首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phylogenetic analyses of rbcL sequences were used to address both systematic and evolutionary questions posed by the angiosperm family Hydrangeaceae. Our analyses suggest the presence of a monophyletic Hydrangeaceae most closely allied with Loasaceae, a finding in agreement with other molecular as well as morphological analyses. Molecular data indicate that Hydrangeaceae comprise Decumaria, Pileostegia, Schizophragma, Hydrangea, Dichroa, Broussaisia, Platycrater, Cardiandra, Deinanthe, Carpenteria, Philadelphus, Deutzia, Fendlerella, Whipplea, Fendlera, Jamesia, and the enigmatic Kirengeshoma. A particularly close relationship of Kirengeshoma and Deutzia is indicated. Analysis of rbcL sequences suggests that Fendlera and Jamesia are sister to the remainder of the family, lending support to the hypothesis that at least some Carpenterieae are basal in the family and that Hydrangeaceae may have originated in xeric habitats. If this phylogenetic placement of Jamesia and Fendlera is correct, the rbcL trees also suggest that the level of epigyny has decreased in these genera, as well as in the Fendlerella- Whipplea clade and Carpenteria when compared to the outgroup taxa, which are wholly epigynous. Furthermore, the rbcL trees support proposed evolutionary trends in wood anatomy, suggesting, for example, that upland tropical taxa have evolved longer vessel elements with more numerous bars on scalariform perforation plates. The xerophytic basal members of Hydrangeaceae, like the closely related Loasaceae, have short, narrow vessel elements with scalariform perforation plates bearing few bars. Following Jamesia and Fendlera, the remaining hydrangeoids are divided into two large subclades that closely parallel the traditional division of the family into Philadelpheae and Hydrangeae. Both rbcL sequences and morphological data suggest close relationships between: 1) Fendlerella and Whipplea; 2) Decumaria, Pileostegia, and Schizophragma; 3) Carpenteria and Philadelphus; 4) Deinanthe and Cardiandra; 5) Dichroa, Broussaisia, and Hydrangea macrophylla. Molecular and morphological data also concur in demonstrating that the large genus Hydrangea is not a monophyletic assemblage.  相似文献   

2.
绣球亚科的脉序研究   总被引:4,自引:1,他引:4  
郝刚  胡启明   《广西植物》1996,16(2):155-160+199
本文对绣球亚科全部9个属中选取45个种或变种作了叶脉序的研究。绣球亚科除黄山梅属外,大体呈曲行羽状脉。叉叶蓝属,蛛网萼属和草绣球属同具真曲行羽状脉和相似的高级脉序;赤壁草属和冠盖藤属表现出明显的环结曲行羽状脉式样;钻地风属多呈现分支曲行羽状脉式样;常山属和绣球属包含多种过渡类型,与其它属密切相连。黄山梅属脉序为独特的羽状达缘型式样,明显表现出向掌状脉的过渡,与其它属不同。脉序研究支持Takhtajan系统把黄山梅属提升为亚科的处理,同时又表明从脉序性状来看,绣球亚科各属之间性状彼此重叠,没有十分明确的界限。  相似文献   

3.
马桑绣球(绣球科)的花器官发生和发育   总被引:3,自引:0,他引:3  
在扫描电镜下观察了马桑绣球Hydrangea aspera孕性花的发生及发育过程。马桑绣球的花器官向心轮状发生:花萼原基以2/5螺旋式相继发生,花瓣原基几乎同步发生。花瓣开始发育时,与花萼相对的雄蕊发生。与花瓣相对的雄蕊原基与心皮原基几乎同时出现。初始心皮向上扩展,分化出花柱和柱头,向下延伸,嵌入花托,发育为下位子房。花发育成熟时,隔膜于子房的下部连续,而中部和上部不连续,即子房为不完全2室。经过与绣球属已观察过的另外5种1亚种花器官发生和发育比较,发现马桑绣球与藤绣球H. ano mala subs  相似文献   

4.
绣球亚科花粉形态的研究   总被引:6,自引:0,他引:6  
借助光学显微镜和扫描电镜观察了绣球亚科9属31种植物的花粉形态.本亚科的花粉多为近球形至近长球形,少数为扁球形.多具三孔沟。在叉叶蓝属观察到了极度缩短的花粉沟.花粉外壁表面纹饰为具颗粒状或棱形突起、孔穴状或明显网纹,表现出一定程度的变异.花粉形态表明黄山梅属在本亚科与其它属具一致性,冠盖藤属和钻地风属亲缘较近.绣球属花粉形态所表现出来的变异范围大致将其它几属的都包括在内了,表明绣球属可能在本亚科演化上处于一个中心位置。花粉形态结合外部宏观形态又表明绣球亚科各属之间没有十分明确的界限,存在着复杂的性状上的重叠.  相似文献   

5.
Ochnaceae s.l. (Ochnaceae, Quiinaceae and Medusagynaceae), one of the well‐supported subclades of the large order Malpighiales retrieved so far in molecular phylogenetic studies, were comparatively studied with regard to floral structure using microtome section series and scanning electron microscopy (SEM). Floral morphology, anatomy and histology also strongly reflect this close relationship. Potential synapomorphies of the subclade include: flowers nectarless, sepals of different sizes within a flower, petals not retarded in development and forming the protective organs of advanced floral buds, petal aestivation contort, petals with three vascular traces, petals reflexed over the sepals and directed toward the pedicel, polystemony, anthers almost or completely basifixed, gynoecium often with more than five carpels, short gynophore present, styles separate for at least their uppermost part and radiating outwards, suction‐cup‐shaped stigmas, vasculature forming a dorsal band of bundles in the upper stylar region, gynoecium epidermis with large, radially elongate cells, ovules either weakly crassinucellar or incompletely tenuinucellar with an endothelium, abundance of tanniferous tissues and sclerenchyma in floral organs. The most strongly supported subclade of two of the three families in molecular analyses, Quiinaceae and Medusagynaceae, is also particularly well supported by floral structural features, including the presence of functionally and morphologically unisexual flowers, a massive thecal septum that persists after anther dehiscence, styles radiating outward from the ovary, two lateral ovules per carpel, positioned one above the other, conspicuous longitudinal ribs on the ovary wall at anthesis, and a ‘false endothelium’ on the nucellus at anthesis. Additionally, the group fits well in Malpighiales and further emphasizes the relationship of Malpighiales with Celastrales and Oxalidales, and thus the unity of the COM clade. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 299–392.  相似文献   

6.
Although the vast majority of Prunus L. (Rosaceae) species have clearly differentiated sepals and petals, two former genera Maddenia and Pygeum have been described as having an undifferentiated perianth. However, floral morphological and morphogenetic data are scarce, and a renewed investigation is essential to understand the evolution of the perianth differentiation. Here, floral morphogenesis in Prunus hypoleuca (Koehne) J.Wen (=Maddenia hypoleuca Koehne) and Prunus topengii (Merr.) J. Wen & L. Zhao (=Pygeum topengii Merr.) were examined with scanning electron microscopy. The floral development demonstrates that the ten perianth parts can be distinguished as five sepals in an external whorl and five petals in an internal whorl. The sepal primordia are broad, crescent-shaped, and truncate. The petal primordia are rounded and initially resemble the androecium. However, at maturity petals and sepals look much the same in the two species, differing from other Prunus species. The ovule is anatropous and unitegmic, but there is a basal appendage near the ovule of P. hypoleuca which is absent in P. topengii. The direction of development of floral nectaries in the hypanthium is basipetal in P. hypoleuca but acropetal in P. topengii. Perianth segments are differentiated in the two groups and the similarity of the perianth parts is secondarily acquired. Our results support the separation of the Maddenia and Pygeum groups as well as their inclusion in a broader monophyletic Prunus based on molecular phylogenetic studies. We herein provide a new nomenclatural change: Prunus topengii (Merr.) J. Wen & L. Zhao, comb. nov.  相似文献   

7.
Species within the genus Helleborus differ in the relative location of their sepals. Previous studies have proved the existence of post‐floral functionality of sepals in H. foetidus, which leads us to consider the possibility of differences in the functionality of the sepals in H. viridis subsp. occidentalis. In this study, we analyzed their influence on the number and weight of seeds through experimental manipulations, which involve a progressive reduction of sepals following fertilization. Our results show that different levels of perianth reduction have no effect on the number and weight of seeds in Helleborus viridis subsp. occidentalis. We propose that differences in the timing of leaf development and changes in the position of floral organs among the different Helleborus species, underlie a distinctive response to the ever‐changing weather conditions of the European winters and springs.  相似文献   

8.
The floral biology ofErythronium japonicum has been studied from two approaches: a reinvestigation of its floral morphology and a pollinator case history. The perianth, differentiated into a sepal and petal cycle, has a tubular, but free arrangement basally around a slightly stipitate ovary. The two cycles of stamens with dimorphic filaments are positioned by the differently lobed auricles of the mature sepals and petals. These auricles also form a trap-lid mechanism for the inverted nectary which also has passageways. The perianth parts are highly UV absorbant due to the presence of flavonoids. This pattern contrasts strikingly with the purple trident basal guide lines so prominent in the visible spectrum. The weakly protandrous flowers also have exserted styles, thus functioning to exclude its own pollen and insure outbreeding. These floral adaptations are related specifically to the pollination behavior ofXylocopa appendiculata, and in general to the floral evolution within the genusErythronium. This work was supported in part by the U.S.-Japan Cooperative Science Program Grant GF-41367 and Grant-in-Aid No. 934053 from the Ministry of Education, Japan.  相似文献   

9.
Petals, defined as the showy laminar floral organs in the second floral whorl, have been shown to be under similar genetic control in distantly related core eudicot model organisms. On the basis of these findings, it is commonly assumed that the petal identity program regulated by B-class MADS-box gene homologs is invariant across the core eudicot clade. However, the core eudicots, which comprise >70% of angiosperm species, exhibit numerous instances of petal and sepal loss, transference of petal function between floral whorls, and recurrent petal evolution. In the face of these complex patterns of perianth evolution, the concept of a core eudicot petal identity program has not been tested. We therefore examined the petal identity program in the Caryophyllales, a core eudicot clade in which perianth differentiation into sepals and petals has evolved multiple times. Specifically, we analyzed the expression patterns of B- and C-class MADS-box homologs for evidence of a conserved petal identity program between sepal-derived and stamen-derived petaloid organs in the 'living stone' family Aizoaceae. We found that neither sepal-derived nor stamen-derived petaloid organs exhibit gene expression patterns consistent with the core eudicot petal identity program. B-class gene homologs are not expressed during the development of sepal-derived petals and are not implicated in petal identity in stamen-derived petals, as their transient expression coincides with early expression of the C-class homolog. We therefore provide evidence for petal development that is independent of B-class genes and suggest that different genetic control of petal identity has evolved within this lineage of core eudicots. These findings call for a more comprehensive understanding of perianth variation and its genetic causes within the core eudicots--an endeavor that will have broader implications for the interpretation of perianth evolution across angiosperms.  相似文献   

10.
S A Kempin  M A Mandel    M F Yanofsky 《Plant physiology》1993,103(4):1041-1046
Mutations in the AGAMOUS (AG) gene of Arabidopsis thaliana result in the conversion of reproductive organs, stamens and carpels, into perianth organs, sepals and petals. We have isolated and characterized the putative AG gene from Nicotiana tabacum, NAG1, whose deduced protein product shares 73% identical amino acid residues with the Arabidopsis AG gene product. RNA tissue in situ hybridizations show that NAG1 RNA accumulates early in tobacco flower development in the region of the floral meristem that will later give rise to stamens and carpels. Ectopic expression of NAG1 in transgenic tobacco plants results in a conversion of sepals and petals into carpels and stamens, respectively, indicating that NAG1 is sufficient to convert perianth into reproductive floral organs.  相似文献   

11.
The floral biology of Nelumbo pentapetala (Walter) Fernald, the American lotus, native to Texas, was investigated. Anthesis occurs over three consecutive days with flowers opening each morning and closing around noon. First-day flowers are protogynous with the perianth parts partially expanded so that pollen-covered insects which are attracted by floral color and the intense “fruity” odor (diffused with the aid of increased floral temperature) are directed on to the flattened receptacle (= carpellary receptacle) from which the receptive stigmas protrude, thus accomplishing pollination. During the second morning anther dehiscence begins and insects which visit and forage within the flower become covered with pollen and typically crawl over the still receptive stigmas achieving “facilitated” self-pollination (indirect autogamy). By mid-morning of the second day the stigmas dry and become non-receptive to pollen. During the third day of anthesis perianth and staminal parts quickly abscise and over the period of a few weeks the receptacle and enclosed fruits mature. In most populations studied, Hymenoptera (e.g., Lusioglossum spp., and Apis mellifera) were the most abundant and effective pollinators. In some populations, however, Coleoptera (e.g., Chauliognathus) were also numerous and effective pollinators. It is suggested that the overall floral structure (e.g., large numbers of stamens, masses of pollen, staminal appendages) are adaptations which facilitate the pollination of Nelumbo by beetles.  相似文献   

12.
A mathematical model simulating spatial pattern formation (positioning) of floral organs is proposed. Computer experiment with this model demonstrated the following sequence of spatial pattern formation in a typical cruciferous flower: medial sepals, carpels, lateral sepals, long stamens, petals, and short stamens. The positioning was acropetal for the perianth organs and basipetal for the stamens and carpels. Organ type specification and positioning proceed non-simultaneously in different floral parts and organ type specification goes ahead of organ spatial pattern formation. Computer simulation of flower development in several mutants demonstrated that the AG and AP2 genes determine both organ type specification and formation of the zones for future organ development. The function of the AG gene is to determine the basipetal patterning zones for the development of the reproductive organs, while the AP2 gene maintains proliferative activity of the meristem establishing the acropetal patterning zone for the development of the perianth organs.  相似文献   

13.
14.
Cold injury is frequently seen in the commercially important shrub Hydrangea macrophylla but not in Hydrangea paniculata. Cold acclimation and deacclimation and associated physiological adaptations were investigated from late September 2006 to early May 2007 in stems of field-grown H. macrophylla ssp. macrophylla (Thunb.) Ser. cv. Blaumeise and H. paniculata Sieb. cv. Kyushu. Acclimation and deacclimation appeared approximately synchronized in the two species, but they differed significantly in levels of mid-winter cold hardiness, rates of acclimation and deacclimation and physiological traits conferring tolerance to freezing conditions. Accumulation patterns of sucrose and raffinose in stems paralleled fluctuations in cold hardiness in both species, but H. macrophylla additionally accumulated glucose and fructose during winter, indicating species-specific differences in carbohydrate metabolism. Protein profiles differed between H. macrophylla and H. paniculata, but distinct seasonal patterns associated with winter acclimation were observed in both species. In H. paniculata concurrent increases in xylem sap abscisic acid (ABA) concentrations ([ABA](xylem)) and freezing tolerance suggests an involvement of ABA in cold acclimation. In contrast, ABA from the root system was seemingly not involved in cold acclimation in H. macrophylla, suggesting that species-specific differences in cold hardiness may be related to differences in [ABA](xylem). In both species a significant increase in stem freezing tolerance appeared long after growth ceased, suggesting that cold acclimation is more regulated by temperature than by photoperiod.  相似文献   

15.
A cladistic analysis of Asarum was conducted to examine relationships among species within the genus and to test the monophyly of several groups of taxa that have often been treated as segregate genera. Thirty-two species were drawn from throughout the range of the genus, representing a broad sample of sections and all segregate genera. The data matrix included 37 characters derived from various aspects of vegetative and floral morphology. A strict consensus of all most parsimonious trees suggests that Asarum s.l. is monophyletic and consists of two main clades: an Asarum clade, which is characterized by connate styles and inferior ovaries, and an Asiasarum-Hexastylis-Heterotropa clade, which is characterized by ridges on the inner perianth surface, dorsal stigmas, and bifid style extensions. The latter is a large and morphologically diverse clade that includes the North American segregate Hexastylis and two Asiatic segregates. Examination of pollination mechanisms in the context of this phylogeny supports the conclusion that herkogamy, and thus obligate insect pollination, is derived from a plesiomorphic condition of autonomous self-pollination. Associated with herkogamy are characters such as glandular trichomes and other ornamentation of the surface of the calyx that probably represent increased specialization to attract insect pollinators. This study also indicates that chromosomal evolution has occurred via aneuploid decrease from an ancestral chromosome number of 2n = 26 to 2n = 24 in Heterotropa. The recognition of two subgenera, subgenus Asarum and subgenus Heterotropa, corresponding to the two clades in the cladistic analysis, is recommended.  相似文献   

16.
Duplicate genes may be retained by sub- and/or neofunctionalization through changes in gene expression and/or coding sequence, and therefore have the potential to contribute to the genetic robustness and diversification of an organism. In this study, two MADS-box genes were isolated from Taihangia rupestris, a core eudicot species belonging to the Rosaceae. Sequence and phylogenetic analyses revealed that they are clade members of the euAG and PLE lineages, respectively, and hence the two genes are named TrAG (Taihangia rupestris AGAMOUS) and TrSHP (Taihangia rupestris SHATTERPROOF). Southern blot analysis shows that TrSHP is a single-copy gene in the T. rupestris genome. In situ hybridization analyses show that both TrAG and TrSHP are mainly expressed in the stamens, carpels, and ovules. When the stamen primordia are firstly observed, TrAG is initially expressed in the floral meristem domain that will initiate stamens and carpels. In contrast, no TrSHP signal is observed at this developmental stage. At late stages of carpel development, TrAG expression is detected in the ovules, ovaries, and developing styles and stigmas, whereas TrSHP expression is tightly restricted to the ovules. The transgenic Arabidopsis plants containing 35S::TrAG and 35S::TrSHP, respectively, showed similar phenotypes, including homeotic conversions of sepals into carpelloid structures bearing ovules and petals into staminoid organs, and the fruits shattering prematurely along the dehiscence zone. In addition, the phenotype of the transgenic 35S::TrSHP Arabidopsis plants revealed that perianth abscission was inhibited. Yeast two-hybrid assays indicated that TrAG can interact with TrSEP3, whereas TrSHP cannot. The data suggest that the euAG and PLE paralogs, TrAG and TrSHP, may have subfunctionalized and/or neofunctionalized through changes in expression patterns and accumulating variations in the coding regions. Taking these findings together with those available expression and functional data from Arabidopsis and other species, we conclude that the compensatory ways vary among the euAG and PLE lineage pairs in eudicot species.  相似文献   

17.
In both male and female flowers of H. morsus-ranae the primordia of the floral appendages appear in an acropetal succession consisting of alternating trimerous whorls. In the male flower a whorl of sepals is followed by a whorl of petals, three whorls of stamens, and a whorl of filamentous staminodes. The mature androecial arrangement therefore consists of two antisepalous stamen whorls, an antipetalous whorl of stamens, and antipetalous staminodes. Shortly before anthesis, basal meristematic upgrowth between filaments of adjacent whorls produces paired stamens, joining Whorls 1 and 3, and Whorl 2 with the staminodial whorl. A central domelike structure develops between the closely appressed filaments of the inner stamen and staminodial whorl, giving the structure a lobed appearance. After petal inception in the female flower a whorl of antisepalous staminodes develop, each of which may bifurcate to form a pair of staminodes. During staminode development a girdling primordium arises by upgrowth at the periphery of the floral apex. The girdling primordium rapidly forms six gynoecial primordia, which then go on to produce six free styles with bifid stigmas. Intercalary meristem activity, below the point of floral appendage attachment, leads to the production of a syncarpous inferior ovary with six parietal placentae. The styles and carpels remain open along their ventral sutures. During the final stages of female floral development, several hundred ovules develop along the carpel walls, and three nectaries develop dorsally and basally on the three antipetalous styles.  相似文献   

18.
以不同发育时期的长角凤仙花Impatiens longicornuta Y.L.Chen(凤仙花科Balsaminaceae)为材料,利用扫描电镜技术观察了其花器官的分化及其发育过程。长角凤仙花为两侧对称花,具2枚侧生萼片,唇瓣囊状,旗瓣具鸡冠状突起,雄蕊5枚,子房上位,5心皮5室。其花器官分化顺序为向心式,萼片—花瓣—雄蕊—雌蕊原基。2枚侧生萼片先发生,然后近轴萼片(即唇瓣)原基和2枚前外侧萼片原基近同时发生;但是这3枚萼片原基的发育不同步,远轴的2枚前外侧萼片原基的发育渐渐滞后,然后停止发育,最后渐渐为周围组织所吸收,直至消失不见。花瓣原基中,旗瓣原基最先发生,4个侧生花瓣原基相继成对发生,且之后在基部成对愈合形成翼瓣;5枚雄蕊原基几乎同时发生,5个心皮原基轮状同时发生。本文结果支持凤仙花属植物为5基数的花,并进一步证实了唇瓣的萼片来源;此外,研究结果表明花器官早期发育资料对植物系统与进化研究具有重要参考价值。  相似文献   

19.
Genome size and base composition in 16 species and subspecies of the Hydrangea, a woody ornamental genus of Hydrangeaceae, were evaluated by flow cytometry in relation to their chromosome number. This is the first such study concerning the genome size of these species together with a karyotype study of the most important species, Hydrangea macrophylla subsp. macrophylla (Hortensia), from an economical point of view. The 2C DNA content ranged from 1.95 pg in Hydrangea quercifolia to 5.00 pg in Hydrangea involucrata. The base composition ranged from 39.9% GC in Hydrangea aspera subsp. sargentiana to 41.1% in Hydrangea scandens subsp. scandens (significant difference at p < 0.05). The smallest genome sizes were those of the three species originating from North or South America. Most of the species studied presented a chromosome number of 2n = 2x = 36, except for those of the section Aspereae which showed 2n = 30, 34 and 36. A primary karyotype has been made for the first time for H. macrophylla subsp. macrophylla. Phylogenetic relationships between species, the origin of chromosome number and an exploration of the genetic diversity within the genus are discussed. Received: 24 July 2000 / Accepted: 31 October 2000  相似文献   

20.
Polystemonous androecia are diverse in both number and position of stamens. This investigation of polystemonous Hydrangeaceae uses developmental data to characterize (1) the range of developmental variations that account for the diverse androecial patterns and (2) how the expressions of polystemony among Hydrangeaceae compare to those found generally among other angiosperms and especially in their sister family, the Loasaceae, some of which have particularly complex androecia. All polystemonous Hydrangeaceae share the common element of stamen clusters in antesepalous positions. In each of these taxa, the first stamens are initiated opposite the medians of the sepals. Subsequently, stamens form laterally on the flanks of the initial antesepalous stamens, giving rise to the clusters designated as antesepalous triplets. The simplest elaborations based on those common initial developmental steps include (1) adding additional lateral flanking stamens and (2) adding a single stamen in each antepetalous position between adjacent antesepalous groups. More complex elaborations are characteristic of (1) Carpenteria and Philadelphus, which form common primordia at the beginning of androecial development and, subsequently, have stamen primordia form on them, and (2) Deinanthe, which has an elongate hypanthial region on which numerous whorls of stamens are initiated. Carpenteria is unique among Hydrangeaceae in having groups of stamens that are initiated centrifugally in antepetalous positions, and this is similar to complex elements found among some Loasaceae. Generally, the polystemony of Hydrangeaceae that is based in the formation of antesepalous triplets is very similar to that found to evolve in parallel among various clades of rosids and asterids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号