共查询到20条相似文献,搜索用时 15 毫秒
1.
Escape behaviors are crucial to survive predator encounters. Touch to the head of Caenorhabditis elegans induces an escape response where the animal rapidly backs away from the stimulus and suppresses foraging head movements. The coordination of head and body movements facilitates escape from predacious fungi that cohabitate with nematodes in organic debris. An appreciation of the natural habitat of laboratory organisms, like C. elegans, enables a comprehensive neuroethological analysis of behavior. In this review we discuss the neuronal mechanisms and the ecological significance of the C. elegans touch response. 相似文献
2.
Many animals alter their reproductive strategies in response to environmental stress. Here we have investigated how L4 hermaphrodites of Caenorhabditis elegans respond to starvation. To induce starvation, we removed food at 2 h intervals from very early- to very late-stage L4 animals. The starved L4s molted into adulthood, initiated oogenesis, and began producing embryos; however, all three processes were severely delayed, and embryo viability was reduced. Most animals died via 'bagging,' because egg-laying was inhibited, and embryos hatched in utero, consuming their parent hermaphrodites from within. Some animals, however, avoided bagging and survived long term. Long-term survival did not rely on embryonic arrest but instead upon the failure of some animals to produce viable progeny during starvation. Regardless of the bagging fate, starved animals showed two major changes in germline morphology: All oogenic germlines were dramatically reduced in size, and these germlines formed only a single oocyte at a time, separated from the remainder of the germline by a tight constriction. Both changes in germline morphology were reversible: Upon re-feeding, the shrunken germlines regenerated, and multiple oocytes formed concurrently. The capacity for germline regeneration upon re-feeding was not limited to the small subset of animals that normally survive starvation: When bagging was prevented ectopically by par-2 RNAi, virtually all germlines still regenerated. In addition, germline shrinkage strongly correlated with oogenesis, suggesting that during starvation, germline shrinkage may provide material for oocyte production. Finally, germline shrinkage and regeneration did not depend upon crowding. Our study confirms previous findings that starvation uncouples germ cell proliferation from germline stem cell maintenance. Our study also suggests that when nutrients are limited, hermaphrodites scavenge material from their germlines to reproduce. We discuss our findings in light of the recently proposed state of dormancy, termed Adult Reproductive Diapause. 相似文献
3.
Zaidel-Bar R Joyce MJ Lynch AM Witte K Audhya A Hardin J 《The Journal of cell biology》2010,191(4):761-769
Robust cell-cell adhesion is critical for tissue integrity and morphogenesis, yet little is known about the molecular mechanisms controlling cell-cell junction architecture and strength. We discovered that SRGP-1 is a novel component of cell-cell junctions in Caenorhabditis elegans, localizing via its F-BAR (Bin1, Amphiphysin, and RVS167) domain and a flanking 200-amino acid sequence. SRGP-1 activity promotes an increase in membrane dynamics at nascent cell-cell contacts and the rapid formation of new junctions; in addition, srgp-1 loss of function is lethal in embryos with compromised cadherin-catenin complexes. Conversely, excess SRGP-1 activity leads to outward bending and projections of junctions. The C-terminal half of SRGP-1 interacts with the N-terminal F-BAR domain and negatively regulates its activity. Significantly, in vivo structure-function analysis establishes a role for the F-BAR domain in promoting rapid and robust cell adhesion during embryonic closure events, independent of the Rho guanosine triphosphatase-activating protein domain. These studies establish a new role for this conserved protein family in modulating cell-cell adhesion. 相似文献
4.
The nematode C. elegans senses head and nose touch using multiple classes of mechanoreceptor neurons that are electrically coupled through a network of gap junctions. Using in?vivo neuroimaging, we have found that multidendritic nociceptors in the head respond to harsh touch throughout their receptive field but respond to gentle touch only at the tip of the nose. Whereas the harsh touch response depends solely on cell-autonomous mechanosensory channels, gentle nose touch responses require facilitation by additional nose touch mechanoreceptors, which couple electrically to the nociceptors in a hub-and-spoke gap junction network. Conversely, nociceptor activity indirectly facilitates activation of the nose touch neurons, demonstrating that information flow across the network is bidirectional. Thus, a simple gap-junction circuit acts as a coincidence detector that allows primary sensory neurons to integrate information from neighboring mechanoreceptors and generate somatosensory perception. 相似文献
5.
6.
Pawelec G 《Cancer immunology, immunotherapy : CII》2004,53(10):843-843
Cancer Immunology, Immunotherapy - 相似文献
7.
Fay DS 《Seminars in cell & developmental biology》2005,16(3):397-406
The invariant developmental cell lineage of Caenorhabditis elegans (and other similar nematodes) provides one of the best examples of how cell division patterns can be precisely coordinated with cell fates. Although the field has made substantial progress towards elucidating the many factors that control the acquisition of individual cell or tissue-specific identities, the interplay between these determinants and core regulators of the cell cycle is just beginning to be understood. This review provides an overview of the known mechanisms that govern somatic cell growth, proliferation, and differentiation in C. elegans. In particular, I will focus on those studies that have uncovered novel genes or mechanisms, and which may enhance our understanding of corresponding processes in other organisms. 相似文献
8.
Direct observations show that almost all (97%) Polyarthra remata caught in the inhalant current of Daphnia pulex avoid inhalation by initiating escape responses. Microvideographic analysis shows that these responses are initiated, on average, 0.24 mm (about 2.5 body lengths) from the inhalant opening of the branchial chamber, when the Polyarthra are moving at a velocity of about 1.4 mm s–1 (about 6 times their normal swimming speed — 0.24 mm s–1). The stimulus for the escape response could be rapid acceleration or, more likely, shear. The average distance traveled during an escape response is at least 1.25 mm (about 12 body lengths).The Polyarthra escape response can provide a very effective defense against interference from Daphnia and may greatly increase the ability of Polyarthra spp. to coexist with Daphnia. 相似文献
9.
A family of transposon-like sequences in the C. elegans genome is described. This family, termed the Tc6 family, consists mostly of conserved, 1.6 kb elements. Four Tc6 elements or partial elements have been cloned and the DNA sequences of three were determined. One appears to be a complete element of 1603 nucleotides, consisting of a palindrome of 765 nucleotides, with a central, non-palindromic region of 73 nucleotides. Another has an identical structure except for an internal deletion. A third is a partial element terminating at a probable internal restriction site used for cloning. A fourth clone contained portions of the Tc6 sequence juxtaposed to non-Tc6 sequences. All C. elegans strains examined contain 20-30 Tc6 elements. The ends of Tc6 elements are conserved and have sequence similarity to the ends of C. elegans transposons Tc1 and Tc3. The ends of Tc6 elements also have sequence similarity to the heptamer portion of the immunoglobulin and T-cell receptor recombination signal sequence, raising the possibility of wide phylogenetic conservation of the recombination mechanism. Tc6 elements also share sequence motifs with plant-pathogenic viroid RNA's, possibly indicative of a Tc6 RNA replicative phase. 相似文献
10.
11.
Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a kcat of 610 min(-1) and a Km of 610 microM using E. coli thioredoxin as substrate. The reported kcat is 25% of the kcat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate. 相似文献
12.
13.
Lawrence M. Dill 《Animal behaviour》1974,22(3):711-722
The hypothesis was tested that zebra danios (Brachydanio rerio) react to an approaching predator when the rate of change of the angle subtended by the predator at the prey's eye (dα/dt) exceeds some threshold level. Danios were presented with real predators (largemouth bass, Micropterus salmoides) and artificial predators of two types: a model predator, whose size and velocity could be varied, and a film of an approaching object. The reactive distance for flight (RD) could be predicted from the relationship: RD=[(VS/k)?(S2/4)]1/2 where V is the predator approach velocity (cm/s), S is the predator front diameter (cm), and k is the threshold rate of change of visual angle (radians/s). The best overall estimate of k was 0·43 rad/s. The reactive field was shown to be circular, demonstrating that the mechanism is not solely a binocular one. Escape velocity, though higher in response to real than to artificial predators, was not correlated with reactive distance. 相似文献
14.
Understanding the mechanisms of axon regeneration is of great importance to the development of therapeutic treatments for spinal cord injury or stroke. Axon regeneration has long been studied in diverse vertebrate and invertebrate models, but until recently had not been analyzed in the genetically tractable model organism Caenorhabditis elegans. The small size, simple neuroanatomy, and transparency of C. elegans allows single fluorescently labeled axons to be severed in live animals using laser microsurgery. Many neurons in C. elegans are capable of regenerative regrowth, and can in some cases re-establish functional connections. Large-scale genetic screens have begun to elucidate the genetic basis of axon regrowth. 相似文献
15.
Innexins in C. elegans 总被引:2,自引:0,他引:2
Innexins are functionally analogous to the vertebrate connexins, and the innexin family of gap junction proteins has been identified in many invertebrates, including Drosophila and C. elegans. The genome sequencing project has identified 25 innexins in C. elegans. We are particularly interested in the roles that gap junctions may play in embryonic development and in wiring of the nervous system. To identify the particular C. elegans innexins that are involved in these processes, we are examining their expression patterns using specific antibodies and translational GFP fusions. In addition we are investigating mutant, RNAi and overexpression phenotypes for many of these genes. To date, we have generated specific antibodies to the non-conserved carboxyl termini of 5 innexins. We have constructed GFP translational fusions for 17 innexins and observed expression patterns for 13 of these genes. In total we have characterized expression patterns representing 14 innexins. Mutations have been identified in 5 of these genes, and at least 3 others have RNAi mutant phenotypes. Generalities emerging from our studies include: 1) most tissues and many individual cells express more than one innexin, 2) some innexins are expressed widely, while others are expressed in only a few cells, and 3) there is a potential for functional pairing of innexins. 相似文献
16.
Induced expression of the Flock House virus in the soma of C. elegans results in the RNAi-dependent production of virus-derived, small-interfering RNAs (viRNAs), which in turn silence the viral genome. We show here that the viRNA-mediated viral silencing effect is transmitted in a non-Mendelian manner to many ensuing generations. We show that the viral silencing agents, viRNAs, are transgenerationally transmitted in a template-independent manner and work in trans to silence viral genomes present in animals that are deficient in producing their own viRNAs. These results provide evidence for the transgenerational inheritance of an acquired trait, induced by the exposure of animals to a specific, biologically relevant physiological challenge. The ability to inherit such extragenic information may provide adaptive benefits to an animal. 相似文献
17.
18.
Cell culture is an essential tool to study cell function. In C. elegans the ability to isolate and culture cells has been limited to embryonically derived cells. However, cells or blastomeres isolated from mixed stage embryos terminally differentiate within 24 hours of culture, thus precluding post-embryonic stage cell culture. We have developed an efficient and technically simple method for large-scale isolation and primary culture of larval-stage cells. We have optimized the treatment to maximize cell number and minimize cell death for each of the four larval stages. We obtained up to 7.8×10(4) cells per microliter of packed larvae, and up to 97% of adherent cells isolated by this method were viable for at least 16 hours. Cultured larval cells showed stage-specific increases in both cell size and multinuclearity and expressed lineage- and cell type-specific reporters. The majority (81%) of larval cells isolated by our method were muscle cells that exhibited stage-specific phenotypes. L1 muscle cells developed 1 to 2 wide cytoplasmic processes, while L4 muscle cells developed 4 to 14 processes of various thicknesses. L4 muscle cells developed bands of myosin heavy chain A thick filaments at the cell center and spontaneously contracted ex vivo. Neurons constituted less than 10% of the isolated cells and the majority of neurons developed one or more long, microtubule-rich protrusions that terminated in actin-rich growth cones. In addition to cells such as muscle and neuron that are high abundance in vivo, we were also able to isolate M-lineage cells that constitute less than 0.2% of cells in vivo. Our novel method of cell isolation extends C. elegans cell culture to larval developmental stages, and allows use of the wealth of cell culture tools, such as cell sorting, electrophysiology, co-culture, and high-resolution imaging of subcellular dynamics, in investigation of post-embryonic development and physiology. 相似文献
19.