anacardiaceae) has been observed in semi arid savanna of the Northern Cape Province of South Africa. However, with high dispersal ability, the species is expected to achieve greater densities and invade more widely. The study involved a field manipulation experiment over 14 months using a factorial block design to examine transplanted seedlings in different savanna environments. The experiments examine the effects of soil type (sandy and clay), microsite, and herbivores on seedling performance (establishment, growth and survival). Seedlings were grown in a greenhouse and individually transplanted into four treatment groups: in open grassland, under tree canopies, and with and without cages to exclude large herbivores (cattle and game). The same experiment was repeated in two different soil types: coarse sand and fine-textured clay soil. Results suggest that protection provided by canopies of large indigenous Acacia trees facilitates S. molle invasion into semi-arid savanna. In the field, S. molle seedlings performed considerably better beneath canopies of indigenous Acacia trees than in open areas regardless of soil type. Whether exposed or protected from large herbivores, no seedlings planted in open grassland survived the first winter. Although, seedlings grew better and had higher survival rates beneath tree canopies than in the open sites, exposure to large herbivores significantly decreased heights and canopy areas of seedlings compared with those protected from large herbivores. The effect was greater on clay soil than on sandy soil. The results suggest that low temperature (frost), and possibly inter-specific competition with grasses, may limit S. molle seedling establishment, survival and growth away from tree canopies in semi arid savannas. Low soil nutrient status and browsing may also delay growth and development of this species. The invasive potential of S. molle is thus greatest on fertile soils where sub-canopy microsites are present and browsing mammals are absent.  相似文献   

15.
Understanding habitat associations is vital for conservation of at‐risk marsh‐endemic wildlife species, particularly those under threat from sea level rise. We modeled environmental and habitat associations of the marsh‐endemic, Federally endangered salt marsh harvest mouse (Reithrodontomys raviventris, RERA) and co‐occurrence with eight associated small mammal species from annual trap data, 1998–2014, in six estuarine marshes in North San Francisco Bay, California. Covariates included microhabitat metrics of elevation and vegetation species and cover; and landscape metrics of latitude–longitude, distance to anthropogenic features, and habitat patch size. The dominant cover was pickleweed (Salicornia pacifica) with 86% mean cover and 37 cm mean height, and bare ground with about 10% mean cover. We tested 38 variants of Bayesian network (BN) models to determine covariates that best account for presence of RERA and of all nine small mammal species. Best models had lowest complexity and highest classification accuracy. Among RERA presence models, three best BN models used covariates of latitude–longitude, distance to paved roads, and habitat patch size, with 0% error of false presence, 20% error of false nonpresence, and 20% overall error. The all‐species presence models suggested that within the pickleweed marsh environment, RERA are mostly habitat generalists. Accounting for presence of other species did not improve prediction of RERA. Habitat attributes compared between RERA and the next most frequently captured species, California vole (Microtus californicus), suggested substantial habitat overlap, with RERA habitat being somewhat higher in marsh elevation, greater in percent cover of the dominant plant species, closer to urban areas, further from agricultural areas, and, perhaps most significant, larger in continuous size of marsh patch. Findings will inform conservation management of the marsh environment for RERA by identifying best microhabitat elements, landscape attributes, and adverse interspecific interactions.  相似文献   

16.
17.
《Journal of Asia》2023,26(4):102137
The human-mediated introduction and movement of alien populations of species within their native range is still a little-explored topic. This phenomenon may cause genetic contamination of local populations and be the introduction pathway of new associated microorganisms and fungi, potentially able to modify the interspecific relationships between insects and host-plants with serious ecological and economic impacts. In the present contribution, we produced the first evidence of a native-alien population of the Palearctic ambrosia beetle Anisandrus dispar occurring in Europe, highlighting that individuals belonging to different populations of a species can disperse via commercial trade within its native biogeographic range resulting in cryptic invasions. Our findings support the idea that the movement of native species within their native distribution range can be more common than previously suspected.  相似文献   

18.
All-terrain vehicles (ATVs) are widely used in a variety of wetland management activities, but their ecological effects on vegetation are poorly known. Two types of ATVs – the ArgoTM, and LightfootTM – were tested in Petaluma Marsh, Sonoma Co., California, to determine their effects on pickleweed ( Salicornia virginica) in terms of: (1) stem-height reductions and stem breakage (as biomass), by simulating light (a path traversed twice) and heavy vehicle use (20 times), and by evaluating damage immediately after manipulation and one year later; and, (2) biomass and growth by using a BACI (before-after-control-impact) design, with two sets of replicated samples collected before a light-use treatment, two sets after treatment (during the same growing season), and one set the following year. Stem height was significantly reduced by both vehicles immediately following use, and was similar for both light and heavy use; biomass of broken stems was significantly higher for the LightfootTM than for the ArgoTM, and with heavy use by both vehicles. One year later, biomass of broken stems was not significantly different in light use treatments with either vehicle, but lower stem height was still visually evident from LightfootTM in heavy use treatments. Post-treatment biomass-growth measurements were significantly lower for both vehicles during the same growing season, but no significant differences were found between either vehicle treatment and controls one year later. However, the LightfootTM treatment had lower productivity. Results indicated that even limited ATV use can cause immediate impact to pickleweed but that limited use with soft-tread vehicles, like the Argo, can recover within a year. Management of pickleweed wetlands should involve vehicles with non-damaging tracks or tire tread and, when possible, walking is preferable to reduce immediate habitat damage.  相似文献   

19.
Several management techniques are effective in controlling Lepidium latifolium (perennial pepperweed) in rangelands and hay meadows; however, this invader’s rapid spread into sensitive aquatic habitats throughout the western US calls for alternative control strategies. To evaluate control methods for use in tidal marshes of San Francisco Estuary, we tested chemical, mechanical, and biological methods in field and greenhouse experiments. In a field experiment in three brackish marshes spanning the estuary, application of the herbicide glyphosate to re-growth of L. latifolium following hand-removal reduced L. latifolium cover by an average of 80% after 2 years and led to a 60% increase in native vegetation cover. Glyphosate alone was less effective at reducing L. latifolium cover (20% decrease) and increasing native cover (34% increase). Preliminary tests of a potential biological control, a native parasitic plant, were not successful, thus plots intended for field trials were instead used to test the newly approved herbicide imazapyr, which showed promise in controlling L. latifolium. An additional greenhouse experiment found large reductions in stem lengths with either glyphosate following clipping or imazapyr with or without clipping, all significantly more so than glyphosate alone. We conclude that an integrated management approach of applying glyphosate following mechanical removal can be effective at reducing L. latifolium cover and allowing recovery of native tidal marsh plants, providing a useful solution for controlling smaller, accessible infestations of the invader. Our preliminary tests of imazapyr suggest that it may be very effective at controlling L. latifolium in tidal marshes, although further assessment of non-target effects and native plant recovery are needed to evaluate its relative merit.  相似文献   

20.
We report the occurrence of the orange-striped green anemone Diadumene lineata (Verrill 1871) (=Haliplanella lineata) in salt marshes at the Bahía Blanca Estuary for the first time in August 2005. We also found this species attached to roots and stems of Spartina alterniflora, an association that has never been registered before. After their determination, sampling was performed during a year to evaluate seasonal abundance of this sea anemone. Results showed that D. lineata was present through the whole year, indicating the existence of a stable population. All individuals sampled were found attached to roots or stems of S. alterniflora, with the higher abundances detected in summer. Further studies are necessary to precise the potential effects of this exotic sea anemone on salt marsh communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号