首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims It is a huge challenge to understand the blood–brain barrier (BBB), which is a key element in neuroinflammation associated with many brain diseases. The BBB also regulates the passage of xenobiotics into the central nervous system (CNS), and therefore influences drug efficacy. This may be due to the presence of ATP binding cassette transporters such as P-glycoprotein (Pgp) on the BBB, which are efflux pumps known to transport many drugs. The peptide endothelin 1 (ET-1) is involved in different kinds of CNS diseases and neuroinflammation, and is known to modulate Pgp transport activity. Although there are data from animal models, data from human models are scarce. We evaluated Pgp expression and transport activity in adult human brain microvascular endothelial cells (HBMECs) when exposing an adult human in vitro BBB model to ET-1. Methods Adult HBMECs were cocultured with human adult glial cells on a TranswellsR to mimic blood and CNS compartments. These human in vitro BBBs were exposed for 24 h to 100 nM and 10 nM ET-1. Pgp expression was assessed by flow cytometry and its transport activity by measuring radiolabelled digoxin passage. Results After exposure to ET-1, flow cytometry showed no shift of fluorescence intensity for a Pgp specific antibody. The passage of digoxin increased with a significant decrease of Q ratio for 10 nM ET-1. Conclusion Our results show that ET-1 has no effect on Pgp expression of adult HBMECs, but does modulate Pgp transport activity.  相似文献   

2.
P-glycoprotein (Pgp), an efflux pump, was confirmed the first time to regulate the expressions of miR/gene in cells. Pgp is known to be associated with multidrug resistance. RHepG2 cells, the multidrug resistant subline of human hepatocellular carcinoma HepG2 cells, expressed higher levels of Pgp as well as miR-16, and lower level of Bcl-2 than the parental cells. In addition, RHepG2 cells were more radiation sensitive and showed more pronounced radiation-induced apoptotic cell death than the parental cells. Mechanistic analysis revealed that transfection with mdr1 specific antisense oligos suppressed radiation-induced apoptosis in HepG2 cells. On the other hand, ectopic mdr1 expression enhanced radiation-induced apoptosis in HepG2 cells, SK-HEP-1 cells, MiHa cells, and furthermore, induced miR-16 and suppressed its target gene Bcl-2 in HepG2 cells. Moreover, the enhancement effects of Pgp and miR-16 on radiation-induced apoptosis were counteracted by overexpression of Bcl-2. The Pgp effect on miR-16/Bcl-2 was suppressed by Pgp blocker verapamil indicating the importance of the efflux of Pgp substrates. The present study is the first to reveal the role of Pgp in regulation of miRNA/gene expressions. The findings may provide new perspective in understanding the biological function of Pgp.  相似文献   

3.
MDR1 (multidrug resistance) P-glycoprotein (Pgp; ABCB1) decreases intracellular concentrations of structurally diverse drugs. Although Pgp is generally thought to be an efflux transporter, the mechanism of action remains elusive. To determine whether Pgp confers drug resistance through changes in transmembrane potential (E(m)) or ion conductance, we studied electrical currents and drug transport in Pgp-negative MCF-7 cells and MCF-7/MDR1 stable transfectants that were established and maintained without chemotherapeutic drugs. Although E(m) and total membrane conductance did not differ between MCF-7 and MCF-7/MDR1 cells, Pgp reduced unidirectional influx and steady-state cellular content of Tc-Sestamibi, a substrate for MDR1 Pgp, without affecting unidirectional efflux of substrate from cells. Depolarization of membrane potentials with various concentrations of extracellular K(+) in the presence of valinomycin did not inhibit the ability of Pgp to reduce intracellular concentration of Tc-Sestamibi, strongly suggesting that the drug transport activity of MDR1 Pgp is independent of changes in E(m) or total ion conductance. Tetraphenyl borate, a lipophilic anion, enhanced unidirectional influx of Tc-Sestamibi to a greater extent in MCF-7/MDR1 cells than in control cells, suggesting that Pgp may, directly or indirectly, increase the positive dipole potential within the plasma membrane bilayer. Overall, these data demonstrate that changes in E(m) or macroscopic conductance are not coupled with function of Pgp in multidrug resistance. The dominant effect of MDR1 Pgp in this system is reduction of drug influx, possibly through an increase in intramembranous dipole potential.  相似文献   

4.
This letter details the continued chemical optimization of a novel series of M4 positive allosteric modulators (PAMs) based on a 5-amino-thieno[2,3-c]pyridazine core by incorporating a 3-amino azetidine amide moiety. The analogs described within this work represent the most potent M4 PAMs reported for this series to date. The SAR to address potency, clearance, subtype selectivity, CNS exposure, and P-gp efflux are described. This work culminated in the discovery of VU6000918, which demonstrated robust efficacy in a rat amphetamine-induced hyperlocomotion reversal model at a minimum efficacious dose of 0.3 mg/kg.  相似文献   

5.
6.
P-glycoprotein/ABCB1 (Pgp) is a well known protein of cell defense system. It is localized in cell membrane and pumps different drugs out of various cells using ATP energy. Its overexpression is associated with the development of multidrug resistance (MDR) in cancer cells. The data showing that Pgp also has other functions appeared recently, and this review surveys these data. In particular, (1) Pgp can protect cells from apoptosis; it suppresses the expression of endogenous protein TRAIL and decreases the activity of caspases 8 and 3; (2) Pgp is able to act as an outwardly directed flippase; (3) Pgp participates in a proper development of the innate immune response to intracellular pathogens and in the development of inflammation; (4) functionally active Pgp can be transferred from drug-resistant to drug-sensitive cells by microvesicles (MV). This is a new way of the Pgp-mediated MDR emergence in populations of tumor cells. Thus, Pgp functions as a regulator of some cellular processes. Molecular mechanisms of the Pgp influence on tumor cell viability are related not only with the drug efflux but also with some other functions.  相似文献   

7.
Drugs that block P-glycoprotein-modulated efflux of antiepileptic drugs in the brain, lead to increase their intracellular concentration. Addition of R-verapamil as one enantiomer of verapamil to antiepileptic drugs may facilitate the penetration of drugs to the brain and prevents their efflux from CNS without serious cardiovascular side effects.  相似文献   

8.
During our ongoing efforts to develop a small molecule inhibitor targeting the β-amyloid cleaving enzyme (BACE-1), we discovered a class of compounds bearing an aminoimidazole motif. Initial optimization led to potent compounds that have high Pgp efflux ratios. Crystal structure-aided design furnished conformationally constrained compounds that are both potent and have relatively low Pgp efflux ratios. Computational studies performed after these optimizations suggest that the introduction of the constraint enhances potency via additional hydrophobic interactions rather than conformational restriction.  相似文献   

9.

Background

Pro-inflammatory/cytotoxic T cells (IFNγ, TNFα, granzyme B+) are increased in the peripheral circulation in COPD. NKT-like and NK cells are effector lymphocytes that we have also shown to be major sources of pro-inflammatory cytokines and granzymes. P-glycoprotein 1 (Pgp1) is a transmembrane efflux pump well characterised in drug resistant cancer cells. We hypothesized that Pgp1 would be increased in peripheral blood T, NKT-like and NK cells in patients with COPD, and that this would be accompanied by increased expression of IFNγ, TNFα and granzyme B. We further hypothesized that treatment with cyclosporine A, a Pgp1 inhibitor, would render cells more sensitive to treatment with corticosteroids.

Methods

Pgp1, granzyme B, IFNγ and TNFα expression were measured in peripheral blood T, NK and NKT-like cells from COPD patients and control subjects (± cyclosporine A and prednisolone) following in vitro stimulation and results correlated with uptake of efflux dye Calcein-AM using flow cytometry.

Results

There was increased Pgp1 expression by peripheral blood T, NKT-like and NK cells co-expressing IFNγ, TNFα and granzyme B in COPD patients compared with controls (e.g. %IFNγ/Pgp1 T, NKT-like, NK for COPD (Control): 25(6), 54(27), 39(23)). There was an inverse correlation between Pgp1 expression and Calcein-AM uptake. Treatment with 2.5 ng/ml cylosporin A and10-6 M prednisolone resulted in synergistic inhibition of pro-inflammatory cytokines in Pgp1 + cells (p < 0.05 for all).

Conclusions

Treatment strategies that target Pgp1 in T, NKT-like and NK cells may reduce systemic inflammatory mediators in COPD and improve patient morbidity.  相似文献   

10.
Imatinib mesylate (imatinib) is a new generation preparation that is now successfully used for treatment of cancer, particularly for chemotherapy of chronic myeloid leukemia (CML). Imatinib inhibits the activity of chimeric kinase BCR-ABL, which is responsible for the development of CML. The goal of this study was to investigate the role of a multidrug resistance protein, P-glycoprotein (Pgp), in the evolution of CML treated with imatinib. We demonstrate here that although imatinib is a substrate for Pgp, cultured CML cells (strain K562/i-S9), overexpressing active Pgp, do not exhibit imatinib resistance. Studies of CML patients in the accelerated phase have shown variations in the number of Pgp-positive cells (Pgp+) among individual patients treated with imatinib. During treatment of patients with imatinib for 6-12 months, the number of Pgp-positive cells significantly increased in most patients. The high number of Pgp+ cells remained in patients at least for 4.5 years and correlated with active Rhodamine 123 (Rh123) efflux. Such correlation was not found in the group of imatinib-resistant patients examined 35-60 months after onset of imatinib therapy: cells from the imatinib-resistant patients exhibited efficient Rh123 efflux irrespectively of Pgp expression. We also compared the mode of Rh123 efflux by cells from CML patients who underwent imatinib treatment for 6-24 months and the responsiveness of patients to this therapy. There were significant differences in survival of patients depending on the absence or the presence of Rh123 efflux. In addition to Pgp, patients' cells expressed other transport proteins of the ABC family. Our data suggest that treatment with imatinib causes selection of leukemic stem cells characterized by expression of Pgp and other ABC transporters.  相似文献   

11.
We selected for study an anthracycline-resistant mutant from the archaebacteria Haloferax volcanii. This resistance was reversed by a Ca2+-channel antagonist, nifedipine (NDP). This resistance and its reversal by NDP suggest P-glycoprotein (Pgp) to be responsible for maintaining an anticancer drug concentration below the cytotoxic level. Using rhodamine 123 (RH123) as a substrate for Pgp, we then examined whether the resistance to anthracyclines in this bacteria might involve a Pgp-like anthracycline efflux pump. RH123 accumulation by the bacteria was determined with flow cytometry. A steady-state RH123 accumulation by the resistant cells revealed approx. one-fifteenth of that by the wild-type cells, which could be remarkably enhanced by NDP. The other modulators of Pgp, diltiazem and verapamil, also enhanced RH123 accumulation in resistant cells. The uncoupler FCCP completely restored RH123 accumulation in resistant cells to the wild-type cell level. RH123 unidirectional efflux from resistant cells after its preloading revealed much greater than that from wild-type cells, which was remarkably inhibited by FCCP. These confirmed that RH123 low accumulation involves its active efflux mechanism. Taken together, the present study indicated that lower evolutionary archaebacteria might also express a Pgp-like protein very similar to mammalian Pgp.  相似文献   

12.
The uterine sarcoma human cell line MES-SA/Dx5 overexpresses the MDR1 gene product, P-glycoprotein (Pgp). Pgp is a heavily glycosylated, ATP-dependent drug efflux pump expressed in many human cancers. There are more than 150 known isoforms of Pgp, which complicates the characterization of Pgp glycans because each isoform could present a different glycome. The contribution of these oligosaccharides to the structure and function of Pgp remains unclear. We identified distinct Pgp glycans recognized by the lectins in the digoxigenin (DIG) glycan differentiation kit from Roche Allied Science, all of which were N-glycans. Pgp was isolated using both slab and preparative gel elution. The monoclonal antibody C219 was used to identify the presence of Pgp and Pgp treated with PNGase F on our blots. Pgp isolated from MES-SA/Dx5 cells contains at least two different complex N-glycans--one high mannose tree, detected by GNA, and one branched hybrid oligosaccharide-capped with terminal sialic acids, detected by SNA and MAA. DSA, specific for biantennary oligosaccharides possessing beta(1-4)-N-acetyl-D-glucosamine residues, also recognized the blotted Pgp and is probably detecting the core Galbeta(1-4)-GlcNAc(x) component found in other Pgps.  相似文献   

13.
Human P-glycoprotein (Pgp) is as an ATP-dependent efflux pump for a variety of chemotherapeutic drugs. The aim of this study is to evaluate whether Pgp modulators can be engineered to exhibit high-affinity binding using polyvalency. Five bivalent homodimeric polyenes based on stipiamide linked with polyethylene glycol ethers in the range of 3-50 A were synthesized and quantitatively characterized for their effect on Pgp function. The stipiamide homodimers displaced [(125)I]iodoarylazidoprazoin (IAAP), an analogue of the Pgp substrate prazosin. A minimal spacer of 11 A is necessary for inhibition of IAAP labeling, beyond which there is an inverse correlation between the length of the spacer and the IC(50) for the displacement of IAAP. ATP hydrolysis by Pgp on the other hand is stimulated by the dimers with spacers of up to 22 A, whereas dimers with longer spacers inhibit ATP hydrolysis. Finally, the homodimers reverse Pgp-mediated drug efflux in intact cells overexpressing Pgp, and 11 A is a threshold beyond which the effectiveness of the homodimers increases exponentially and levels off at 33 A. We demonstrate that dimerization and identification of an optimal spacer length increase by 11-fold the affinity of stipiamide, and this is reflected in the efficacy with which Pgp-mediated drug efflux is reversed. These results suggest that polyvalency could be a useful strategy for the development of more potent Pgp modulators.  相似文献   

14.
We report the synthesis and blood-brain barrier (BBB)-permeability of (14)C-CNDR-29, a paclitaxel C-10 carbamate derivative shown to be devoid of P-glycoprotein (Pgp)-interactions, in an in situ mouse brain perfusion model, in comparison with (14)C-paclitaxel. The results presented reveal a 3- to 4-fold higher BBB-permeability for the C-10 modified taxane compared to paclitaxel. These results support the notion that circumvention of Pgp-mediated efflux can lead to higher BBB-permeability. Further studies however are needed to evaluate the therapeutic potential of the C-10 carbamates paclitaxel derivatives for the treatment of CNS diseases.  相似文献   

15.
Purified P‐glycoprotein ATPase from Helicoverpa armigera (Ha‐Pgp), reconstituted in proteoliposomes composed of phospholipids and cholesterol, shows higher ATPase activity in the presence of cholesterol than in its absence. The Ha‐Pgp ATPase activity was increased 30–40% with cholesterol. The KM for ATP was found to be 1 and 0.8 mM in the absence and presence of cholesterol, respectively. The insecticide‐stimulated Ha‐Pgp ATPase activity was increased by 10–20% for all the insecticides in the reconstituted proteoliposomes containing cholesterol compared to those with no cholesterol. The effects of cholesterol on KM and Vmax values of insecticide‐stimulated Ha‐Pgp ATPase activity were unrelated to the size of the insecticide. Ha‐Pgp tryptophan fluorescence displayed a red shift of 3 and 8 nm in emission spectra upon binding of insecticides. Cholesterol enhances the interaction of insecticides with Ha‐Pgp. Kd values of different insecticides for binding to Ha‐Pgp were found to be lower in the presence of cholesterol in the proteoliposomes compared to its absence. Results suggest that cholesterol plays a role in the recognition and interaction of insecticides by modulating Ha‐Pgp ATPase and may be involved in efflux of insecticides from cells by the transporter.  相似文献   

16.
The best characterized mechanism of multidrug resistance (MDR) in cancer involves the MDR1 efflux transporter P-glycoprotein (Pgp). The positron-emitting radiotracer hexakis(2-methoxyisobutylisonitrile)-(94m)Tc ((94m)Tc-MIBI) was synthesized and validated in cell transport studies as a substrate for MDR1 Pgp. In vivo small-scale PET imaging and biodistribution studies of mdr1a/1b (-/-) gene deleted and wild-type mice demonstrated the use of (94m)Tc-MIBI to detect Pgp function. The reversal effect of a Pgp modulator was shown in tissue distribution studies of KB 3-1 (Pgp-) and KB 8-5 (Pgp+) tumor-bearing nude mice. The current (94m)Tc-MIBI experiments parallel previous studies employing (99m)Tc-MIBI, showing essentially identical performance of the two technetium radiotracers and providing biological validation of (94m)Tc-MIBI for PET imaging of multidrug resistance.  相似文献   

17.
The design, synthesis, and biological evaluation of novel 3-aryl-indazole derivatives as peripherally selective pan-Trk inhibitors are described. Three strategies were used to obtain a potent compound exhibiting low central nervous system (CNS) penetration and high plasma exposure: 1) a structure-based drug design (SBDD) approach was used to improve potency; 2) a substrate for an efflux transporter for lowering brain penetration was explored; and 3) the most basic pKa (pKa–MB) value was used as an indicator to identify compounds with good membrane permeability. This enabled the identification of the peripherally targeted 17c with the potency, kinase-selectivity, and plasma exposure required to demonstrate in vivo efficacy in a Complete Freund's adjuvant (CFA)-induced thermal hypersensitivity model.  相似文献   

18.
P-glycoprotein (Pgp; ABCB1), a member of the ATP-binding cassette (ABC) superfamily, exports structurally diverse hydrophobic compounds from the cell, driven by ATP hydrolysis. Pgp expression has been linked to the efflux of chemotherapeutic drugs in human cancers, leading to multidrug resistance (MDR). The protein also plays an important physiological role in limiting drug uptake in the gut and entry into the brain. Substrates partition into the lipid bilayer before interacting with Pgp, which has been proposed to function as a hydrophobic vacuum cleaner. Low- and medium-resolution structural models of Pgp suggest that the 2 nucleotide-binding domains are closely associated to form a nucleotide sandwich dimer. Pgp is an outwardly directed flippase for fluorescent phospholipid and glycosphingolipid derivatives, which suggests that it may also translocate drug molecules from the inner to the outer membrane leaflet. The ATPase catalytic cycle of the protein is thought to proceed via an alternating site mechanism, although the details are not understood. The lipid bilayer plays an important role in Pgp function, and may regulate both the binding and transport of drugs. This review focuses on the structure and function of Pgp, and highlights the importance of fluorescence spectroscopic techniques in exploring the molecular details of this enigmatic transporter.  相似文献   

19.
Cotton bollworm, Helicoverpa armigera, is one of the most damaging polyphagous pests worldwide, which has developed high levels of resistance to commonly applied insecticides. Mitochondrial P-glycoprotein (Pgp) was detected in the insecticide-resistant strain of H. armigera using C219 antibodies, and its possible role was demonstrated in the efflux of xenobiotic compounds using spectrofluorometer. The TMR accumulated in mitochondria in the absence of ATP, and effluxed out in presence of ATP; the process of efflux was inhibited in the presence of ortho-vandate, an inhibitor of Pgp, in insecticide-resistant larvae of H. armigera. The mitochondria isolated from insecticide-resistant larvae were resistant to insecticide-induced inhibition of oxygen consumption and cytochrome c release. Membrane potential decreased in a dose-dependent manner in the presence of higher concentration of insecticides (>50 µM) in mitochondria of insecticide-resistant larvae. In conclusion, mitochondrial Pgp ATPase detected in the insecticide-resistant larvae influenced the efflux of xenobiotic compounds. Pgp might be involved in protecting the mitochondrial DNA and the components of the electron transport chain from damage due to insecticides, and contributing to the resistance to the deleterious effects of insecticides on the growth of insecticide-resistant H. armigera larvae.  相似文献   

20.
Unrolling of 1 cm sections, taken between 3 and 4 cm from the apex, of 6-day-old, etiolated barley leaves, was promoted by blue (426 nm) and red (658 nm) light. Accompanying such unrolling was a reduction in the level of the free proline of the tissue. When leaf unrolling was prevented by irradiation with far-red (728 nm) light, or treatment with abscisic acid (ABA) following red light irradiation, the level of proline remained more or less unchanged, at the level of the untreated, dark controls. The proline analogue, azetidine carboxylic acid (AZC) powerfully inhibited the light induced leaf opening, emphasizing the significance of proline-containing, structural and functional proteins in barley leaf unrolling. The inhibition imposed by AZC is partially reversible by added proline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号