首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stand dynamics and self-thinning were analyzed in relation to the dynamics of above-ground biomass in natural Abies sachalinensis stands growing on sand dunes in northern Hokkaido, Japan. This was done in order to examine wave-type regeneration in the stands. Fifty-two plots were established in almost pure Abies stands that ranged from saplings to the mature and collapsing growth stages. Above-ground biomass and tree height reached asymptotic levels prior to the collapsing phase, unlike wave-regeneration Abies stands in central Japan and North America. Stand density was high in the young growth stages, but the self-thinning rate, that is, the density decrease per biomass growth in the study stands was greater than in wave-regeneration stands in central Japan, as indicated by a large self-thinning exponent (–1.26 by reduced major axis regression). The range of tree height distribution was very narrow, and the stands vertical structure was typically single-layered. The slenderness ratio of trees was large, except in young stands. In mature and collapsing stands, advanced seedling density increased markedly. These stand and tree characteristics were considered to be correlated with the wave-type regeneration in the study stands, and it is assumed that prevailing winds affect tree mortality.  相似文献   

2.
To evaluate the effects of canopy gaps and forest floor microsites (soil, fallen logs, root-mounds, buttresses and stumps) on regeneration of subalpine forests, the gap regeneration and seedling occurrence of conifers (Abies mariesii, Abies veitchii, Picea jezoensis var. hondoensis and Tsuga diversifolia) were studied in two stands of a subalpine old-growth forest, central Japan. The percentage of gap area to total surveyed area was 11.2–11.3% in the stands. Gap regeneration was not common for P. jezoensis var. hondoensis and T. diversifolia. In contrast, gap regeneration by advanced regeneration was relatively common for Abies. Seedling occurrence of P. jezoensis var. hondoensis and T. diversifolia was restricted on elevated surfaces such as stumps and root-mounds, while Abies seedlings could occur on soil as well as on elevated surfaces. Rotten stumps were the most favorable microsites for conifer seedling occurrence, which covered small area in the forest floor. Although canopy gaps were not always favorable for seedling occurrence, all conifer seedlings were larger under canopy gaps than under closed canopy. Canopy gaps and forest floor microsites clearly affected seedling occurrence and growth of conifers. This suggests that regeneration of conifers is related to the difference of growth advantage under canopy gaps and favorable microsites for seedling occurrence.  相似文献   

3.
The regeneration process in a mixed forest was investigated in Nopporo National Forest, Hokkaido. The analysis of age structure in an 80 m×80 m plot revealed that almost all of the species regenerated intermittently. In eleven gaps observed in the plot, the regeneration of a boreal conifer (Abies sachalinensis) was seldom observed. Temperate hardwoods, even climax species (Acer mono, Quercus mongolica var. grosseserrata, Tilia japonica), regenerated vigorously in the gaps. The age structure in ten additional plots scattered all over the forest showed that Abies tended to regenerate synchronously. From previous records, regeneration of Abies could be ascribed to catastrophic storms causing serious windfalls. On the other hand, regeneration of the temperate hardwoods was not synchronous but independent in different places within the forest. They could regenerate not only after those catastrophic storms but also after less severe disturbances which caused the death and fall of one or several trees. It is concluded that the coexistence of boreal coniferous species and temperate deciduous broad-leaved species in mixed forests may be maintained not only by the difference in habitat but also by the balance between the less frequent large disturbances, and the more frequent smaller ones.  相似文献   

4.
陶琼  缪宁  杨玉婷  李茂萍  薛盼盼  岳喜明 《生态学报》2023,43(10):4109-4120
岷江冷杉(Abies fargesii var.faxoniana)的天然更新是川西亚高山地区天然次生林生态恢复的关键。为揭示川西亚高山4种典型天然林林型(杜鹃-岷江冷杉林、箭竹-岷江冷杉林、红桦-岷江冷杉林和红桦林)中岷江冷杉的更新结构和其幼龄植株的生存过程,基于4块1 hm2样地的调查,通过单因素方差分析和多重比较对比不同林型中岷江冷杉的更新结构和更新质量;通过对数回归建立了岷江冷杉幼龄植株高度与年龄间的关系;通过建立幼龄植株的静态生命表、绘制存活曲线和计算数量动态指数分析其生存特征和存活瓶颈期。结果表明:4种林型中岷江冷杉的更新质量和幼龄植株存活状态依次为杜鹃-岷江冷杉林>红桦林>红桦-岷江冷杉林>箭竹-岷江冷杉林。各林型中岷江冷杉幼龄植株的死亡率与相邻龄级间的个体数量动态(Vn指数)随龄级增加的波动大。综合死亡率与Vn指数的龄级差异,杜鹃-岷江冷杉林和箭竹-岷江冷杉林中幼龄植株存活的年龄瓶颈期分别为第21—25年(树高0.66—1.04 m)和第11—15年(树高0.46—0.73 m);红桦-...  相似文献   

5.
Although some studies have demonstrated temporal patterns of changes in spatial structure during forest development, few studies have examined the variability of spatial structure between stands at the same developmental stage. In the present study, we investigated variations of spatial structure between sites at the same developmental stage for three developmental stages (sapling, intermediate, and mature) in a wave-regenerated Abies veitchii and Abies mariesii forest. The spatial structure of tree heights in each plot was analyzed by using the mark correlation and mark variogram methods, and the pattern of tree locations in each plot was analyzed by using the pair-correlation function. Analysis of the spatial height structure indicated that a size hierarchy between neighboring trees (a local size hierarchy) generally did not develop at the sapling stage. A local size hierarchy developed in most plots during the two later stages. There was no obvious difference among developmental stages in the spatial pattern of tree locations because of the large variation within each stage. Our results demonstrate that large variation in spatial structure existed between sites in the wave-regenerated Abies forest, even at the same developmental stage. The variability in spatial structure confirmed the importance of stochastic factors in forest dynamics.  相似文献   

6.
Gap characteristics and gap regeneration were studied in three old-growth stands of subalpine coniferous forests in the northern Yatsugatake and the northern Akaishi mountains, central Japan. With the results of the present study and those of a previous study conducted in another locality, general features of gap characteristics and gap regeneration behavior of major tree species in subalpine coniferous forests of central Japan were summarized and discussed. Of the total 237 gaps investigated in the 14.48 ha of forested area, the percentage gap area to surveyed area, gap density and mean gap size were 7.3%, 17.2 ha−1, and 43.3 m2, respectively. The gap size distributions were similar among stands and showed a strong positive skewness with a few large and many small gaps; gaps <40m2 were most frequent and those >200 m2 were rare. Gaps due to the death of multiple canopy trees comprised 44.7% of the total ones. Canopy trees died in various states; standing dead (42.6%) or trunk broken (43.7%) were common and uprooted (12.2%) was an uncommon type of death of canopy trees. These figures indicate that general features of gap characteristics in this forest type are the low proportion of gap area and the high proportions of small gap size and multiple-tree gap formation. In general, shade-tolerantAbies frequently, andTsuga, infrequently, regenerate in gaps from advance regenerations recruited before gap formation, whilePicea and shade-intolerantBetula possibly regenerate in gaps from new individuals recruited after gap formation. Gap successors of conifers occurred in a wide range of gap size and did not show the clear preference to species specific gap size. In old-growth stands without large-scale disturbance (≥0.1 ha in area) of subalpine coniferous forests of central Japan, major tree species may coexist with their different gap-regeneration behaviors and, probably, different life history traits.  相似文献   

7.
以呼伦贝尔沙地樟子松地理分布南缘天然林为研究对象,采用Hegyi竞争指数与点格局等分析方法,研究了沙地樟子松天然林的种群结构、种内竞争、空间格局及幼树更新等特征。结果表明:1)所调查区域天然沙地樟子松纯林处于中幼龄阶段,属增长型种群;2)其竞争指数与对象木胸径服从幂函数关系CI=242.24D~(-1.12)(R~2=0.91);3)幼树在小尺度上呈聚集分布,中树与大树在中大尺度上呈随机分布;幼树与中树在小尺度上呈正相关性,中树与大树在小尺度呈负相关性;4)竞争指数与更新幼树和存活更新幼树的密度均呈显著正相关性。在林分管理中需要充分考虑林木竞争、空间格局以及种群更新的关系,本研究可为沙地樟子松天然林的经营管理与保护提供重要的科学依据。  相似文献   

8.
采用野外调查、样品采集和统计分析等相结合的方法,对小兴安岭天然红松混交林3种不同林型(椴树红松混交林(TP)、枫桦红松混交林(BP)、云冷杉红松混交林(PAP))的林隙及其邻近郁闭林分的土壤特征因子和树木更新的相关性进行了研究,旨在阐明林隙土壤特征因子对树木更新的影响,从而为小兴安岭天然红松混交林植被更新、退化生态系统的恢复和可持续经营提供基础数据和实践参考。结果表明:郁闭林分土壤有机质、全氮质量分数显著高于3种不同林型的林隙。有效磷和速效钾含量在BP内与其他林型之间差异显著。3种林型林隙内p H值均略高于其郁闭林分,但与其差异均不显著。3种林型林隙内更新总密度、幼树更新密度与郁闭林分差异显著(P0.05),PAP林隙中更新总密度和幼树更新密度最高。BP林隙面积与更新密度相关不显著,乔木幼苗、幼树更新密度与有机质(r=-0.400,r=-0.475)、全氮均呈显著负相关(r=-0.519,r=-0.603)。TP林隙内全氮与乔木幼苗更新密度呈正相关(r=0.092),而与乔木幼树更新密度呈显著负相关(r=-0.585)。PAP林隙内全氮与乔木幼苗、幼树更新密度均呈负相关。郁闭林分幼苗更新密度分别与有机质、全氮、速效钾、p H值、脲酶和蛋白酶呈负相关。主成分分析表明,全氮是影响林隙和郁闭林分树木更新的关键因素。  相似文献   

9.
Size and age structure, spatial analysis, and disturbance history were used to analyse the population structures and regeneration patterns of 8 conifer stands in the central western Cascade Range, Oregon, USA. Variation in forest structure reflected the effects of frequent (20–50 yr) low-intensity fires and treefalls, infrequent (100–200 yr) localised, intense fires, and extensive fires that resulted in stand replacement (every ca 400 yr?).The amount of canopy removed and the size of openings formed by fires and treefalls were important determinants of subsequent forest establishment. Single or several species stands of Pseudotsuga and/or Abies procera, or mixed species stands of Pseudotsuga, Abies procera, Tsuga heterophylla and Abies amabilis established in openings where intense fires had removed most of the canopy trees over several ha. Multi-tiered and multi-aged stands, often containing 400–500 yr-old Pseudotsuga and variously-sized more or less even-aged patches of younger shade tolerant Tsuga heterophylla and/or Abies amabilis, occurred where lower-intensity fires did not kill all overstorey trees or where treefalls occurred after the initial fire.Current regeneration processes are influenced by overstorey composition, the availability and size of canopy openings, and the availability of substrates suitable for regeneration. Tsuga heterophylla and Abies amabilis established under Pseudotsuga menziesii and Abies procera canopies and in small canopy openings (<400 m2) created by windfalls, but rarely under Tsuga. Down logs and stumps were favoured establishment sites for Tsuga.The disturbance regime of fires of low-to moderate-intensity, windfalls, and occasional fires that result in extensive stand replacement contrasts with the pattern of infrequent, catastrophic disturbances proposed for other areas of the Pacific Northwest. Although fires at stand establishment commonly determine much of the composition, structure, and subsequent stand development, canopy replacement by shade tolerant species occurs as the different life histories of the species are expressed in response to various disturbances differing in intensity and frequency. Such a non-equilibrium view of vegetation change is consistent with many other fire-dominated forests of the western United States.  相似文献   

10.
In the subalpine areas of the snowy regions of Japan (the Japan Sea side), there are some mountains with no or very small stands ofAbies mariesii, although this species dominates the subalpine coniferous forests of the region. In order to discuss the cause and process of this phenomenon, present horizontal and vertical ranges, as well as physiographic conditions, of theA. mariesii forest were examined in detail on the mountains in the Tohoku District. Sites in the subalpine zone were classified into two types: ‘azonal sites’ which should be excluded from the habitat ofA. mariesii because of their edaphic or small-scale climatic properties, and ‘zonal sites’. Mountains with vast less-inclined zonal sites generally had well developed stands ofA. mariesii forest. On the mountains with only small, solitary stands ofA. mariesii, the distribution was limited to flats or slightly inclined slopes at relatively low altitudes. These less-inclined zonal sites were regarded as an important habitat for theA. mariesii forest in the Hypsithermal period and the extent of these sites controls the extent of the stands in that period and the success of the subsequent range expansion of the forest.  相似文献   

11.
Aim The spruce–moss forest is the main forest ecosystem of the North American boreal forest. We used stand structure and fire data to examine the long‐term development and growth of the spruce–moss ecosystem. We evaluate the stability of the forest with time and the conditions needed for the continuing regeneration, growth and re‐establishment of black spruce (Picea mariana) trees. Location The study area occurs in Québec, Canada, and extends from 70°00′ to 72°00′ W and 47°30′ to 56°00′ N. Methods A spatial inventory of spruce–moss forest stands was performed along 34 transects. Nineteen spruce–moss forests were selected. A 500 m2 quadrat at each site was used for radiocarbon and tree‐ring dating of time since last fire (TSLF). Size structure and tree regeneration in each stand were described based on diameter distribution of the dominant and co‐dominant tree species [black spruce and balsam fir (Abies balsamea)]. Results The TSLF of the studied forests ranges from 118 to 4870 cal. yr bp . Forests < 325 cal. yr bp are dominated by trees of the first post‐fire cohort and are not yet at equilibrium, whereas older forests show a reverse‐J diameter distribution typical of mature, old‐growth stands. The younger forests display faster height and radial growth‐rate patterns than the older forests, due to factors associated with long‐term forest development. Each of the stands examined established after severe fires that consumed all the soil organic material. Main conclusions Spruce–moss forests are able to self‐regenerate after fires that consume the organic layer, thus allowing seed regeneration at the soil surface. In the absence of fire the forests can remain in an equilibrium state. Once the forests mature, tree productivity eventually levels off and becomes stable. Further proof of the enduring stability of these forests, in between fire periods, lies in the ages of the stands. Stands with a TSLF of 325–4870 cal. yr bp all exhibited the same stand structure, tree growth rates and species characteristics. In the absence of fire, the spruce–moss forests are able to maintain themselves for thousands of years with no apparent degradation or change in forest type.  相似文献   

12.
In subalpine forests near the forest limit on Mt. Fuji in central Japan, slush avalanches occasionally destroy forest-floor vegetation through an influx of volcanic gravel from bare upper sites. The vegetation structure of Larix kaempferiAbies veitchii forests near and distant from avalanche paths was investigated to determine the effects of forest-floor disturbance on successional processes. The Larix population in a forest near an avalanche path, where there had been signs of forest-floor disturbance by avalanches, had a discontinuous age structure with three age groups, indicating that Larix seedlings established under the Larix canopy after the forest-floor disturbance. In contrast, the Larix population in a forest distant from avalanche paths, where there had been no forest-floor disturbance, had a continuous age structure, with no plants younger than the 90-year-old trees, indicating that this population had established on bare ground over a long period. These data suggest that the primary requirement for the regeneration of L. kaempferi on the forest floor is a mineral substrate. Conversely, A. veitchii had a continuous age structure in both forests. However, forest-floor disturbances by avalanche(s) may exclude A. veitchii from the forest because A. veitchii is very sensitive to scoria deposition. In conclusion, forest-floor disturbance by avalanche(s) provides L. kaempferi with an opportunity to establish on the forest floor, resulting in the maintenance of Larix forests alongside avalanche paths in the upper subalpine area on Mt. Fuji.  相似文献   

13.
Abstract. Structural and compositional changes were analysed over the course of 400+ yr of post‐fire succession in the sub‐boreal forests of west‐central British Columbia. Using a chronosequence of 57 stands ranging from 11 to 438 yr in age, we examined changes in forest structure and composition with complementary PCA and DCA ordination techniques. To determine stand ages and timing of tree recruitment, approximately 1800 trees were aged. Most early successional forests were dominated by Pinus contorta, which established rapidly following fire. Abies lasiocarpa and Picea glauca × engel‐mannii were also able to establish quickly, but continued to establish throughout the sere. Few Pinus contorta survived beyond 200 yr, resulting in major changes in forest structure. In some stands P. contorta never established, which led to considerable variation among stands less than 200 yr old. The oldest forests converged on dominance by Abies lasiocarpa. Vascular plant diversity decreased during succession whereas canopy structure became more complex as gap dynamics developed. Although these sub‐boreal forests contain few tree species, successional changes were pronounced, with structure changing more than composition across the chronosequence.  相似文献   

14.
Population structure (size, age, spatial patterns) and radial growth patterns are used to analyze regeneration patterns of Abies faxoniana, Betula albosinensis, Betula utilis, Larix potaninii, Picea purpurea, and Sabina saltuaria and reconstruct disturbance history in 8 subalpine forest stands in Wang Lang Natural Reserve, Sichuan, China. In old-growth stands tree regeneration occurs in tree-fall gaps whereby A. faxoniana, Betula sp., P. purpurea, and S. saltuaria persist at stand scales by gap-phase regeneration. Clump sizes of young populations are similar to canopy gap sizes but clumps sizes vary among species. Young Betula patches are larger than those of A. faxoniana suggesting that gap-partitioning by size contributes to species coexistence in mixed stands. Picea purpurea and S. saltuaria are longer lived than A. faxoniana which may compensate for lower recruitment and prevent their replacement by A. faxoniana. Tree regeneration and community structure are also influenced by the understory bamboo Fargesia denudata. Seedlings, saplings, and shrub density all decline with an increase in bamboo cover. Species that regenerate in old-growth forest also regenerate after flooding as do species that establish only on bare substrates (i.e. Larix potaninii, Prunus sp.). Structural and compositional patterns in Wang Lang forests are a reflection of disturbance history, canopy species life history attributes such as dispersal ability, shade tolerance, growth rates, and longevity, and competition of trees and shrubs with understory bamboos.  相似文献   

15.
Old-growth deciduous forests in western Europe, for the most part, consist of small tracts that often may be atypical due to human disturbance, poor soil productivity or inaccessibility. In addition, very little information on tree age distributions, structural heterogeneity and tree spatial patterns appears to be available for west-European forests. Characterization of the structural features of tree populations in these old-growth stands can provide the basis to design conservation plans and also inform on how present forests might look in the absence of human interference. Four old-growth stands in a deciduous forest in the Cantabrian lowlands, northern Spain, were surveyed to determine forest structure and spatial patterns. Live and dead trees were identified, measured and mapped, and live trees were cored for age estimation. Structural heterogeneity was analyzed by means of the spatial autocorrelation of tree diameter, height and age, and the uni- and bivariate spatial patterns of trees were analyzed. The dominant species, Fagus sylvatica and Quercus robur, showed reverse-J shaped size distributions but discontinuous age distributions, with maximum ages of 255–270 yr. Tree ages suggested that the forest was largely modified by past changes in forest-use, especially by temporal variation in grazing intensity. Spatial autocorrelation revealed that former parkland stands were heterogeneous with respect to tree height only, while high forest stands were composed of patches of even-aged and even-sized trees. Young trees were clumped at varying distances and establishment occurred preferentially in canopy gaps, except for Ilex aquifolium that mainly occurred beneath mature Quercus trees. Surviving trees became less intensely clumped in the dominant species, and more strongly clumped in understorey ones, which may have been due to the effects of intraspecific competition and of canopy trees on tree survival, respectively. The spatial associations between species varied within the forest, probably as a consequence of specific establishment preferences and competitive interactions.  相似文献   

16.
Tsuga canadensis (L.) Carr. forests of the southern Appalachian Mountains are currently facing imminent decline induced by a nonnative insect pest, the hemlock woolly adelgid (Adelges tsugae Annand). To effectively manage these forest systems now and in the future, land managers need baseline data on forest structure and dynamics prior to large-scale Tsuga canadensis mortality. Most of our knowledge concerning the dynamics of Tsuga canadensis forests comes from more northern locations such as the Great Lakes region and New England and, therefore, may not pertain to the ecological systems found within the southern Appalachian Mountains. We examined the structure and canopy dynamics of four Tsuga canadensis forest stands within the Cataloochee watershed, in the far eastern part of Great Smoky Mountains National Park (GSMNP). We characterized the environmental settings and vertical forest layers, as well as the diameter and age-structures of each Tsuga canadensis forest stand. These environmental and structural data showed that there were indeed differences between forest stands with and without successful Tsuga canadensis regeneration. The two forest stands exhibiting successful Tsuga canadensis regeneration were located above 1,000 m in elevation on well-drained, moderately steep slopes and had the greatest canopy openness. Structural data from these two forest stands indicated a history of more continuous Tsuga canadensis regeneration. We also constructed disturbance chronologies detailing the history of canopy response to disturbance events and related these to Tsuga canadensis regeneration within each forest stand. Student t-tests adjusted for unequal variances indicated significant differences in the number of release events per tree between forest stands with and without successful Tsuga canadensis regeneration. While forest stands with successful Tsuga canadensis regeneration were more frequently disturbed by minor to major canopy disturbances, events of moderate intensity were found to be most significant in terms of regeneration. These data will be of value to land managers maintaining stands of Tsuga canadensis where treatment for hemlock woolly adelgid infestation has been successful. In areas where treatment is impractical or unsuccessful, land managers will be able to use these data to restore Tsuga canadensis forests after the wave of hemlock woolly adelgid induced mortality has passed. As of August 2008, Joshua A. Kincaid will be a member of the Environmental Studies program at Shenandoah University in Winchester, Virginia, USA  相似文献   

17.
Conservation strategies of forested landscapes must consider biodiversity of the included site types, i.e. timber-quality forests and associated non-timber-quality stands. The objectives were to characterize forest overstory structure in timber-quality versus associated non-timber-quality stands; and to compare their understory communities. Six forest types were sampled in Nothofagus forests of Tierra del Fuego (Argentina): two timber-quality N. pumilio forests, and four associated non-timber-quality stands (edge, N. antarctica, wetlands and streamside forests). Overstory structure and understory vegetation (species richness, frequencies, cover and biomass) were characterized during spring and summer seasons. Analysis of variance and multivariates were carried out. Overstory structure differed across the site types, with higher tree size, canopy closure and tree volume in timber-quality stands. Fifty-one understory plant species were observed, but understory variables varied with site types, especially wetlands (highest native and exotic richness, cover and biomass, and 25% of exclusive species). Site types were grouped in three: N. antarctica stands, streamside stands and the other N. pumilio forests according to multivariate analysis. Forty three percent of plants were distributed in all site types, and all timber-quality forest understory species were present in some associated non-timber-quality stands. Timber-quality N. pumilio forests have a marginal value for understory conservation compared to associated non-timber-quality stands, because these last include all the plants observed in timber-quality forests and also possess many exclusive species. Therefore, protection of associated non-timber-quality stands during forest management planning could increase understory conservation at landscape level, and these could be better reserves of understory diversity than retentions of timber-quality stands.  相似文献   

18.
The size structure transition matrices ofPicea jezoensis, Picea glehnii andAbies sachalinensis of a sub-boreal forest in Hokkaido, northern Japan were constructed based on the demography of each species (Picea jezoensis andPicea glehnii were dealt with together asPicea) during a 4-year period. Two types of matrices, density-independent and density-dependent population dynamics models, were investigated for evaluating the ‘waiting pattern’ betweenPicea spp. andA. sachalinensis. For the density-dependent model, it was assumed that the demographic traits of understory trees, the recruitment rate, the understory mortality rate and the transition probability from the understory to canopy stages, were regulated by the one-sided competitive effect of canopy trees. The observed size structure ofPicea was almost consistent with the stationary size structure obtained in both the density-independent and the density-dependent models, whereas the observed size structure ofA. sachalinensis was not realized in the two models. The effects of both the transition probability from the understory to canopy stages and the recruitment rate on the dynamics of canopy trees were investigated. ForPicea, two parameters—recruitment rate (e i ) and transition probability from the understory to canopy stages-exponentially affected the dynamics of canopy trees. In contrast, forAbies sachalinensis, the two parameters affected linearly the dynamics of canopy trees. In conclusion, the population dynamics ofPicea andA. sachalinensis was determined by the parameters of the recruitment rate and the transition probability from the understory to canopy stages, relating to waiting patterns of understory trees for future gap formation. InPicea, the demographic parameters of understory trees intensively regulated the dynamics of canopy trees if compared withA. sachalinensis, suggesting that the performance of understory trees plays a key role in the population dynamics ofPicea. This reflects the growth pattern of understory trees in the regeneration of the two species.  相似文献   

19.
Subalpine forest succession was studied on Mt. Fuji, Japan, where various types of forests in different successional phases occur owing to volcanic action. Ninety stands were subjected to ordination using an index (SI) defined by the relative basal area and the life span of component woody species, and the cover of canopy layer of the sample stands. Two different sequences of sample stands were found. One was from deciduous scrubs, through Larix kaempferi forests and Abies forests, to Tsuga diversifolia forests, and the other from Abies-Tsuga thickets to Abies forests. Through analyses of the forest structure and composition, soil survey and identification of fallen logs, the former sequence was recognized as the primary sere and the latter as a regeneration sere following gap formation. During forest succession, basal area reached a maximum in the seral phase with a multi-layered structure. The Tsuga forests, whose understory is restricted to a moss layer, were regarded as the climax. The death or fall of Tsuga stems resulted in gaps, which were subsequently occupied by Abies-Tsuga thickets. The second Abies forests were distinguished from the ones in the primary sere by the occurrence of Dryopteris and Cacalia and the lack of Rhododendron in the understorey. Both Abies forest types included Tsuga saplings. Thus, a cyclic relation is supposed between Abies and Tsuga.Nomenclature follows Ohwi (1975) and Nakaike (1982) for vascular plants, Iwatsuki & Noguchi (1973) for mosses, Inoue (1981) for hepaticae, Kashiwadani (1981) for lichens, respectively. Abies veitchii, A. mariesii were lumped as Abies spp.I wish to express my sincere gratitude to Prof. Toshio Hamaya, Tokyo, for the cordial guidance and encouragement. I also thank Prof. M. Numata and Dr. M. Ohsawa, Chiba, Prof. K. Okutomi, Tokyo, Dr. K. Suzuki, Tokyo, Dr. M. Suzuki, Kanazawa, and Mr. H. Taoda, Kumamoto, for their valuable advice and discussions.  相似文献   

20.
Mature tropical forests at agricultural frontiers are of global conservation concern as the leading edge of global deforestation. In the Ituri Forest of DRC, as in other tropical forest areas, road creation associated with selective logging results in spontaneous human colonization, leading to the clearing of mature forest for agricultural purposes. Following 1-3 years of cultivation, farmlands are left fallow for periods that may exceed 20 years, resulting in extensive secondary forest areas impacted by both selective logging and swidden agriculture. In this study, we assessed forest structure, tree species composition and diversity and the regeneration of timber trees in secondary forest stands (5-10 and ~40 years old), selectively logged forest stands, and undisturbed forests at two sites in the Ituri region. Stem density was lower in old secondary forests (~40 years old) than in either young secondary or mature forests. Overall tree diversity did not significantly differ between forest types, but the diversity of trees ≥10 cm dbh was substantially lower in young secondary forest stands than in old secondary or mature forests. The species composition of secondary forests differed from that of mature forests, with the dominant Caesalpinoid legume species of mature forests poorly represented in secondary forests. However, in spite of prior logging, the regeneration of high value timber trees such as African mahoganies (Khaya anthotheca and Entandrophragma spp.) was at least 10 times greater in young secondary forests than in mature forests. We argue that, if properly managed and protected, secondary forests, even those impacted by both selective logging and small-scale shifting agriculture, may have high potential conservation and economic value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号