首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetrahydrobiopterin (BH4)-glucoside was identified from Synechococcus sp. PCC 7942 by HPLC analysis and the enzymatic activity of a glycosyltransferase producing the compound from UDP-glucose and BH4. The novel enzyme, named UDP-glucose:BH4 glucosyltransferase, has been purified 846-fold from the cytosolic fraction of Synechococcus sp. PCC 7942 to apparent homogeneity on SDS-PAGE. The native enzyme exists as a monomer having a molecular mass of 39.2 kDa on SDS-PAGE. The enzyme was active over a broad range of pH from 6.5 to 10.5 but most active at pH 10.0. The enzyme required Mn(2+) for maximal activity. Optimum temperature was 42 degrees C. Apparent K(m) values for BH4 and UDP-glucose were determined as 4.3 microM and 188 microM, respectively, and V(max) values were 16.1 and 15.1 pmol min(-1) mg(-1), respectively. The N-terminal amino acid sequence was Thr-Ala-His-Arg-Phe-Lys-Phe-Val-Ser-Thr-Pro-Val-Gly-, sharing high homology with the predicted N-terminal sequence of an unidentified open reading frame slr1166 determined in the genome of Synechocystis sp. PCC 6803, which is known to produce a pteridine glycoside cyanopterin.  相似文献   

2.
A new pteridine glycoside, called cyanopterin, was isolated from Synechocystis sp. PCC 6803 and its structure was elucidated as 6-[1-(4-O-methyl-(alpha-d-glucuronyl)-(1, 6)-(beta-d-galactosyloxy]methylpterin by chemical degradation and 1H- and 13C-NMR spectroscopic means. Cyanopterin is constitutively synthesized at a relatively high intracellular concentration that is comparable to that of chlorophyll a in a molar ratio of approximately 1 to 1.6. The in vivo oxidation state of cyanopterin is primarily the fully reduced 5,6,7,8-tetrahydro form. The cellular function is unknown at present. The findings have established a model system, using Synechocystis sp. PCC 6803, for studies of the physiological functions of unconjugated pteridine glycosides found mostly in cyanobacteria.  相似文献   

3.

Background

Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria.

Results

Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent.

Conclusions

Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.  相似文献   

4.
The biosynthetic pathway for the pteridine moiety of cyanopterine, as well as tetrahydrobiopterine, has been investigated in Synechocystis sp. PCC 6803. Open reading frames slr0426, slr1626, slr0078 and sll0330 of the organism putatively encoding GTP cyclohydrolase I, dihydroneopterine aldolase, 6-pyruvoyltetrahydropterine synthase and sepiapterine reductase, respectively, have been cloned into T7-based vectors for expression in Escherichia coli. The recombinant proteins have been purified to homogeneity and demonstrated to possess expected genuine activities except that of sll0330. Our result is the first direct evidence for the functional assignment of the open reading frames in Synechocystis sp. PCC 6803. Furthermore, the 6-pyruvoyltetrahydropterine synthase gene is demonstrated for the first time in prokaryotes. Based on the result, biosynthesis of cyanopterine is discussed.  相似文献   

5.
ATP-binding cassette (ABC) transporter proteins mediate energy-dependent transport of substrates across cell membranes. Numerous ABC transporter-related genes have been found in the Synechocystis sp. PCC6803 genome by genome sequence analysis including H(+), iron, phosphate, polysaccharide, and CO(2) transport-related genes. The substrates of many other ABC transporters are still unknown. To identify ABC transporters involved in acid tolerance, deletion mutants of ABC transporter genes with unknown substrates were screened for acid stress sensitivities in low pH medium. It was found that cells expressing the deletion mutant of slr1045 were more sensitive to acid stress than the wild-type cells. Moreover, slr1045 expression in the wild-type cells was increased under acid stress. These results indicate that slr1045 is an essential gene for survival under acid stress. The mutant displayed high osmotic stress resistance and high/low temperature stress sensitivity. Considering the temperature-sensitive phenotype and homology to the organic solvent-resistant ABC system, we subsequently compared the lipid profiles of slr1045 mutant and wild-type cells by thin-layer chromatography. In acid stress conditions, the phosphatidylglycerol (PG) content in the slr1045 mutant cells was approximately 40% of that in the wild-type cells. Moreover, the addition of PG to the medium compensated for the growth deficiency of the slr1045 mutant cells under acid stress conditions. These data suggest that slr1045 plays a role in the stabilization of cell membranes in challenging environmental conditions. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

6.
Tocopherols, synthesized by photosynthetic organisms, are micronutrients with antioxidant properties that play important roles in animal and human nutrition. Because of these health benefits, there is considerable interest in identifying the genes involved in tocopherol biosynthesis to allow transgenic alteration of both tocopherol levels and composition in agricultural crops. Tocopherols are generated from the condensation of phytyldiphosphate and homogentisic acid (HGA), followed by cyclization and methylation reactions. Homogentisate phytyltransferase (HPT) performs the first committed step in this pathway, the phytylation of HGA. In this study, bioinformatics techniques were used to identify candidate genes, slr1736 and HPT1, that encode HPT from Synechocystis sp. PCC 6803 and Arabidopsis, respectively. These two genes encode putative membrane-bound proteins, and contain amino acid residues highly conserved with other prenyltransferases of the aromatic type. A Synechocystis sp. PCC 6803 slr1736 null mutant obtained by insertional inactivation did not accumulate tocopherols, and was rescued by the Arabidopsis HPT1 ortholog. The membrane fraction of wild-type Synechocystis sp. PCC 6803 was capable of catalyzing the phytylation of HGA, whereas the membrane fraction from the slr1736 null mutant was not. The microsomal membrane fraction of baculovirus-infected insect cells expressing the Synechocystis sp. PCC 6803 slr1736 were also able to perform the phytylation reaction, verifying HPT activity of the protein encoded by this gene. In addition, evidence that antisense expression of HPT1 in Arabidopsis resulted in reduced seed tocopherol levels, whereas seed-specific sense expression resulted in increased seed tocopherol levels, is presented.  相似文献   

7.
8.
The deduced polypeptide sequence of open reading frame slr1736 reveals homology to chlorophyll synthase and 1,4-dihydroxy-2-naphthoic acid phytyltransferase in Synechocystis sp. strain PCC 6803. In tocopherol and plastoquinone biosynthesis, a condensation reaction mechanistically similar to that of these two enzymes is performed. To analyze the function of this novel prenyltransferase, a deletion mutant of slr1736 was generated by homologous recombination. The mutant showed a markedly decreased tocopherol content, while plastoquinone levels remained unchanged. Since the aromatic precursor homogentisic acid accumulated in the mutant, the function of the enzyme was proven to be a novel tocopherol phytyltransferase.  相似文献   

9.
Because cyanobacteria are photosynthetic, fast-growing microorganisms that can accumulate sucrose under salt stress, they have a potential application as a sugar source for the biomass-derived production of renewable fuels and chemicals. In the present study, the production of sucrose by the cyanobacteria Synechocystis sp. PCC6803, Synechococcus elongatus PCC7942, and Anabaena sp. PCC7120 was examined. The three species displayed different growth curves and intracellular sucrose accumulation rates in response to NaCl. Synechocystis sp. PCC6803 was used to examine the impact of modifying the metabolic pathway on the levels of sucrose production. The co-overexpression of sps (slr0045), spp (slr0953), and ugp (slr0207) lead to a 2-fold increase in intracellular sucrose accumulation, whereas knockout of ggpS (sll1566) resulted in a 1.5-fold increase in the production of this sugar. When combined, these genetic modifications resulted in a fourfold increase in intracellular sucrose accumulation. To explore methods for optimizing the transport of the intracellular sucrose to the growth medium, the acid-wash technique and the CscB (sucrose permease)-dependent export method were evaluated using Synechocystis sp. PCC6803. Whereas the acid-wash technique proved to be effective, the CscB-dependent export method was not effective. Taken together, these results suggest that using genetic engineering, photosynthetic cyanobacteria can be optimized for efficient sucrose production.  相似文献   

10.
11.
Choi YK  Hwang YK  Park YS 《FEBS letters》2001,502(3):73-78
The gene encoding UDP-glucose:tetrahydrobiopterin alpha-glucosyltransferase (BGluT) was cloned from the genomic DNA of Synechococcus sp. PCC 7942. The encoded protein consisting of 359 amino acid residues was verified in vitro and in vivo to be responsible for the synthesis of tetrahydrobiopterin (BH4)-glucoside produced in the organism. The BGluT gene is the first cloned in pteridine glycosyltransferases and also a novel one cloned so far in UDP-glycosyltransferases. The mutant cells disrupted in the BGluT gene produced only aglycosidic BH4 at a level of 8.3% of the BH4-glucoside in wild type cells and exhibited half of the wild type growth in normal photoautotrophic conditions. These results suggest that the glucosylation of BH4 is required for the maintenance of the high cellular concentration of the compound, thereby supporting the normal growth of Synechococcus sp. PCC 7942.  相似文献   

12.
The plasmid hik31 operon (P3, slr6039‐slr6041) is located on the pSYSX plasmid in Synechocystis sp. PCC 6803. A P3 mutant (ΔP3) had a growth defect in the dark and a pigment defect that was worsened by the addition of glucose. The glucose defect was from incomplete metabolism of the substrate, was pH dependent, and completely overcome by the addition of bicarbonate. Addition of organic carbon and nitrogen sources partly alleviated the defects of the mutant in the dark. Electron micrographs of the mutant revealed larger cells with division defects, glycogen limitation, lack of carboxysomes, deteriorated thylakoids and accumulation of polyhydroxybutyrate and cyanophycin. A microarray experiment over two days of growth in light‐dark plus glucose revealed downregulation of several photosynthesis, amino acid biosynthesis, energy metabolism genes; and an upregulation of cell envelope and transport and binding genes in the mutant. ΔP3 had an imbalance in carbon and nitrogen levels and many sugar catabolic and cell division genes were negatively affected after the first dark period. The mutant suffered from oxidative and osmotic stress, macronutrient limitation, and an energy deficit. Therefore, the P3 operon is an important regulator of central metabolism and cell division in the dark.  相似文献   

13.
Chen Q  Chen SL  Song QS  Xia SS 《Gene》2011,488(1-2):57-61
A novel gene slr2049 was identified in Synechococcus sp. PCC7002 by homologous alignment. The features and possible functions of slr2049 gene were predicted by bioinformatics analysis. The function of slr2049 was analyzed in vitro with a heterologous Escherichia coli system with plasmids conferring biosynthesis of phycocyanobilin (PCB) and of the acceptor proteins, β-phycocyanin (CpcB). The resulting products were evaluated with SDS-PAGE and absorption spectra. The function of slr2049 was further analyzed via site-directed mutations. Two mutants, slr2049 (W14L) and slr2049 (Y132S) were generated. The results showed that Slr2049 could catalyze the chromophorylation of CpcB. Compared to wild type, mutant Slr2049 (W14L) had red-shifted absorbance maxima and was not highly fluorescent as the wild-type. However, mutant Slr2049 (Y132S) was almost the same as the wild-type. In conclusion, our study suggests that we have cloned a novel gene and this gene may play an important role in attachment of the chromophores to the apo-proteins.  相似文献   

14.
During cultivation under storage conditions with BG11 medium containing acetate as a carbon source, Synechocystis sp. PCC6803 accumulated poly(3-hydroxybutyrate) up to 10% (w/w) of the cell dry weight. Our analysis of the complete Synechocystis sp. PCC6803 genome sequence, which had recently become available, revealed that not only the open reading frame slr1830 (which was designated as phaC) but also the open reading frame slr1829, which is located colinear and upstream of phaC, most probably represent a polyhydroxyalkanoic acid (PHA) synthase gene. The open reading frame slr1829 was therefore designated as phaE. The phaE and phaC gene products exhibited striking sequence similarities to the corresponding PHA synthase subunits PhaE and PhaC of Thiocystis violacea, Chromatium vinosum, and Thiocapsa pfennigii. The Synechocystis sp. PCC6803 genes were cloned using PCR and were heterologously expressed in Escherichia coli and in Alcaligenes eutrophus. Only coexpression of phaE and phaC partially restored the ability to accumulate poly(3-hydroxybutyrate) in the PHA-negative mutant A. eutrophus PHB4. These results confirmed our hypothesis that coexpression of the two genes is necessary for the synthesis of a functionally active Synechocystis sp. PCC6803 PHA synthase. PHA granules were detected by electron microscopy in these cells, and the PHA-granule-associated proteins were studied. Western blot analysis of Synechocystis sp. PCC6803 crude cellular extracts and of granule-associated proteins employing antibodies raised against the PHA synthases of A. eutrophus (PhaC) and of C. vinosum (PhaE and PhaC) revealed no immunoreaction. Received: 11 March 1998 / Accepted: 2 June 1998  相似文献   

15.
Analysis of the genome of Synechocystis sp. strain PCC 6803 reveals three open reading frames (slr0851, slr1743, and sll1484) that may code for type 2 NAD(P)H dehydrogenases (NDH-2). The sequence similarity between the translated open reading frames and NDH-2s from other organisms is low, generally not exceeding 30% identity. However, NAD(P)H and flavin adenine dinucleotide binding motifs are conserved in all three putative NDH-2s in Synechocystis sp. strain PCC 6803. The three open reading frames were cloned, and deletion constructs were made for each. An expression construct containing one of the three open reading frames, slr1743, was able to functionally complement an Escherichia coli mutant lacking both NDH-1s and NDH-2s. Therefore, slr0851, slr1743, and sll1484 have been designated ndbA, ndbB, and ndbC, respectively. Strains that lacked one or more of the ndb genes were created in wild-type and photosystem (PS) I-less backgrounds. Deletion of ndb genes led to small changes in photoautotrophic growth rates and respiratory activities. Electron transfer rates into the plastoquinone pool in thylakoids in darkness were consistent with the presence of a small amount of NDH-2 activity in thylakoids. No difference was observed between wild-type and the Ndb-less strains in the banding patterns seen on native gels when stained for either NADH or NADPH dehydrogenase activity, indicating that the Ndb proteins do not accumulate to high levels. A striking phenotype of the PS I-less background strains lacking one or more of the NDH-2s is that they were able to grow at high light intensities that were lethal to the control strain but they retained normal PS II activity. We suggest that the Ndb proteins in Synechocystis sp. strain PCC 6803 are redox sensors and that they play a regulatory role responding to the redox state of the plastoquinone pool.  相似文献   

16.
A 4.4-kb HindIII fragment, encoding an unusual rubredoxin (denoted RubA), a homolog of the Synechocystis sp. PCC 6803 gene slr2034 and Arabidopsis thaliana HCF136, and the psbEFLJ operon, was cloned from the cyanobacterium Synechococcus sp. PCC 7002. Inactivation of the slr2034 homolog produced a mutant with no detectable phenotype and wild-type photosystem (PS) II levels. Inactivation of the rubA gene of Synechococcus sp. PCC 7002 produced a mutant unable to grow photoautotrophically. RubA and PS I electron transport activity were completely absent in the mutant, although PS II activity was approximately 80% of the wild-type level. RubA contains a domain of approximately 50 amino acids with very high similarity to the rubredoxins of anaerobic bacteria and archaea, but it also contains a region of about 50 amino acids that is predicted to form a flexible hinge and a transmembrane alpha-helix at its C terminus. Overproduction of the water-soluble rubredoxin domain in Escherichia coli led to a product with the absorption and EPR spectra of typical rubredoxins. RubA was present in thylakoid but not plasma membranes of cyanobacteria and in chloroplast thylakoids isolated from spinach and Chlamydomonas reinhardtii. Fractionation studies suggest that RubA might transiently associate with PS I monomers, but no evidence for an association with PS I trimers or PS II was observed. PS I levels were significantly lower than in the wild type ( approximately 40%), but trimeric PS I complexes could be isolated from the rubA mutant. These PS I complexes completely lacked the stromal subunits PsaC, PsaD, and PsaE but contained all membrane-intrinsic subunits. The three missing proteins could be detected immunologically in whole cells, but their levels were greatly reduced, and degradation products were also detected. Our results indicate that RubA plays a specific role in the biogenesis of PS I.  相似文献   

17.
Yang Y  Yin C  Li W  Xu X 《Journal of bacteriology》2008,190(5):1554-1560
Unlike Escherichia coli, the cyanobacterium Synechocystis sp. strain PCC 6803 is insensitive to chill (5°C) in the dark but rapidly losses viability when exposed to chill in the light (100 μmol photons m−2 s−1). Preconditioning at a low temperature (15°C) greatly enhances the chill-light tolerance of Synechocystis sp. strain PCC 6803. This phenomenon is called acquired chill-light tolerance (ACLT). Preconditioned wild-type cells maintained a substantially higher level of α-tocopherol after exposure to chill-light stress. Mutants unable to synthesize α-tocopherol, such as slr1736, slr1737, slr0089, and slr0090 mutants, almost completely lost ACLT. When exposed to chill without light, these mutants showed no or a slight difference from the wild type. When complemented, the slr0089 mutant regained its ACLT. Copper-regulated expression of slr0090 from PpetE controlled the level of α-tocopherol and ACLT. We conclude that α-tocopherol is essential for ACLT of Synechocystis sp. strain PCC 6803. The role of α-tocopherol in ACLT may be based largely on a nonantioxidant activity that is not possessed by other tocopherols or pathway intermediates.  相似文献   

18.
Synechocystis sp.PCC 6803是一种良好的研究光合作用的模式生物,其中slr1122编码一个250个氨基酸的未知蛋白。据报道Slr1122可能与杂合传感激酶(hybrid sensory kinase)Sll1672(Hik12)相互作用,本研究通过复合物实验证实了Slr1122与Sll1672确实存在相互作用。利用32P标记证明,在加入Slr1122后Hik12的磷酸化受到了明显的影响,推测其可能参与该双组分系统的调控。通过同源双交换,用卡那霉素抗性基因替换slr1122,将slr1122从Synechocystis sp.PCC 6803中敲除,构建了slr1122的缺失体Δslr1122。研究发现在Δslr1122中,编码PSⅡ中核心蛋白D1亚基的slr1181(psbAI)的转录水平明显降低,使PSⅡ光合作用受到影响,导致Δslr1122的生长速率低于野生型(WT)。同时slr1122的缺失使得蓝细菌对光的敏感性增强,在弱光条件下,Δslr1122对光能的利用效率高于WT,其生长速率也较WT高,但与此相反,Δslr1122对强光的耐受力及生长速率则不及WT。Δslr1122体内的藻胆蛋白含量与色素含量均降低,尤其是类胡萝卜素,RT-PCR的结果也显示合成类胡萝卜素过程中的5个关键酶转录水平均下降。这可能是Δslr1122对氧化胁迫变得敏感的原因之一。总之,Slr1122影响杂合传感激酶Hik12磷酸化并参与调节Synechocystis sp.PCC 6803的光合色素合成。  相似文献   

19.
Tocopherols are lipophilic antioxidants synthesized exclusively by photosynthetic organisms and collectively constitute vitamin E, an essential nutrient for both humans and animals. Tocopherol cyclase (TC) catalyzes the conversion of various phytyl quinol pathway intermediates to their corresponding tocopherols through the formation of the chromanol ring. Herein, the molecular and biochemical characterization of TCs from Arabidopsis (VTE1 [VITAMIN E 1]), Zea mays (SXD1 [Sucrose Export Deficient 1]) and Synechocystis sp. PCC6803 (slr1737) are described. Mutations in the VTE1, SXD1, or slr1737 genes resulted in both tocopherol deficiency and the accumulation of 2,3-dimethyl-6-phytyl-1,4-benzoquinone (DMPBQ), a TC substrate. Recombinant SXD1 and VTE1 proteins are able to convert DMPBQ to gamma-tocopherol in vitro. In addition, expression of maize SXD1 in a Synechocystis sp. PCC6803 slr1737 knockout mutant restored tocopherol synthesis, indicating that TC activity is evolutionarily conserved between plants and cyanobacteria. Sequence analysis identified a highly conserved 30-amino acid C-terminal domain in plant TCs that is absent from cyanobacterial orthologs. vte1-2 causes a truncation within this C-terminal domain, and the resulting mutant phenotype suggests that this domain is necessary for TC activity in plants. The defective export of Suc in sxd1 suggests that in addition to presumed antioxidant activities, tocopherols or tocopherol breakdown products also function as signal transduction molecules, or, alternatively, the DMPBQ that accumulates in sxd1 disrupts signaling required for efficient Suc export in maize.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号