首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Administration of methionine to growing Lemna had essentially no effect on accumulation of sulfate sulfur in protein cysteine, but decreased accumulation into cystathionine and its products (homocysteine, methionine, S-methylmethioninesulfonium salt, S-adenosylmethionine, and S-adenosylhomocysteine) to as low as 21% that of control plants, suggesting that methionine regulates its own de novo synthesis at cystathionine synthesis. Methionine caused only a slight reduction (to 80% that of control plants) in the accumulation of sucrose carbon into the 4-carbon moieties of cystathionine and products. This observation was puzzling since cystathionine synthesis proceeds by incorporation of equivalent amounts of sulfur (from cysteine) and 4-carbon moieties (from O-phosphohomoserine). The apparent inconsistency was resolved by the demonstration in Lemna (Giovanelli, Datko, Mudd, Thompson 1983 Plant Physiol 71: 319-326) that de novo synthesis of the methionine 4-carbon moiety occurs not only via the established transsulfuration route from O-phosphohomoserine, but also via the ribose moiety of 5′-methylthioadenosine. It is now clear that the more accurate assessment of the flux of sulfur (and 4-carbon moieties) through transsulfuration is provided by the amount of 35S from 35SO42− that accumulates in cystathionine and its products, rather than by the corresponding measurements with 14C. These studies therefore unequivocally demonstrate in higher plants that methionine does indeed feedback regulate it own de novo synthesis in vivo, and that cystathionine synthesis is a locus for this regulation.  相似文献   

2.
The relationship between 35SO4 incorporation into acid mucopolysaccharides and the appearance and activity of the primary mesenchyme cells has been studied in the sea urchin, Lytechinus pictus. The ratio of the uptake of 35SO4 to its incorporation into cetylpyridinium chloride precipitable material varies over a wide range during early development, with the smallest ratio, therefore the greatest sulfation activity, being found at the early mesenchyme blastula stage. The types of mucopolysaccharides produced have not been identified, but are heterogeneous. At the mesenchyme blastula stage nearly 90% of the polysaccharides produced become sulfated. When embryos develop in sulfate-free sea water to the mesenchyme blastula stage there is a 70% decrease in the incorporation of 3H-acetate into polysaccharides and a 13-fold decrease in the ratio of sulfated to nonsulfated polysaccharides produced. Embryos raised in sulfate-free sea water develop normally to the mesenchyme blastula stage at which time there is an accumulation in the blastocoel of primary mesenchyme cells that do not migrate. The surface of the primary mesenchyme cells of sulfate-deficient embryos has a smooth appearance in the scanning electron microscope, while the surface of these cells in control embryos is rough, possibly reflecting the presence of an extracellular coat. It is suggested that there is a correlation between sulfated polysaccharide synthesis, cell surface morphology and cell movement.  相似文献   

3.
Dissociated stage 21–28 chick embryo limb bud cells showed an increasing ability to produce cartilage colonies in vitro with in vivo maturation. In addition dissociated stage 21–28 chick embryo limb bud cells exposed to cartilage conditioned medium continuously or only for 48 hr prior to subculture showed an enhanced (as much as 15-fold) ability to form differentiated cartilage colonies. By this criterion, cells were more responsive to conditioned medium prior to stage 25. Conditioned medium from fibroblast cultures caused an inhibition of cartilage colony formation, suggesting that the effect is cell-type specific. Besides increasing cartilage colony formation by enhanced cell survival, the incorporation of S35O4 into isolated glycosaminoglycans is also stimulated when limb bud cells are exposed to cartilage conditioned medium. The results support a model for cell differentiation which involves the enhancement of a particular differentiated capacity by a diffusible cell-type-specific macromolecule.  相似文献   

4.
1. Whole scrapings of rat intestinal mucosa were incubated with carrier-free sodium [35S]sulphate. Radioactivity was found in S-sulphocysteine and to a small extent in S-sulphoglutathione. 2. Whole scrapings of rat intestinal mucosa incubated with carrier-free sodium [35S]sulphate and oxidized glutathione formed S[35S]-sulphoglutathione as the main radioactive product. The amount of S[35S]-sulphocysteine formed was considerably lower than in a control that contained no oxidized glutathione. 3. The supernatant fraction of homogenates of rat intestinal mucosa catalyses the NADPH-dependent reduction of adenosine 3′-phosphate 5′-sulphatophosphate to inorganic sulphite. NADH or GSH fail to replace NADPH as reducing agents. 4. The formation of inorganic [35S]sulphite from inorganic [35S]-sulphate may account for the incorporation of [35S]sulphate into S-sulphoglutathione by the small intestine of the rat in vivo and in vitro.  相似文献   

5.
The effect of retinoic acid on glycosaminoglycan biosynthesis was investigated in rat costal cartilage chondrocytes in vitro. At levels of 10?9 to 10?8m retinoic acid, 35SO4 uptake into glycosaminoglycans was reduced 50%. At these low levels of retinoic acid there was no evidence of lysosomal enzyme release. The results are explained best in terms of modification of glycosaminoglycan synthesis, rather than accelerated degradation. Retinoic acid selectively modified the incorporation of 35SO4 or [14C]glucosamine into individual glycosaminoglycans fractions under the conditions studied. The relative incorporation of radiolabeled precursor into heparan sulfate (and/or) heparin increased three- to fourfold. The relative incorporation of radiolabeled precursor remained constant for chondroitin 6-sulfate, whereas incorporation into chondroitin 4-sulfate and chondroitin (and/or) hyaluronic acid decreased. Under the conditions studied, retinoic acid did not appear to be cytotoxic and did exhibit selective control over glycosaminoglycan biosynthesis. It is suggested that the decreased incorporation of 35SO4 into glycosaminoglycans at hypervitaminosis A levels of retinol may be accounted for by the presence of low levels of retinoic acid, a naturally occurring metabolite.  相似文献   

6.
1. By digitonin lysis of penicillin spheroplasts of Escherichia coli a particulate fraction P1 was previously obtained that supported the sustained synthesis of alkaline phosphatase when supplied with amino acids, nucleotide triphosphates and other cofactors. This P1 fraction, when subjected to mild ultrasonic treatment in the presence of sucrose and Mg2+, yielded the P1(S) fraction, consisting of integrated particulate subcellular particles containing DNA and RNA. 2. The P1(S) fraction from E. coli K10 wild type (R+1R+2P+) grown under repressed conditions supported the immediate synthesis of alkaline phosphatase in vitro. The synthesis occurred in phases. The first was followed by a lag, and then there was a linear rapid phase that continued for at least 3hr. Actinomycin D inhibited the appearance of the second phase. It was concluded that the particles are programmed to synthesize enzyme even when prepared from repressed cells, and therefore that synthesis of the specific messenger RNA for alkaline phosphatase in vivo was not inhibited when the bacteria were grown in an excess of inorganic phosphate. 3. Phosphate inhibited synthesis of enzyme to the same extent with the P1(S) fractions of two constitutive strains as with the P1(S) fraction of the wild-type strain. 4. Inorganic phosphate inhibited amino acid incorporation with the P1(S) fraction and also inhibited enzyme synthesis in vitro. The effect on amino acid incorporation could be partially overcome by adding Mn2+ to the incubation mixtures. However, Mn2+ inhibited the synthesis of alkaline phosphatase. Also, inhibition of the incorporation of [32P]CTP into RNA was overcome by Mn2+. The effect of phosphate on amino acid uptake was most probably due to a phosphorolysis of RNA by polynucleotide phosphorylase, also present in the P1(S) fraction. This phosphorolysis may be responsible for the instability of messenger RNA in vitro and in vivo. 5. Phosphate also specifically inhibited the formation of alkaline phosphatase, since it did not affect markedly the induced formation of β-galactosidase by the same P1(S) fraction. The specific effect is attributed to the prevention of formation of the enzymically active dimer from precursors, a Zn2+-dependent reaction. It is suggested that the repression of the synthesis of alkaline phosphatase in vivo in the wild-type strain was the sum of these two effects.  相似文献   

7.
The distribution of ketone bodies between oxidation and lipid synthesis was analysed in homogenates of developing rat brain. The capacity for lipid synthesis of homogenized or minced brain preparations was compared with rates of lipid synthesis in vivo, assessed by incorporation of 3H from 3H2O into fatty acids and cholesterol. Brain homogenates of suckling rats (but not those of adults) incorporated label from [3-14C]ketone bodies into lipids, but this process was slow as compared to 14CO2 production (< 5%) and much slower than the total rate of ketone-body utilization (< 0.5%). Study of 3H2O incorporation demonstrated that the rates of lipogenesis and cholesterogenesis are at least one order of magnitude higher in vivo than in vitro. Maximal rates of 3H incorporation into fatty acids (3 μmol/g brain . h) and into cholesterol (0.6 μmol/g brain . h) were found during the third postnatal week. Adult rats still incorporated 3H into brain fatty acids at an appreciable rate (1 μmol/g brain . h), whereas cholesterogenesis was very low. It is concluded that in vitro measurements of lipid synthesis severely underestimate the rates that occur in developing rat brain in vivo. The high rate of 3H incorporation into lipids by developing and adult rat brain as compared to the amounts of these lipids present in the brain suggests an important contribution of endogenous lipid synthesis during brain development and an appreciable rate of fatty acid turnover during brain growth, but also in the adult brain.  相似文献   

8.
9.
We previously reported that Ca2+/calmodulin-dependent protein kinase II (CaMKII) is inhibited by S-nitrosylation of Cys6 in cells. Herein, we show that polysulfidation of CaMKII at Cys6 limits its enzyme activity following reactive sulfur species (RSS) stimulus. In vitro incubation of CaMKII with the RSS donor, Na2S4, induced the inhibition of the enzyme via its polysulfidation. Treatment with dithiothreitol reversed the polysulfidation and the subsequent inhibition. The inhibition of CaMKII by Na2S4 is competitive with ATP but not with the peptide substrate Syntide-2. In transfected cells expressing CaMKII, the enzyme activity decreased upon treatment with Na2S4, whereas cells expressing mutant CaMKII (C6A) were resistant to this treatment. In addition, the endogenous CaMKII was inhibited by treatment with Na2S4 in RAW264.7 murine macrophage cells. These results suggest a novel regulation of CaMKII by RSS via its Cys6 polysulfidation in cells.  相似文献   

10.
The effect of natural and artificial reduction on P extractability from soils used for rice production and the relation of these values to response to fertilizer P were investigated. Soil solution P increased from a mean of 3.8 mg P·kg?1 soil for naturally oxidized slurries of 28 soils to 19.8mg P·kg?1 when the soils were naturally reduced. The mean values were further increased to 40.8 and 45.3 mg·kg?1 when the soils were reduced with 0.1M Na2S2O4 and 0.2M Na2S2O4, respectively. These P-values compare with 18.2 mg kg?1 when the dry soils were extracted with Bray No. 1 extractant. When the yields of rice were correlated with solution and extracted P, the R2's for the quadratic relationships were 0.40**, 0.31*, 0.34**, 0.30*, and 0.55** for the naturally oxidized, the naturally reduced, 0.1M Na2S2O4, 0.2M Na2S2O4 and Bray No. 1, respectively. The Cate-Nelson calculation confirmed the superiority of the weak acid Bray extractant and the critical value of 8.6 mg P·kg?1 soil needed for satisfactory yields of rice. There was little response of rice to added fertilizer P on soils with solution P-values greater than 0.09 mg P·l?1 in oxygenated soil slurries. Some soils with solution P of this order and high amounts of Bray No. 1 extractable P still gave modest responses to fertilizer P. Although natural or chemically induced reduction increased soil solution P, it did not improve prediction of yield response of rice to added fertilizer P.  相似文献   

11.
Demineralized sections of fluorinated bones and teeth have been studied by autoradiography following in vitro uptake of Ca45 or S35O4. The portions of tissue which do not become mineralized (cartilage, prebone, predentine, and precementum) show an increased Ca45 uptake apparently related to an increase in chondroitin sulfate content in fluorosis. The tissues from the fluoride-fed animals show an increase of in vitro uptake of sulfur in the tissues which become mineralized (bone, dentine, cementum).  相似文献   

12.
DIFFERENTIATION AND PROLIFERATION OF EMBRYONIC MAST CELLS OF THE RAT   总被引:14,自引:5,他引:9  
Histochemical reactions and radioautography were used to investigate the sequence of mast cell development in rat embryos. Mast cells arise ubiquitously in and are confined to the loose connective tissue in the embryo. The alcian blue-safranin reaction distinguishes between weakly sulfated and strongly sulfated mucopolysaccharides by a shift from alcian blue to safranin staining. Based on this reaction and morphologic characteristics, four stages were identified. Stage I mast cells are lymphocyte-like cells with cytoplasmic granules which invariably stain blue with the alcian blue-safranin reaction. In Stage II cells the majority of granules are alcian blue-positive, but some safranin-positive granules have appeared. Stage III mast cells are distinguished by a majority of safranin-positive cytoplasmic granules; some alcian blue-positive granules still remain. Stage IV cells contain only safranin-positive granules. Thymidine-H3 uptake and identification of mitotic figures indicates that mast cells in Stages I and II comprise a mitotic pool while those in Stages III and IV are mitotically inactive. The pattern of S35O4 incorporation and the sequence of appearance of histochemically identifiable mast cell constituents corroborates division of the proliferation and differentiation of embryonic mast cells into the four stages described above. The process of formation of mast cell granules is interpreted as reflecting the synthesis and accumulation of a heparin precursor in alcian blue positive granules followed by the synthesis and accumulation of highly N-sulfated heparin along with mast cell chymase and finally histamine in safranin-positive granules.  相似文献   

13.
The synthesis and appearance of carbohydrate-rich macromolecules by epithelial cells of the developing secondary palate was examined with concanavalin A (CON A) binding and [3H]glucosamine labeling. The amount of [125I]CON A bound to the epithelial surface of the rat palatal shelf in vitro increased from day 15 of gestation to day 16 when initial adhesion to the opposite shelf occurs in vivo. Visualization of CON A binding by electron microscopy using the peroxidase method revealed a dramatic increase in binding between days 15 and 16 of gestation, most apparent on the medial-edge epithelial surface. The incorporation in vivo of [3H]glucosamine during this period into the medial-edge epithelial cells was detected with autoradiography. These results show that a glycoprotein-rich surface material appears on the superficial cells of the medial-edge epithelium prior to adhesion of the apposing shelves.  相似文献   

14.
1. Slices of liver from laying hens incorporated Na214CO3 and NaH232PO4 into phosvitin. Slices of liver from immature birds did not do so to any appreciable extent. The 32P was incorporated into O-phosphorylserine in the phosvitin molecule. 2. Kidney, spleen, muscle, large and small intestine, ovary and oviduct from laying birds did not incorporate Na214CO3 into phosvitin. 3. Slices of liver from laying hens carried out a net synthesis of phosphoprotein under the standard conditions of incubation. Slices from the livers of immature pullets did not do so. 4. Liver from the laying hen incorporated [2-14C]glycine, [3-14C]serine and [2-14C]glutamic acid into phosvitin. Part of the glycine was shown to be present as serine in the final product. 5. Slices of liver from immature birds treated with oestradiol synthesized phosvitin from [2-14C]glycine, but the addition of oestrogens in vitro to slices from untreated immature birds did not promote synthesis during a 3 hr. incubation period.  相似文献   

15.
Summary Mutual correction of co-cultivated fibroblasts from patients with Hunter's and Hurler's syndrome could be inhibited by either fructose 1-phosphate or mannose 6-phosphate. In the presence of fructose 1-phosphate a 50% mixture of fibroblasts from a patient with Hunter's syndrome and a normal homozygous individual showed an increased35S-sulphate incorporation into acid mucopolysaccharides. When fibroblast cultures from one obligate and two possible carriers of Hunter's syndrome were tested for35S-sulphate incorporation, the cultures showed either twice the normal35S-sulphate incorporation into acid mucopolysaccharides in the presence of fructose 1-phosphate or an abnormally high incorporation in the presence as well as in the absence of the sugar phosphate.  相似文献   

16.
Parathyroid hormone (PTH) is known to have a number of effects on bone tissue in vitro, including the stimulation of calcium release and the synthesis and turnover of hyaluronate. PTH-stimulated calcium release is inhibited by colchicine. Since hyaluronate may play a role in demineralization, calcium release into the media as a measure of bone resorption was correlated with the synthesis and secretion of 3H-glucosamine-labeled macromolecules. Newborn mice were labeled with 45Ca, and the calvaria removed and incubated in vitro in media containing 3H-glucosamine. Addition of colchicine to the culture media inhibited the release of 45Ca into the media while stimulating the synthesis and secretion of 3H-glucosamine labeled macromolecules. DEAE-cellulose chromatography resolved the labeled macromolecular material into four peaks, of which the third peak containing hyaluronate demonstrated approximately twice the amount of radioactivity. PTH stimulation of calcium release was inhibited likewise by colchicine, while 3H-glucosamine incorporation into labeled macromolecules was stimulated. Short term labeling studies emphasized the marked stimulatory effect that both PTH and colchicine have on the incorporation of 3H-glucosamine into hyaluronate. PTH stimulated the incorporation of 35S-sulfate, while colchicine markedly inhibited its incorporation into non-dialyzable material. Both PTH and colchicine inhibited protein synthesis. Based on the observations, colchicine appears to stimulate the synthesis and secretion of hyaluronate and alter a number of metabolic pathways. Hyaluronate does not appear to be directly involved in the demineralization process.  相似文献   

17.
Heparan sulphate is a potent inhibitor of DNA synthesis in vitro   总被引:4,自引:0,他引:4  
The nature and the role of eIF-2 phosphoprotein phosphatase in rabbit reticulocyte lysates have been examined. The eIF-2 phosphoprotein phosphatase is inhibited by a variety of divalent metal ions (Cd++>Ag++> Cu++>Pb++>Zn++>Co++>Sr++>Mo++) in lysates in situ. In addition, PPi, EDTA and NaF inhibit this enzyme. The eIF-2 phosphoprotein phosphatase is also inhibited by NaHSO3 and Na2S2O5. Na2S2O5 is, however, more effective. Na2S2O5 has been found to be a potent inhibitor of protein synthesis in lysates. This inhibition is associated with the phosphorylation of the 38,000-dalton subunit of initiation factor eIF-2. eIF-2 overcomes this inhibition. These findings suggest that under optimum conditions of protein synthesis the phosphorylation and dephosphorylation of eIF-2 are in a dynamic state of equilibrium in which dephosphorylation is favored. The inhibition of eIF-2 phosphoprotein phosphatase by Na2S2O5 shifts this equilibrium in favor of eIF-2 phosphorylation, consequently, protein synthesis is inhibited. The sulfhydryl nature of eIF-2 phosphoprotein phosphatase has been established.  相似文献   

18.
In vivo synthesised protein with norleucine occupying one half of the normal methionine loci was prepared using a methionine auxotroph of Escherichia coli K12. The extent of charging of the analogue onto both tRNAmet species and subsequent incorporation into soluble protein was monitored with a double-labelling system comprising [G-3H]norleucine and [35S]methionine. Further experiments established that norleucine can be formylated in vivo once charged onto the initiator tRNAfmet. An N-terminal analysis of the crude soluble protein revealed that formylnorleucyl-tRNAfmet can initiate protein synthesis and that the formyl group is then removed from the nascent polypeptide. We were also led to conclude that the N-terminal methionine-amino peptidase does not recognise the analogue in this position. Slow growth rates on the methionine analogue have been partly attributed to limiting levels of charged tRNAmmet, resulting in turn from the inefficiency of norleucine charging by methionyl-tRNA synthetase. Finally no evidence has been found for the production of aberrant protein as a result of norleucine incorporation, implying that limited growth on the analogue is due to its inability to replace methionine as the precursor of S-adenosyl methionine.  相似文献   

19.
20.
On the mechanism of glycolate synthesis by Chromatium and Chlorella   总被引:6,自引:0,他引:6  
When cultures of the photosynthetic bacterium, Chromatium vinosum, capable of photosynthesizing glycolate at about 10 μmol/mg of bacteriochlorophyll/h were exposed to atmospheres enriched with 18O2, one atom of oxygen-18 was incorporated into the car?yl group of glycolate. Allowing for the small (3–5%) loss of oxygen-18 during the manipulations leading up to the mass spectrometric determination of the oxygen-18 content of the glycolate, the isotopic enrichment of the18O-labeled glycolate synthesized by Chromatium was substantially (at least 94%) the same as the isotopic enrichment of the 18O2. Similar results were obtained with the green alga, Chlorella fusca. The close agreement between the isotopic enrichments of the glycolate and the oxygen with which it was synthesized was independent of the oxygen concentration. The major pathway of glycolate synthesis by Chromatium therefore involves reaction(s) which bring about the incorporation of one atom of molecular oxygen into the car?yl group of glycolate. The in vitro rate of ribulose 1,5-bisphosphate oxygenase in extracts of Chromatium, previously thought to be too low to account for the rates of glycolate synthesis in vivo, was shown to be adequate for this purpose when precautions were taken to fully activate the enzyme. Similarly, the activity of phosphoglycolate phosphatase, when assayed under optimal conditions, was also adequate to sustain the rates of glycolate formation observed i vivo. It is concluded that the oxygenolytic cleavage of ribulose 1,5-bisphosphate represents the major pathway of glycolate synthesis by Chromatium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号