首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Branching morphogenesis is central to epithelial organogenesis. In the developing kidney, the epithelial ureteric bud invades the metanephric mesenchyme, which directs the ureteric bud to undergo repeated branching. A soluble factor(s) in the conditioned medium of a metanephric mesenchyme cell line is essential for multiple branching morphogenesis of the isolated ureteric bud. The identity of this factor had proved elusive, but it appeared distinct from factors such as HGF and EGF receptor ligands that have been previously implicated in branching morphogenesis of mature epithelial cell lines. Using sequential column chromatography, we have now purified to apparent homogeneity an 18 kDa protein, pleiotrophin, from the conditioned medium of a metanephric mesenchyme cell line that induces isolated ureteric bud branching morphogenesis in the presence of glial cell-derived neurotrophic factor. Pleiotrophin alone was also found to induce the formation of branching tubules in an immortalized ureteric bud cell line cultured three-dimensionally in an extracellular matrix gel. Consistent with an important role in ureteric bud morphogenesis during kidney development, pleiotrophin was found to localize to the basement membrane of the developing ureteric bud in the embryonic kidney. We suggest that pleiotrophin could act as a key mesenchymally derived factor regulating branching morphogenesis of the ureteric bud and perhaps other embryonic epithelial structures.  相似文献   

2.
The role of GDNF in patterning the excretory system   总被引:5,自引:0,他引:5  
Mesenchymal-epithelial interactions are an important source of information for pattern formation during organogenesis. In the developing excretory system, one of the secreted mesenchymal factors thought to play a critical role in patterning the growth and branching of the epithelial ureteric bud is GDNF. We have tested the requirement for GDNF as a paracrine chemoattractive factor by altering its site of expression during excretory system development. Normally, GDNF is secreted by the metanephric mesenchyme and acts via receptors on the Wolffian duct and ureteric bud epithelium. Misexpression of GDNF in the Wolffian duct and ureteric buds resulted in formation of multiple, ectopic buds, which branched independently of the metanephric mesenchyme. This confirmed the ability of GDNF to induce ureter outgrowth and epithelial branching in vivo. However, in mutant mice lacking endogenous GDNF, kidney development was rescued to a substantial degree by GDNF supplied only by the Wolffian duct and ureteric bud. These results indicate that mesenchymal GDNF is not required as a chemoattractive factor to pattern the growth of the ureteric bud within the developing kidney, and that any positional information provided by the mesenchymal expression of GDNF may provide for renal branching morphogenesis is redundant with other signals.  相似文献   

3.
During kidney development, the growth and development of the stromal and nephrogenic mesenchyme cell populations and the ureteric bud epithelium is tightly coupled through intricate reciprocal signaling mechanisms between these three tissue compartments. Midkine, a target gene activated by retinoid signaling in the metanephros, encodes a secreted polypeptide with mitogenic and anti-apoptotic activities in a wide variety of cell types. Using immmunohistochemical methods we demonstrated that Midkine is found in the uninduced mesenchyme at the earliest stages of metanephric kidney development and only subsequently concentrated in the ureteric bud epithelium and basement membrane. The biological effects of purified recombinant Midkine were analyzed in metanephric organ culture experiments carried out in serum-free defined media. These studies revealed that Midkine selectively promoted the overgrowth of the Pax-2 and N-CAM positive nephrogenic mesenchymal cells, failed to stimulate expansion of the stromal compartment and suppressed branching morphogenesis of the ureteric bud. Midkine suppressed apoptosis and stimulated cellular proliferation of the nephrogenic mesenchymal cells, and was capable of maintaining the viability of isolated mesenchymes cultured in the absence of the ureteric bud. These results suggest that Midkine may regulate the balance of epithelial and stromal progenitor cell populations of the metanephric mesenchyme during renal organogenesis.Key Words: growth factor, proliferation, apoptosis, ureteric bud, branching morphogenesis, epithelial progenitor, development, signaling  相似文献   

4.
《Organogenesis》2013,9(1):14-21
During kidney development, the growth and development of the stromal and nephrogenic mesenchyme cell populations and the ureteric bud epithelium is tightly coupled through intricate reciprocal signaling mechanisms between these three tissue compartments. Midkine, a target gene activated by retinoid signaling in the metanephros, encodes a secreted polypeptide with mitogenic and anti-apoptotic activities in a wide variety of cell types. Using immmunohistochemical methods we demonstrated that Midkine is found in the uninduced mesenchyme at the earliest stages of metanephric kidney development and only subsequently concentrated in the ureteric bud epithelium and basement membrane. The biological effects of purified recombinant Midkine were analyzed in metanephric organ culture experiments carried out in serum-free defined media. These studies revealed that Midkine selectively promoted the overgrowth of the Pax-2 and N-CAM positive nephrogenic mesenchymal cells, failed to stimulate expansion of the stromal compartment and suppressed branching morphogenesis of the ureteric bud. Midkine suppressed apoptosis and stimulated cellular proliferation of the nephrogenic mesenchymal cells, and was capable of maintaining the viability of isolated mesenchymes cultured in the absence of the ureteric bud. These results suggest that Midkine may regulate the balance of epithelial and stromal progenitor cell populations of the metanephric mesenchyme during renal organogenesis.  相似文献   

5.
The outgrowth of the ureteric bud from the posterior nephric duct epithelium and the subsequent invasion of the bud into the metanephric mesenchyme initiate the process of metanephric, or adult kidney, development. The receptor tyrosine kinase RET and glial cell-derived neurotrophic factor (GDNF) form a signaling complex that is essential for ureteric bud growth and branching morphogenesis of the ureteric bud epithelium. We demonstrate that Pax2 expression in the metanephric mesenchyme is independent of induction by the ureteric bud. Pax2 mutants are deficient in ureteric bud outgrowth and do not express GDNF in the uninduced metanephric mesenchyme. Furthermore, Pax2 mutant mesenchyme is unresponsive to induction by wild-type heterologous inducers. In normal embryos, GDNF is sufficient to induce ectopic ureter buds in the posterior nephric duct, a process inhibited by bone morphogenetic protein 4. However, GDNF replacement in organ culture is not sufficient to stimulate ureteric bud outgrowth from Pax2 mutant nephric ducts, indicating additional defects in the nephric duct epithelium of Pax2 mutants. Pax2 can activate expression of GDNF in cell lines derived from embryonic metanephroi. Furthermore, Pax2 protein can bind to upstream regulatory elements within the GDNF promoter region and can transactivate expression of reporter genes. Thus, activation of GDNF by Pax2 coordinates the position and outgrowth of the ureteric bud such that kidney development can begin.  相似文献   

6.
Antagonists act to restrict and negatively modulate the activity of secreted signals during progression of embryogenesis. In mouse embryos lacking the extra-cellular BMP antagonist gremlin 1 (Grem1), metanephric development is disrupted at the stage of initiating ureteric bud outgrowth. Treatment of mutant kidney rudiments in culture with recombinant gremlin 1 protein induces additional epithelial buds and restores outgrowth and branching. All epithelial buds express Wnt11, and Gdnf is significantly upregulated in the surrounding mesenchyme, indicating that epithelial-mesenchymal (e-m) feedback signalling is restored. In the wild type, Bmp4 is expressed by the mesenchyme enveloping the Wolffian duct and ureteric bud and Grem1 is upregulated in the mesenchyme around the nascent ureteric bud prior to initiation of its outgrowth. In agreement, BMP activity is reduced locally as revealed by lower levels of nuclear pSMAD protein in the mesenchyme. By contrast, in Grem1-deficient kidney rudiments, pSMAD proteins are detected in many cell nuclei in the metanephric mesenchyme, indicative of excessive BMP signal transduction. Indeed, genetic lowering of BMP4 levels in Grem1-deficient mouse embryos completely restores ureteric bud outgrowth and branching morphogenesis. The reduction of BMP4 levels in Grem1 mutant embryos enables normal progression of renal development and restores adult kidney morphology and functions. This study establishes that initiation of metanephric kidney development requires the reduction of BMP4 activity by the antagonist gremlin 1 in the mesenchyme, which in turn enables ureteric bud outgrowth and establishment of autoregulatory GDNF/WNT11 feedback signalling.  相似文献   

7.
To determine the importance of fibroblast growth factor receptors (fgfrs) 1 and 2 in the metanephric mesenchyme, we generated conditional knockout mice (fgfr(Mes-/-)). Fgfr1(Mes-/-) and fgfr2(Mes-/-) mice develop normal-appearing kidneys. Deletion of both receptors (fgfr1/2(Mes-/-)) results in renal aplasia. Fgfr1/2(Mes-/-) mice develop a ureteric bud (and occasionally an ectopic bud) that does not elongate or branch, and the mice do not develop an obvious metanephric mesenchyme. By in situ hybridization, regions of mutant mesenchyme near the ureteric bud(s) express Eya1 and Six1, but not Six2, Sall1, or Pax2, while the ureteric bud expresses Ret and Pax2 normally. Abnormally high rates of apoptosis and relatively low rates of proliferation are present in mutant mesenchyme dorsal to the mutant ureteric bud at embryonic day (E) 10.5, while mutant ureteric bud tissues undergo high rates of apoptosis by E11.5. Thus, fgfr1 and fgfr2 together are critical for normal formation of metanephric mesenchyme. While the ureteric bud(s) initiates, it does not elongate or branch infgfr1/2(Mes-/-) mice. In metanephric mesenchymal rudiments, fgfr1 and fgfr2 appear to function downstream of Eya1 and Six1, but upstream of Six2, Sall1, and Pax2. Finally, this is the first example of renal aplasia in a conditional knockout model.  相似文献   

8.
GDNF/Ret signaling and the development of the kidney   总被引:6,自引:0,他引:6  
Signaling by GDNF through the Ret receptor is required for normal growth of the ureteric bud during kidney development. However, the precise role of GDNF/Ret signaling in renal branching morphogenesis and the specific responses of ureteric bud cells to GDNF remain unclear. Recent studies have provided new insight into these issues. The localized expression of GDNF by the metanephric mesenchyme, together with several types of negative regulation, is important to elicit and correctly position the initial budding event from the Wolffian duct. GDNF also promotes the continued branching of the ureteric bud. However, it does not provide the positional information required to specify the pattern of ureteric bud growth and branching, as its site of synthesis can be drastically altered with minimal effects on kidney development. Cells that lack Ret are unable to contribute to the tip of the ureteric bud, apparently because GDNF-driven proliferation is required for the formation and growth of this specialized epithelial domain.  相似文献   

9.
Most studies on kidney development have considered the interaction of the metanephric mesenchyme and the ureteric bud to be the major inductive event that maintains tubular differentiation and branching morphogenesis. The mesenchyme produces Gdnf, which stimulates branching, and the ureteric bud stimulates continued growth of the mesenchyme and differentiation of nephrons from the induced mesenchyme. Null mutation of the Wt1 gene eliminates outgrowth of the ureteric bud, but Gdnf has been identified as a target of Pax2, but not of Wt1. Using a novel system for microinjecting and electroporating plasmid expression constructs into murine organ cultures, it has been demonstrated that Vegfa expression in the mesenchyme is regulated by Wt1. Previous studies had identified a population of Flk1-expressing cells in the periphery of the induced mesenchyme, and adjacent to the stalk of the ureteric bud, and that Vegfa was able to stimulate growth of kidneys in organ culture. Here it is demonstrated that signaling through Flk1 is required to maintain expression of Pax2 in the mesenchyme of the early kidney, and for Pax2 to stimulate expression of Gdnf. However, once Gdnf stimulates branching of the ureteric bud, the Flk1-dependent angioblast signal is no longer required to maintain branching morphogenesis and induction of nephrons. Thus, this work demonstrates the presence of a second set of inductive events, involving the mesenchymal and angioblast populations, whereby Wt1-stimulated expression of Vegfa elicits an as-yet-unidentified signal from the angioblasts, which is required to stimulate the expression of Pax2 and Gdnf, which in turn elicits an inductive signal from the ureteric bud.  相似文献   

10.
Hoxa11 and Hoxd11 are functionally redundant during kidney development. Mice with homozygous null mutation of either gene have normal kidneys, but double mutants have rudimentary, or in extreme cases, absent kidneys. We have examined the mechanism for renal growth failure in this mouse model and find defects in ureteric bud branching morphogenesis. The ureteric buds are either unbranched or have an atypical pattern characterized by lack of terminal branches in the midventral renal cortex. The mutant embryos show that Hoxa11 and Hoxd11 control development of a dorsoventral renal axis. By immunohistochemical analysis, Hoxa11 expression is restricted to the early metanephric mesenchyme, which induces ureteric bud formation and branching. It is not found in the ureteric bud. This suggests that the branching defect had been caused by failure of mesenchyme to epithelium signaling. In situ hybridizations with Wnt7b, a marker of the metanephric kidney, show that the branching defect was not simply the result of homeotic transformation of metanephros to mesonephros. Absent Bf2 and Gdnf expression in the midventral mesenchyme, findings that could by themselves account for branching defects, shows that Hoxa11 and Hoxd11 are necessary for normal gene expression in the ventral mesenchyme. Attenuation of normal gene expression along with the absence of a detectable proliferative or apoptotic change in the mutants show that one function of Hoxa11 and Hoxd11 in the developing renal mesenchyme is to regulate differentiation necessary for mesenchymal-epithelial reciprocal inductive interactions.  相似文献   

11.
Reciprocal cell-cell interactions between the ureteric epithelium and the metanephric mesenchyme are needed to drive growth and differentiation of the embryonic kidney to completion. Branching morphogenesis of the Wolffian duct derived ureteric bud is integral in the generation of ureteric tips and the elaboration of the collecting duct system. Wnt11, a member of the Wnt superfamily of secreted glycoproteins, which have important regulatory functions during vertebrate embryonic development, is specifically expressed in the tips of the branching ureteric epithelium. In this work, we explore the role of Wnt11 in ureteric branching and use a targeted mutation of the Wnt11 locus as an entrance point into investigating the genetic control of collecting duct morphogenesis. Mutation of the Wnt11 gene results in ureteric branching morphogenesis defects and consequent kidney hypoplasia in newborn mice. Wnt11 functions, in part, by maintaining normal expression levels of the gene encoding glial cell-derived neurotrophic factor (Gdnf). Gdnf encodes a mesenchymally produced ligand for the Ret tyrosine kinase receptor that is crucial for normal ureteric branching. Conversely, Wnt11 expression is reduced in the absence of Ret/Gdnf signaling. Consistent with the idea that reciprocal interaction between Wnt11 and Ret/Gdnf regulates the branching process, Wnt11 and Ret mutations synergistically interact in ureteric branching morphogenesis. Based on these observations, we conclude that Wnt11 and Ret/Gdnf cooperate in a positive autoregulatory feedback loop to coordinate ureteric branching by maintaining an appropriate balance of Wnt11-expressing ureteric epithelium and Gdnf-expressing mesenchyme to ensure continued metanephric development.  相似文献   

12.
Organ rudiments with their epithelial bud and adjacent mesenchyme look much the same at their initial stage of differentiation. The subsequent branching of the epithelial anlagen determines the final pattern of the organs, but the mesenchyme provides essential signals for epithelial differentiation. Glial cell line derived neurotrophic factor (GDNF) has recently been shown to regulate ureteric branching morphogenesis and is thereby the first defined signalling molecule in the embryonic metanephric kidney. GDNF is expressed by the mesenchyme, binds to the tip of the ureteric bud and functions in both bud induction and bud orientation. The active receptor complex for GDNF includes the receptor tyrosine kinase Ret and a novel class of glycosylphosphatidylinositol-linked receptors, called GDNF family receptor αs.  相似文献   

13.
14.
15.
《The Journal of cell biology》1995,131(6):1573-1586
Hepatocyte growth factor/scatter factor (HGF/SF) is the mesenchymal ligand of the epithelial tyrosine kinase receptor c-Met. In vitro, HGF/SF has morphogenic properties, e.g., induces kidney epithelial cells to form branching ducts in collagen gels. Mutation of the HGF/SF gene in mice results in embryonic lethality due to severe liver and placenta defects. Here, we have evaluated the morphogenic activity of HGF/SF with a large variety of epithelial cells grown in three- dimensional collagen matrices. We found that HGF/SF induces SW 1222 colon carcinoma cells to form crypt-like structures. In these organoids, cells exhibit apical/basolateral polarity and build a well- developed brush border towards the lumen. Capan 2 pancreas carcinoma cells, upon addition of HGF/SF, develop large hollow spheroids lined with a tight layer of polarized cells. Collagen inside the cysts is digested and the cells show features of pancreatic ducts. HGF/SF induces EpH4 mammary epithelial cells to form long branches with end- buds that resemble developing mammary ducts. pRNS-1-1 prostate epithelial cells in the presence of HGF/SF develop long ducts with distal branching as found in the prostate. Finally, HGF/SF simulates alveolar differentiation in LX-1 lung carcinoma cells. Expression of transfected HGF/SF cDNA in LX-1 lung carcinoma and EpH4 mammary epithelial cells induce morphogenesis in an autocrine manner. In the cell lines tested, HGF/SF activated the Met receptor by phosphorylation of tyrosine residues. These data show that HGF/SF induces intrinsic, tissue-specific morphogenic activities in a wide variety of epithelial cells. Apparently, HGF/SF triggers respective endogenous programs and is thus an inductive, not an instructive, mesenchymal effector for epithelial morphogenesis.  相似文献   

16.
The development of the permanent mammalian kidney, or metanephros, depends on mesenchymal-epithelial interactions, leading to branching morphogenesis of the ureteric bud that forms the collecting ducts and to conversion of the metanephric mesenchyme into epithelium that forms the nephrons. Rat metanephric organ culture in which these interactions are maintained is a valuable in vitro model system for investigating normal and abnormal renal organogenesis. Methods were designed to evaluate either the capacity of the ureteric bud to branch or that of the mesenchyme to form nephrons. Both are based on specific staining of the ureteric bud and the glomeruli with lectins. Using this approach, we have shown that retinoids are potent stimulating factors of nephrogenesis, acting through an increase in the branching capacity of the ureteric bud. On the other hand, several drugs such as gentamicin and cyclosporin A were found to reduce the number of nephrons formed in vitro. While gentamicin affects the early branching pattern of the ureteric bud, cyclosporin may affect the capacity of the mesencyme to convert into epithelium. This methodology therefore appears a potentially useful tool for toxicological studies new drugs.  相似文献   

17.
The interaction of hepatocyte growth factor (HGF) with c-Met has been implicated in morphogenesis of the kidney, lung, mammary gland, liver, placenta, and limb bud. HGF is secreted as an inactive zymogen and must be cleaved by a serine protease to initiate Met signaling. We show here that a serine protease specific for HGF, HGF activator (HGFA), is expressed and activated by the ureteric bud of the developing kidney in vivo and in vitro. Inhibition of HGFA activity with serine protease inhibitors reduced ureteric bud branching and inhibited glomerulogenesis and nephrogenesis. Activated HGF rescued developing kidneys from the effects of inhibitors. HGFA was localized around the tips of the ureteric bud in developing kidneys, while HGF was expressed diffusely throughout the mesenchyme. These data show that expression of HGF is not sufficient for development, but that its activation is also required. The localization of HGFA to the ureteric bud and the mesenchyme immediately adjacent to it suggests that HGFA creates a gradient of HGF activity in the developing kidney. The creation and shape of gradients of activated HGF by the localized secretion of HGF activators could play an important role in pattern formation by HGF responsive tissues.  相似文献   

18.
Clonal cell lines representing different developmental stages of the metanephric mesenchyme were made from transgenic mice with the Simian Virus 40 T-antigen (SV40 Tag) gene driven by the Hoxa 11 promoter. The resulting mK3 cell line represented early metanephric mesenchyme, prior to induction by the ureteric bud. These cells showed a spindle-shaped, fibroblast morphology. They expressed genes characteristic of early mesenchyme, including Hoxa 11, Hoxd 11, collagen I, and vimentin. Moreover, the mK3 cells displayed early metanephric mesenchyme biological function. In organ co-culture experiments they were able to induce growth and branching of the ureteric bud. Another cell line, mK4, represented later, induced metanephric mesenchyme undergoing epithelial conversion. These cells were more polygonal, or epithelial in shape, and expressed genes diagnostic of late mesenchyme, including Pax-2, Pax-8, Wnt-4, Cadherin-6, Collagen IV, and LFB3. To better define the gene expression patterns of kidney metanephric mesenchyme cells at these two stages of development, RNAs from the mK3 and mK4 cells were hybridized to Affymetrix GeneChip probe arrays. Over 4000 expressed genes were identified and thereby implicated in kidney formation. Comparison of the mK3 and mK4 gene expression profiles revealed 121 genes showing greater than a ten-fold difference in expression level. Several are known to be expressed during metanephric mesenchyme differentiation, but most had not been previously associated with this process. In situ hybridizations were used to confirm that selected novel genes were expressed in the developing kidney.  相似文献   

19.
Signaling by the ureteric bud epithelium is essential for survival, proliferation and differentiation of the metanephric mesenchyme during kidney development. Most studies that have addressed ureteric signaling have focused on the proximal, branching, ureteric epithelium. We demonstrate that sonic hedgehog is expressed in the ureteric epithelium of the distal, non-branching medullary collecting ducts and continues into the epithelium of the ureter -- the urinary outflow tract that connects the kidney with the bladder. Upregulation of patched 1, the sonic hedgehog receptor and a downstream target gene of the signaling pathway in the mesenchyme surrounding the distal collecting ducts and the ureter suggests that sonic hedgehog acts as a paracrine signal. In vivo and in vitro analyses demonstrate that sonic hedgehog promotes mesenchymal cell proliferation, regulates the timing of differentiation of smooth muscle progenitor cells, and sets the pattern of mesenchymal differentiation through its dose-dependent inhibition of smooth muscle formation. In addition, we also show that bone morphogenetic protein 4 is a downstream target gene of sonic hedgehog signaling in kidney stroma and ureteral mesenchyme, but does not mediate the effects of sonic hedgehog in the control of mesenchymal proliferation.  相似文献   

20.
During kidney development and in response to inductive signals, the metanephric mesenchyme aggregates, becomes polarized, and generates much of the epithelia of the nephron. As such, the metanephric mesenchyme is a renal progenitor cell population that must be replenished as epithelial derivatives are continuously generated. The molecular mechanisms that maintain the undifferentiated state of the metanephric mesenchymal precursor cells have not yet been identified. In this paper, we report that functional inactivation of the homeobox gene Six2 results in premature and ectopic differentiation of mesenchymal cells into epithelia and depletion of the progenitor cell population within the metanephric mesenchyme. Failure to renew the mesenchymal cells results in severe renal hypoplasia. Gain of Six2 function in cortical metanephric mesenchymal cells was sufficient to prevent their epithelial differentiation in an organ culture assay. We propose that in the developing kidney, Six2 activity is required for maintaining the mesenchymal progenitor population in an undifferentiated state by opposing the inductive signals emanating from the ureteric bud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号