首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The structure of the capsular polysaccharide of Type XIX Streptococcus pneumoniae (S-XIX) has been elucidated by 1H- and 13C-n.m.r. spectroscopy. Mild hydrolysis of S-XIX with acid yielded a major oligosaccharide, the repeating unit of S-XIX, which was shown to be O-2-acetamido-2-deoxy-β-d-mannopyranosyl-(1→4)-O-α-d-glucopyranosyl-(1→2)-l-rhamnose 4′′-phosphate. Phosphoric acid forms a diester linkage in the S-XIX molecule, which explains the instability of S-XIX towards acid or alkali. The phosphodiester linkages in S-XIX join HO-1 of α-l-rhamnose and HO-4 of the 2-acetamido-2-deoxy-d-mannopyranosyl residue in the next repeating-unit. Treatment of S-XIX with alkali or alkaline-NaBH4 produced the repeating units in a lower yield. The proposed structure of S-XIX is
  相似文献   

2.
The results of 1H-n.m.r. and 13C-n.m.r. studies of linear and cyclic oligosaccharides in the series of gentiodextrins, both in their hydroxylated and acetylated form, were compared to those obtained for the corresponding natural or synthetic polysaccharide. The 13C-signals of each d-glucopyranose unit of acetylated oligosaccharides are more distinct than those of the parent hydroxylated compounds. In order to relate the change of the various signals with the degree of polymerization, gentiotriose undecaacetate, enriched in 13C at C-1″, was prepared, as well as gentiotetraose tetradecaacetate selectively labeled at C-1″ and C-1?. A (1→6)-β-d-glucan having a D.P. of ~10 was chemically prepared. During the course of the polycondensation, the 2,3,4,2′,3′,4′-hexa-O-acetyl-di-β-d-glucopyranosyl 1,6′:6,1′-di-anhydride, and the 2,3,4,2′,3′,4′,2″,3″,4″,2?,3?,4?-dodeca-O-acetyl-tetra-β-d-glucopyranosyl 1,6?:6,1?-tetraanhydride, respectively, were formed.  相似文献   

3.
Partial hydrolysis of the mucilage of O. ficus-indica affords O-β-d-galactopyranosyl-(1→6)-d-galactose, the polymer-homologous trisaccharide, and fourteen oligosaccharides that contain arabinose and most of which have xylosyl end-groups. O-β-d-Xylopyranosyl-(1→5)-l-arabinofuranose and O-β-d-xylopyranosyl-(1→5)-O-α-l-arabinofuranosyl-(1→5)-l-arabinofuranose were the oligosaccharides isolated in greatest amount. The most-important structural features found in the peripheral chains in the mucilage are discussed.  相似文献   

4.
The 13C NMR spectra of nine pyrrolizidine alkaloids of the macrocyclic diester type, seven of the corresponding N-oxides and of the parent base retronecine have been recorded and the signals assigned. The 13C NMR signals were found to be sensitive to structural variation in both the diester moiety and the heterocyclic ring system, providing useful information for structural elucidation, particularly when the 1H NMR spectra may be difficult to interpret.  相似文献   

5.
The structures of the peracetylated derivatives of the following alditols obtained from oligosaccharides of human milk have been established by two-dimensional, J-resolved and J-correlated, 1H-n.m.r. spectroscopy at 360 MHz: β- d-Galp-(1→3)-β- d-GlcpNAc-(1→3)-β- d-Galp-(1→4)- d-Glc-ol, α- l-Fucp-(1→2)-β- d-Galp-(1→3)-β- d-GlcpNAc-(1→3)-β- d-Galp-(1→4)- d-Glc-ol, and β- d-Galp-(1→3)-β- d-GlcpNAc-(1→3)-[β- d-Galp-(1→4)-β- d-GlcpNAc-(1→6)]-β- d-Galp-(1→4)- d-Glc-ol.  相似文献   

6.
13C-N.m.r. spectra of thirteen xylo-oligosaccharides [a complete series of α- and β-d-xylopyranosyl derivatives of methyl α-d-xylopyranoside, β-d-xylopyranosyl derivatives of methyl 4-O-β-d-xylopyranosyl-d-xylopyranoside, methyl O-α-d-xylopyranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranoside, and a branched methyl β-xylotetraoside] have been interpreted. The data obtained have been used for the carbon signal assignment in the spectra of a number of red-algal xylans. 13C-N.m.r. spectroscopy is shown to be a rapid and convenient method for the structural analysis of xylose-rich polysaccharides.  相似文献   

7.
Using periodate oxidation, methylation analysis, the characterization of oligosaccharides obtained by partial acid hydrolysis, p.m.r. spectroscopy, and analytical ultracentrifugation, the structure of the (mildly alkali-treated) Klebsiella serotype 11 capsular polysaccharide has been elucidated. The tetrasaccharide repeating-unit comprises the sequence ?3)-β-D-Glcp-(1?3)-β-D-GlcUAp-(1?3)-α-D-Galp-(1→ with a 4,6-O-(1-car?yethylidene)-α-D-galactosyl residue linked to O-4 of the glucuronic acid residue. The structural basis for some serological cross-reactions of the Klebsiella K11 antigen is discussed, and it is shown that rabbit antisera against the Klebsiella K11 test-strain predominantly contain K agglutinins specific for branch-terminal 4,6-O-(1-car?yethylidene)-D-galactose.  相似文献   

8.
The structure and conformation of lentinan, an anti-tumor, branched (1→3)-β-d-glucan from Lentinus edodes, and its acid-degraded, lower molecular-weight fractions have been investigated by 13C-n.m.r. spectroscopy. It is found that their 13C-n.m.r. spectra are considerably changed, depending on the molecular weight. The conformational behavior as studied by 13C-n.m.r. spectroscopy is consistent with that revealed by a study of the shift in the absorption maximum of Congo Red complexed with lentinan and its acid-degraded fractions. It is found that the water-soluble fraction II (mol. wt. 3,640) gives rise to well-resolved 13C-n.m.r. spectra; the 13C-signals are assigned to (1→3)-β-d-glucan and branch points at C-6. The branched structure is also confirmed by examination of the 13C-n.m.r. spectra of the compounds in dimethyl sulfoxide. For the gel state of the fractions of higher molecular-weight, lentinan (mol. wt. 1,000,000) and fraction IV (mol. wt. 16,200), however, 13C-n.m.r. spectra of considerably attenuated signal-amplitude are observed. The fact that the 13C-signals of the β-d-(1→3)-linked main chain and side chains are completely suppressed is explained as a result of immobilization caused by their taking an ordered conformation. The 13C-resonances observed in the gel state, which are assigned to β-d-(1→6)-linkages, are unequivocally assigned to the side chains (of disordered conformation). Finally, the ordered conformation of both the β-d-(1→3)-linked main chain and side chains is identified as the single-helix conformation, which tends to form multiple helixes as junction zones for gel structure.  相似文献   

9.
Two similar tetrasaccharides, one neutral and one acidic, were isolated from the products released by the attack of a xylanase on the in situ reduced 4-O-methyl-D-glucurono-D-xylan from aspen (Populus tremuloides). Paper chromatography, gel filtration behavior, methylation followed by reduction, and mass spectrometry showed that the oligosaccharides were O-(4-O-methyl-α-D-glucopyranosyluronic acid)-(1→2)-D-xylotriose and-O-(4-O-methyl-α-D-glucopyranosyluronic acid)-(1→2)-D-xylotriose. Independent of the acidic or neutral substituent on the present xylan chain, the enzymic cleavage led preferentially to oligosaccharides substituted at the nonreducing end. The existence, in wood, of a few uronic acid substituents of the D-xylan in the esterified form was confirmed, and their linkage to lignin postulated.  相似文献   

10.
2-O-Benzoyl-3,4,6-tri-O-benzyl-1-O-tosyl-d-mannopyranose and 2,3,4-tri-O- benzyl-6-O-(N-phenylcarbamoyl)-1-O-tosyl-d-glucopyranose were allowed to react with partially blocked 2-[4-(p-toluenesulfonamido)phenyl]ethyl α-d-manno- and -gluco-pyranosides. Disaccharides having α-d-Manp-(1→2)-α-D-Manp, α-d-manp-(1→6)-α-d-Manp, α-d-Manp-(1→6)-α-d-Manp, and α-d-Glcp-(1→6)-α-d-Manp structures, and a branched trisaccharide having the structure α-d-Manp-(1→2)-[α-d-Manp-(1→6)]-α-d-Manp were synthesized. The oligosaccharides were deblocked with sodium in liquid ammonia to give glycopyranosides having a free primary aromatic amine which were converted into isothiocyanate derivatives with thiophosgene. The functionalized oligosaccharides were then coupled to bovine serum albumin to give protein conjugates.  相似文献   

11.
Glycosylation of 1,2:5,6-di-O-isopropylidene-α-d-galactofuranose with 2,3-di-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-d-mannopyranosyl)-α-l-rhamnopyranosyl bromide, followed by removal of the protecting groups, gave O-β-d-mannopyranosyl-(1→4)-O-α-l-rhamnopyranosyl-(1→3)-d-galactose, which is the trisaccharide repeating-unit of the O-specific polysaccharide chain of the lipopolysaccharide from Salmonella anatum. The formation of the β-d-mannopyranosyl linkage was achieved by a glucose-mannose conversion via stereoselective reduction of the corresponding oxo-disaccharide.  相似文献   

12.
From Escherichia coli K12 W2252-11U? cells, the Ter-15 mutant, the Ter-15 (F′-lac) and the Ter-15 (F+) cells, lipopolysaccharides were isolated and the primary structure of its core oligosaccharides was elucidated. When the F′-lac episome is transferred to the Ter-15 mutant by conjugation, the structure of the glucose III(1 → 3)glucose II(1 → 3)glucose I residue and the galactose I(1 → 2)-linked to the glucose I residue in the core oligosaccharide from the Ter-15 mutant changes into the structure of the glucose IV(1 → 6)glucose III(1 → 2)glucose II(1 → 3)glucose I residue and the galactose I (1 → 6)-linked to the glucose I residue in the core oligosaccharide from the Ter-15 (F′-lac) cells, but the core oligosaccharide in the Ter-15 (F+) cells is the same structure with that of the core oligosaccharide from the Ter-15 mutant when F+ episome is transferred to the Ter-15 mutant. Also, the core oligosaccharide from the Ter-15 (F′-lac) cells shows the same structure with that of the core oligosaccharide from E. coli K12 W2252-11U? cells (the parent cells). As the result, the ability to produce the structure of the core oligosaccharide in E. coli K12 W2252-11U? cells is recovered in the Ter-15 (F′-lac) cells by the dominant expression of lac gene or its containing DNA segment in F′-lac episome.  相似文献   

13.
The 1H NMR spectra of three pyrrolizidine alkaloids of the macrocyclic diester type, retrorsine, seneciphylline and senecionine, plus their three N-oxides have been assigned. Previous 1H NMR studies of these pyrrolizidine alkaloids have stressed the difficulties of spectral intrepretation. The results reported here will provide a useful resource for analysis of tertiary structure in these and related compounds.  相似文献   

14.
Intact lipopolysaccharide antigens isolated from seven different immunotypes of Pseudomonas aeruginosa have been examined by 31P-NMR spectroscopy. These macromolecular complexes contain phosphorus covalently attached to the carbohydrate residues present in the lipid A moiety and the ‘core’ oligosaccharide region. The spectral signals for various ortho- and pyro-phosphoric esters were observed. All phosphate groups appeared to be mono-esterified. Certain shifts characteristic for phosphate diester groups, observed in lipopolysaccharide complexes from other Gram-negative bacteria, were absent. Furthermore, no evidence was found to indicate that phosphate groups are involved in the covalent linkage of individual lipopolysaccharide complexes to form dimers or trimers.  相似文献   

15.
Cathepsin D from porcine spleen contained mannose (3.3%), glucosamine (1.4%), and mannose 6-phosphate (0.08%). Essentially all of the oligosaccharides of cathepsin D could be released by endo-β-N-acetylglucosaminidase H, pointing to oligomajmoside types of structures. Three neutral oligosaccharide fractions, containing 5, 6, and 7 mannose residues, respectively, were isolated by gel permeation chromatography on Bio-Gel P-2. Studies using exoglycosidase digestions and 500-MHz 1H NMR spectroscopy revealed that their structures are [Manα1 → 2]0 or 1Manα1 → 6[Manα1 → 3]Manα1 → 6[(Manα1 → 2)0 or 1Manα1 → 3]Manβ1 → 4GlcNAcβ1 → 4 GlcNAc. These structures are identical to what have recently been proposed by Takahashi et al. for the major oligosaccharide units of cathepsin D from the same source (T. Takahashi P.G. Schimidt, and J. Tang (1983)J. Biol. Chem.258, 2819–2930), except for the occurrence of two isomeric oligosaccharides containing six mannoses. Only a part (3.4%) of the oligosaccharides were acidic, containing phosphates in monoester linkage. The phosphorylated oligosaccharides also consisted of oligomannoside-type chains which were analogous to, but more heterogeneous in size than the neutral oligosaccharides. Cathepsin D was bound to a mannose- and N-acetylglucosamine-specific lectin (mannan-binding protein) isolated from rabbit liver with the Ki value of 5.4 × 10?6m.  相似文献   

16.
The action of α-1,6-glucan glucohydrolase on α-(1→6)-D-glucosidic linkages in oligosaccharides that also contain an α-(1→2)-, α-(1→3)-, or α-(1→4)-D-glucosidic linkage has been investigated. The enzyme could hydrolyse α-(1→6)-D-glucosidic linkages from the non-reducing end, including those adjacent to an anomalous linkage. α-(1→6)-D-Glucosidic linkages at branch points were not hydrolysed, and the enzyme could neither hydrolyse nor by-pass the anomalous linkages. These properties of α-1,6-glucan glucohydrolase explain the limited hydrolysis of dextrans by the exo-enzyme. Hydrolysis of the main chain of α-(1→6)-D-glucans will always stop one D-glucose residue away from a branch point. The extent of hydrolysis by α-1,6-glucan glucohydrolase of some oligosaccharide products of the action on dextran of Penicillium funiculosum and P. lilacinum dextranase, respectively, has been compared. Differences in the specificity of the two endo-dextranases were revealed. The Penicillium enzymes may hydrolyse dextran B-512 to produce branched oligosaccharides that retain the same 1-unit and 2-unit side-chains that occur in dextran.  相似文献   

17.
The blue-green alga Agmenellum quadruplicatum (strain PR6) has been used to prepare photobiosynthetically 13C-labeled d-glucose, 2-O-(α-d-glucopyranosyl)-glyceric acid (glucosylglycerate), 2-hydroxy-1-(hydroxymethyl)ethyl α-d-gluco-pyranoside (glucosylglycerol), and α-d-glueopyranosyl β-d-fructofuranoside (sucrose). When grown to a cell density of 4.4 g.L-1 (dry weight) under nitrate-nitrogen limiting growth conditions for 120 h, the algal cells contained 38% of the dry-cell weight as(1 → 4)-α-d-glucan (amylose). About 1% of the dry-cell weight was glucosylglycerol, glucosylglycerate, and sucrose. Glutamate was obtained, together with carbohydrates of low molecular weight, when the cells were extracted with chloroform-methanol; d-glucose was recovered from the extracted cells by acid hydrolysis of the starch. The algae were grown by using 20 mol% [13C] carbon dioxide for preparation of labeled carbohydrates and for cellular component identification by whole-cell n.m.r. spectroscopy.  相似文献   

18.
Angiosperms possess a retaining trans-α-xylosidase activity that catalyses the inter-molecular transfer of xylose residues between xyloglucan structures. To identify the linkage of the newly transferred α-xylose residue, we used [Xyl-3H]XXXG (xyloglucan heptasaccharide) as donor substrate and reductively-aminated xyloglucan oligosaccharides (XGO–NH2) as acceptor. Asparagus officinalis enzyme extracts generated cationic radioactive products ([3H]Xyl·XGO–NH2) that were Driselase-digestible to a neutral trisaccharide containing an α-[3H]xylose residue. After borohydride reduction, the trimer exhibited high molybdate-affinity, indicating xylobiosyl-(1→6)-glucitol rather than a di-xylosylated glucitol. Thus the trans-α-xylosidase had grafted an additional α-[3H]xylose residue onto the xylose of an isoprimeverose unit. The trisaccharide was rapidly acetolysed to an α-[3H]xylobiose, confirming the presence of an acetolysis-labile (1→6)-bond. The α-[3H]xylobiitol formed by reduction of this α-[3H]xylobiose had low molybdate-affinity, indicating a (1→2) or (1→4) linkage. In NaOH, the α-[3H]xylobiose underwent alkaline peeling at the moderate rate characteristic of a (1→4)-disaccharide. Finally, we synthesised eight non-radioactive xylobioses [α and β; (1↔1), (1→2), (1→3) and (1→4)] and found that the [3H]xylobiose co-chromatographed only with (1→4)-α-xylobiose. We conclude that Asparagus trans-α-xylosidase activity generates a novel xyloglucan building block, α-d-Xylp-(1→4)-α-d-Xylp-(1→6)-d-Glc (abbreviation: ‘V’). Modifying xyloglucan structures in this way may alter oligosaccharin activities, or change their suitability as acceptor substrates for xyloglucan endotransglucosylase (XET) activity.  相似文献   

19.
The acidic polysaccharide (K6) antigen from Escherichia coli LP 1092 contains d-ribose and 3-deoxy-d-manno-octulosonic acid in the molar ratio of 2:1, respectively. Spectroscopic data (13C- and 1H-n.m.r.), methylation analyses, and periodate oxidation indicate that the polysaccharide is composed of the foregoing components essentially in the following trisaccharide sequence: →2)-β-d-Ribf-(1→2)-β-d-Ribf-(1→7)-α-d-KDO-(2→The polysaccharide also contains O-acetyl substituents (~0.2–0.3 mol per KDO residue).  相似文献   

20.
The polysaccharide of P. hymantophora has been shown to be composed of (1→4)-linked galactopyranosyl, (1→3)-linked galactopyranosyl, (1→3)-linked galactopyranosyl 2- and 4-sulphate and 2,6-disulphate residues. The (1→3)- and (1→4)-linked units are present in approximately equal amounts. The polysaccharide of P. hieroglyphica has been shown to possess (1→4)-linked galactopyranosyl, (1→3)-linked galactopyranosyl, and (1→3)-linked galactopyranosyl 2- and 4-sulphate residues. The (1→3)- and (1→4)-linked units are present in a 4:1 ratio. Both polysaccharides contain small proportions of non-reducing xylosyl end-groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号