首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of appropriate wildlife survey techniques is essential to promote effective and efficient monitoring of species of conservation concern. Here, we demonstrate the utility of two rapid-assessment, non-invasive methods to detect the presence of elusive, small, arboreal animals. We use the hazel dormouse, Muscardinus avellanarius, a rodent of conservation concern, as our focal species. Prevailing hazel dormouse survey methods are prolonged (often taking months to years to detect dormice), dependent on season and habitat, and/or have low detection rates. Alternatives would be of great use to ecologists who undertake dormouse surveys, especially those assessing the need for mitigation measures, as legally required for building development projects. Camera traps and footprint tracking are well-established tools for monitoring elusive large terrestrial mammals, but are rarely used for small species such as rodents, or in arboreal habitats. In trials of these adapted methods, hazel dormice visited bait stations and were successfully detected by both camera traps and tracking equipment at each of two woodland study sites, within days to weeks of installation. Camera trap images and footprints were of adequate quality to allow discrimination between two sympatric small mammal species (hazel dormouse and wood mouse, Apodemus sylvaticus). We discuss the relative merits of these methods with respect to research aims, funds, time available and habitat.  相似文献   

2.
3.
Abstract: Little quantitative information exists about the survey effort necessary to inventory temperate bat species assemblages. We used a bootstrap resampling algorithm to estimate the number of mist net surveys required to capture individuals from 9 species at both study area and site levels using data collected in a forested watershed in northwestern California, USA, during 1996–2000. The mean number of simulated surveys required to capture individual species varied with species' rarity and ranged from 1.5 to 44.9. We retrospectively evaluated strategies to reduce required survey effort by subsampling data from 1996 to 1998 and tested the strategies in the field during 1999 and 2000. Using data from 1996 to 1998, the mean number of simulated surveys required to capture 8 out of 9 species was 26.3, but a 95% probability of capture required >61 surveys. Inventory efficiency, defined as the cumulative proportion of species detected per survey effort, improved for both the study area and individual sites by conducting surveys later in summer. We realized further improvements in study area inventory efficiency by focusing on productive sites. We found that 3 surveys conducted between 1 July and 10 September at each of 4 productive sites in this 10-km2 study area resulted in the capture of 8 species annually. Quantitative estimation of the survey effort required to assess bat species occurrence improves the ability to plan and execute reliable, efficient inventories. Results from our study should be useful for planning inventories in nearby geographical areas and similar habitat types; further, the analytical methods we used to assess effort are broadly applicable to other survey methods and taxa.  相似文献   

4.
Camera trapping is widely used in ecological studies. It is often considered nonintrusive simply because animals are not captured or handled. However, the emission of light and sound from camera traps can be intrusive. We evaluated the daytime and nighttime behavioral responses of four mammalian predators to camera traps in road‐based, passive (no bait) surveys, in order to determine how this might affect ecological investigations. Wild dogs, European red foxes, feral cats, and spotted‐tailed quolls all exhibited behaviors indicating they noticed camera traps. Their recognition of camera traps was more likely when animals were approaching the device than if they were walking away from it. Some individuals of each species retreated from camera traps and some moved toward them, with negative behaviors slightly more common during the daytime. There was no consistent response to camera traps within species; both attraction and repulsion were observed. Camera trapping is clearly an intrusive sampling method for some individuals of some species. This may limit the utility of conclusions about animal behavior obtained from camera trapping. Similarly, it is possible that behavioral responses to camera traps could affect detection probabilities, introducing as yet unmeasured biases into camera trapping abundance surveys. These effects demand consideration when utilizing camera traps in ecological research and will ideally prompt further work to quantify associated biases in detection probabilities.  相似文献   

5.
Metal box (e.g., Elliott, Sherman) traps and remote cameras are two of the most commonly employed methods presently used to survey terrestrial mammals. However, their relative efficacy at accurately detecting cryptic small mammals has not been adequately assessed. The present study therefore compared the effectiveness of metal box (Elliott) traps and vertically oriented, close range, white flash camera traps in detecting small mammals occurring in the Scenic Rim of eastern Australia. We also conducted a preliminary survey to determine effectiveness of a conservation detection dog (CDD) for identifying presence of a threatened carnivorous marsupial, Antechinus arktos, in present‐day and historical locations, using camera traps to corroborate detections. 200 Elliott traps and 20 white flash camera traps were set for four deployments per method, across a site where the target small mammals, including A. arktos, are known to occur. Camera traps produced higher detection probabilities than Elliott traps for all four species. Thus, vertically mounted white flash cameras were preferable for detecting the presence of cryptic small mammals in our survey. The CDD, which had been trained to detect A. arktos scat, indicated in total 31 times when deployed in the field survey area, with subsequent camera trap deployments specifically corroborating A. arktos presence at 100% (3) indication locations. Importantly, the dog indicated twice within Border Ranges National Park, where historical (1980s–1990s) specimen‐based records indicate the species was present, but extensive Elliott and camera trapping over the last 5–10 years have resulted in zero A. arktos captures. Camera traps subsequently corroborated A. arktos presence at these sites. This demonstrates that detection dogs can be a highly effective means of locating threatened, cryptic species, especially when traditional methods are unable to detect low‐density mammal populations.  相似文献   

6.
Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site*survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.  相似文献   

7.
Camera trapping is the most used method for surveying medium-sized carnivores in Spain. The main target for these surveys has been the Iberian lynx, the most endangered cat in the world. The Iberian lynx conservation program has received the largest EU LIFE projects grant. So, efficiency is a key goal for managing this grant. During 2003 and 2007, we have applied these funds to the survey of the Iberian lynx in Eastern Sierra Morena (Spain). Using two different techniques, we have studied both to see which is the most efficient. The survey developed in active latrines resulted more efficient than that of scent stations and live prey camera trapping throughout the years, although there has been a variation between years. Otherwise, the live prey method has been the one providing the greatest speed and number of pictures per entrance. We suggest that camera-trapping surveys can be improved in terms of efficiency for a wide range of species, or at least for the Iberian lynx. To improve the results, cameras might be placed in relation to breeding territories. With this determinant, camera-trapping surveys would be shorter than 120 days. Finally, we suggest how those surveys for medium carnivores should be designed.  相似文献   

8.
Habitat spatial distribution, seasonal variation, and activity patterns influence changes in vertebrate assemblages over time. Terrestrial birds play major roles in the dynamics of tropical forests, but there are few effective methods to study these species due to their cryptic coloration and elusive behavior. We used camera‐trap data collected during 16 mo (February 2017–June 2018) to describe the terrestrial avifauna in southeastern Peru, assess to what extent the composition of terrestrial avifauna changes among seasons and across two major habitats (terra firme and floodplain forests), and determine daily activity patterns of terrestrial birds. We used overlap analyses to examine temporal co‐occurrence between ecologically similar and sympatric species. Camera traps recorded 16 species, including eight species in the family Tinamidae. Capture rates were highest for Pale‐winged Trumpeters (Psophia leucoptera; Psophiidae) and Gray‐fronted Doves (Leptolila rufaxilla; Columbidae). Species composition did not differ between habitats or seasons, and capture rates between habitats only differed for White‐throated Tinamous (Tinamus guttatus). Overlaps of activity patterns were high between ecologically similar species and species found in terra firme habitats (White‐throated Tinamous and Cinereous Tinamous, Crypturellus cinereus) and in both habitat types (Pale‐winged Trumpeters and Gray‐fronted Doves). Low numbers of captures of possibly locally rare or less abundant species hindered a complete analysis of spatial and seasonal patterns of terrestrial bird assemblages. We suggest a greater sampling effort and greater spatial replication to better understand the spatial and seasonal dynamics of the terrestrial avifauna. Further studies that assess the mechanisms that allow the coexistence of sympatric tinamous would be valuable, both in our study area and elsewhere. The use of camera traps in long‐term monitoring projects proved to be an effective tool for monitoring terrestrial birds, identifying cryptic and often rare animals to species level, and providing valuable ecological information at species and community levels.  相似文献   

9.
The Carpentarian Pseudantechinus (Pseudantechinus mimulus) is a poorly studied dasyurid marsupial that inhabits rocky outcrops in the Mount Isa Inlier bioregion in Queensland and the Gulf Coastal and Gulf Fall and Uplands bioregions in the Northern Territory. It is readily detected by passive infrared triggered camera traps (‘camera traps’). Camera trap data can be used to develop detection probability estimates from which activity patterns can be inferred, but no effort has previously been made to determine changes in the detectability of P. mimulus throughout the year. We undertook a 13-month baited camera trap survey across nine sampling periods at 60 locations of known historic presence or nearby suitable habitat to assess the change in detection rates and detection probabilities of P. mimulus across a year. Detection probabilities were calculated from camera trap data within a single-species, multi-season occupancy framework to determine optimal survey timing. Detection probability data were used to calculate the likelihood of false absences to determine optimal survey duration. We recorded 2493 detections of P. mimulus over 10 966 camera days. Detection probability ranged from 0.009 to 0.179 and was significantly higher from April to October than from November to March. The likelihood of false absences varied by sampling period and desired level of confidence. We find that camera trap surveys for P. mimulus are best conducted from April to October, but optimal survey duration is dependent upon the time of year and desired level of confidence that an observed absence from a given site reflects a true absence at that site. Attaining a minimum of 80% confidence of absence requires as few as 9 days of survey effort in May to 16 days of survey effort in October.  相似文献   

10.
Cameras have been used throughout the world to estimate wildlife abundance and occupancy. Abundance estimates generated by camera surveys tend to be less invasive, less costly, and more accurate than other means in certain situations. We sought to expand and test the effectiveness of camera surveys on sika deer in Maryland. In 2008, we setup surveys with a 7-day pre-bait period followed by a 7-day active camera survey with 15 cameras. In 2009, we ran the cameras for the entire 14-day survey and moved cameras after each survey to determine if biases occur when using the same camera sites. During both years and all surveys, camera density was approximately 1-camera/65-ha. The abundance estimates were similar between years and estimators. In 2009, increasing photo intervals from 1-min to 5- and 10-min intervals reduced the number of pictures by 66 and 81%, respectively, while providing similar abundance estimates. We calculated the daily detection probabilities for all identifiable deer and we used radio-collared males that occurred within 2 km of the survey grid to assist in determining the optimum survey length. Detection probability did not vary between surveys in the same year, but varied between 2008 and 2009, most likely due to unlimited bait being available during 2008 surveys. Camera surveys have proven to be an accurate and cost effective means of estimating wildlife abundance and can be used successfully to determine sika deer abundance.  相似文献   

11.
Effective conservation and management of primates depend on our ability to accurately assess and monitor populations through research. Camera traps are proving to be useful tools for studying a variety of primate species, in diverse and often difficult habitats. Here, we discuss the use of camera traps in primatology to survey rare species, assess populations, and record behavior. We also discuss methodological considerations for primate studies, including camera trap research design, inherent biases, and some limitations of camera traps. We encourage other primatologists to use transparent and standardized methods, and when appropriate to consider using occupancy framework to account for imperfect detection, and complementary techniques, e.g., transect counts, interviews, behavioral observation, to ensure accuracy of data interpretation. In addition, we address the conservation implications of camera trapping, such as using data to inform industry, garner public support, and contributing photos to large-scale habitat monitoring projects. Camera trap studies such as these are sure to advance research and conservation of primate species. Finally, we provide commentary on the ethical considerations, e.g., photographs of humans and illegal activity, of using camera traps in primate research. We believe ethical considerations will be particularly important in future primate studies, although this topic has not previously been addressed for camera trap use in primatology or any wildlife species.  相似文献   

12.
Camera trap surveys exclusively targeting features of the landscape that increase the probability of photographing one or several focal species are commonly used to draw inferences on the richness, composition and structure of entire mammal communities. However, these studies ignore expected biases in species detection arising from sampling only a limited set of potential habitat features. In this study, we test the influence of camera trap placement strategy on community-level inferences by carrying out two spatially and temporally concurrent surveys of medium to large terrestrial mammal species within Tanzania’s Ruaha National Park, employing either strictly game trail-based or strictly random camera placements. We compared the richness, composition and structure of the two observed communities, and evaluated what makes a species significantly more likely to be caught at trail placements. Observed communities differed marginally in their richness and composition, although differences were more noticeable during the wet season and for low levels of sampling effort. Lognormal models provided the best fit to rank abundance distributions describing the structure of all observed communities, regardless of survey type or season. Despite this, carnivore species were more likely to be detected at trail placements relative to random ones during the dry season, as were larger bodied species during the wet season. Our findings suggest that, given adequate sampling effort (> 1400 camera trap nights), placement strategy is unlikely to affect inferences made at the community level. However, surveys should consider more carefully their choice of placement strategy when targeting specific taxonomic or trophic groups.  相似文献   

13.
A significant question faced by environmental managers is how muchsurvey effort is required in order to obtain an accurate representation of thespecies richness in an area. The appropriateness of rapid survey techniques foridentifying biodiverse hotspots has not been previously tested for molluscs onintertidal rocky reefs. We used species inventories from standardized 4-h searchsurveys to rank 13 intertidal reefs in terms of their species richness and thesewere then compared to cumulative species records following repeated surveys fromthe same sites. A total of 172 surveys were conducted during low water springtides over a 3 year period, with up to 20 surveys at a single site.Species richness in the inventories varied from 20 to 94 on the different reefs.There was a strong correlation between the number of species recorded in thestandardized inventory and the total species richness from cumulative surveyrecords (r = 0.969; P < 0.001).Importantly, the total species diversity recorded at each site was not relatedto the number of surveys that were conducted at that site(r = 0.110; P = 0.784). This confirmsthat a single standardized timed search produces a useful representation ofmolluscan species richness. The majority of molluscs recorded in this study wereendemic to Australia (59%) and, significantly, the number of endemics waspositively correlated to the total species richness found at each site(r = 0.992; P < 0.0001). Our dataprovide clear evidence for a local hotspot of molluscan species richness andendemism on the northern side of Bass Point, Shellharbour. We suggest that on alocal scale biodiversity hotspots should only be identified as those sites thatcontain significantly more species than the local average. Two standarddeviations above the mean appears to be an appropriate cut-off for identifyinglocal biodiversity hotspots.  相似文献   

14.
Camera traps are a powerful and increasingly popular tool for mammal research, but like all survey methods, they have limitations. Identifying animal species from images is a critical component of camera trap studies, yet while researchers recognize constraints with experimental design or camera technology, image misidentification is still not well understood. We evaluated the effects of a species’ attributes (body mass and distinctiveness) and individual observer variables (experience and confidence) on the accuracy of mammal identifications from camera trap images. We conducted an Internet‐based survey containing 20 questions about observer experience and 60 camera trap images to identify. Images were sourced from surveys in northern Australia and included 25 species, ranging in body mass from the delicate mouse (Pseudomys delicatulus, 10 g) to the agile wallaby (Macropus agilis, >10 kg). There was a weak relationship between the accuracy of mammal identifications and observer experience. However, accuracy was highest (100%) for distinctive species (e.g. Short‐beaked echidna [Tachyglossus aculeatus]) and lowest (36%) for superficially non‐distinctive mammals (e.g. rodents like the Pale field‐rat [Rattus tunneyi]). There was a positive relationship between the accuracy of identifications and body mass. Participant confidence was highest for large and distinctive mammals, but was not related to participant experience level. Identifications made with greater confidence were more likely to be accurate. Unreliability in identifications of mammal species is a significant limitation to camera trap studies, particularly where small mammals are the focus, or where similar‐looking species co‐occur. Integration of camera traps with conventional survey techniques (e.g. live‐trapping), use of a reference library or computer‐automated programs are likely to aid positive identifications, while employing a confidence rating system and/or multiple observers may lead to a collection of more robust data. Although our study focussed on Australian species, our findings apply to camera trap studies globally.  相似文献   

15.
The magnitude of human impact on biodiversity makes producing information on the conservation status of wildlife an urgent matter. Despite the increasingly widespread use of camera trapping for mammal monitoring, there are no assessments on how this tool helps fill specific knowledge gaps. We reviewed studies published between 2000 and 2018 in Mexico, a country with very high mammalian diversity, and analysed their spatial distribution. Specifically, we looked at how the number of studies at the level of the country’s states related to a) each state’s medium/large mammalian species richness and b) each state’s proportion of mammalian species classified as threatened at the national and global level. Moreover, we assessed the occurrence of studies within protected areas, terrestrial ecoregions, and mammal geographic provinces. Finally, we recorded the proportion of studies focused on estimating mammal population density and community richness that incorporated measures of variability and completeness, respectively. Based on a compilation of 191 papers published in 48 journals, we found a weak relationship between the number of studies and mammalian species richness and no clear evidence of a relationship between the number of studies and the proportion of threatened species. The studies concentrated on a few mammalian species, protected areas, forested ecoregions, and mammal geographic provinces in the country’s southern region. More than half of the studies that conducted population density estimations included measures of variability, but only one-third of the studies estimating species richness included completeness assessments. There is a need for more coordinated efforts to take full advantage of camera traps in order to produce more comprehensive and standardised surveys of the status of mammalian fauna at the country level.  相似文献   

16.
近年来, 红外相机技术已被广泛应用于国内外自然保护地内地栖鸟兽的物种编目和动态评估。本文以广东车八岭国家级自然保护区为例, 探讨基于红外相机技术如何进行保护区全境大中型兽类和雉鸡类的物种编目清查与评估。通过对车八岭保护区全境为期1年的调查, 共记录兽类和雉鸡类18种, 其中兽类15种, 鸡形目鸟类3种。基于物种累计曲线, 采用全年数据所需的最小调查网格数、最少调查相机日均要少于雨季或旱季, 而旱季调查需要的最小调查网格数和最少调查相机日比雨季更少。通过红外相机图像数据获得了车八岭保护区的大中型兽类和地栖雉鸡类物种名录、物种丰富度、每个物种的相对多度、分布图和凭证标本等重要内容。  相似文献   

17.
Studying large mammal species in tropical forests is a conservation challenge with species’ behavior and ecology often increasing the probability of non‐detection during surveys. Consequently, knowledge of the distribution, status, and natural history of many large mammal species in Southeast Asia is limited. I developed occupancy models from camera‐trapping data, thereby accounting for imperfect detection at sampling sites, to clarify the status and habitat requirements of four globally threatened or near threatened large mammals (banteng Bos javanicus, gaur Bos gaurus, dhole Cuon alpinus, and leopard Panthera pardus) in Mondulkiri Protected Forest, eastern Cambodia. Camera traps were operational for >3500 trap nights with 202 photographic encounters of the four study species. Model averaged occupancy estimates were between 5 percent (leopard) and 140 percent (gaur) higher than naive estimates (i.e., proportion of camera‐trap sites species recorded from) thus highlighting the importance of accounting for detectability during conservation surveys. I recommend the use of an occupancy framework when using camera‐trap data to study the status, ecology, and habitat preferences of poorly known and elusive species. The results highlight the importance of mixed deciduous and semi‐evergreen forest for wild cattle in eastern Cambodia and I emphasize that these habitats must be considered in conservation planning across the Lower Mekong Dry Forest Ecoregion.  相似文献   

18.
Green bridges are used to decrease highly negative impact of roads/highways on wildlife populations and their effectiveness is evaluated by various monitoring methods. Based on the 3-year monitoring of four Croatian green bridges, we compared the effectiveness of three indirect monitoring methods: track-pads, camera traps and active infrared (IR) trail monitoring system. The ability of the methods to detect different species and to give good estimation of number of animal crossings was analyzed. The accuracy of species detection by track-pad method was influenced by granulometric composition of track-pad material, with the best results obtained with higher percentage of silt and clay. We compared the species composition determined by track-pad and camera trap methods and found that monitoring by tracks underestimated the ratio of small canids, while camera traps underestimated the ratio of roe deer. Regarding total number of recorder events, active IR detectors recorded from 11 to 19 times more events then camera traps and app. 80% of them were not caused by animal crossings. Camera trap method underestimated the real number of total events. Therefore, an algorithm for filtration of the IR dataset was developed for approximation of the real number of crossings. Presented results are valuable for future monitoring of wildlife crossings in Croatia and elsewhere, since advantages and disadvantages of used monitoring methods are shown. In conclusion, different methods should be chosen/combined depending on the aims of the particular monitoring study.  相似文献   

19.
Demographic and life history data from wild populations of long-lived primate species are difficult to acquire but are critical for evaluating population viability and the success of conservation efforts. Camera trapping provides an opportunity for researchers to monitor wild animal populations indirectly and could help provide demographic and life history data in a way that demands fewer person-hours in the field, is less disruptive to the study population because it requires less direct contact, and may be cost effective. Using data on group composition collected concurrently though both direct observation and camera trap monitoring, we evaluate whether camera traps can provide reliable information on population dynamics (births, disappearances, interbirth intervals, and other demographic variables) for a wild population of white-bellied spider monkeys (Ateles belzebuth), an Endangered species. We placed camera traps focused on the sole access point used by the monkeys to visit a geophagy site located roughly in the center of one group’s home range, and we reviewed all of the photos collected at that site over a roughly 3-yr period to identify the individual monkeys recorded in the pictures. Group composition based on 2947 photos containing 3977 individual monkey images matched perfectly data collected concurrently through direct observation. The camera traps also provided estimates of the dates when individuals disappeared from the study group, and of infant births during the study. We conclude that long-term camera trap monitoring of wild populations of white-bellied spider monkeys—and other animals that are individually recognizable and that regularly visit predictable resources—can be a useful tool for monitoring their population dynamics indirectly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号