首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial surface layers (S-layers) are cell envelope structures ubiquitously found in gram-negative and gram-positive bacteria, including Lactobacillus. S-layers play a role in the determination and maintenance of cell shape as virulence factors, mediate cell adhesion, and regulate immature dendritic and T cells. In this study, we sought to understand the involvement of MAPK serine/threonine kinases in alterations in Endometrial epithelial cells (ESC) growth induced by Lactobacillus crispatus (L. crispatus) slpA, an S-layer protein. We applied various concentrations of L. crispatus to cultured ESCs and observed growth and changes in the phosphorylation status of ERK1/2, JNK, and p38. Similar experiments were conducted using L. crispatus lacking and overexpressing slpA. We found that ESC growth was altered by slpA primarily via ERK1/2. Our findings suggest that L. crispatus slpA promotes ESC growth mainly through an ERK1/2-dependent pathway.  相似文献   

2.
Alternative splicing is a widely used mechanism of gene regulation in sex determination pathways of Insects. In species from orders as distant as Diptera, Hymenoptera and Coleoptera, female differentiation relies on the activities of conserved splicing regulators, TRA and TRA-2, promoting female-specific expression of the global effector doublesex (dsx). Less understood is to what extent post-translational modifications of splicing regulators plays a role in this pathway. In Drosophila melanogaster phosphorylation of TRA, TRA-2 and the general RBP1 factor by the LAMMER kinase doa (darkener of apricot) is required for proper female sex determination. To explore whether this is a general feature of the pathway we examined sex-specific differences in phosphorylation levels of SR splicing factors in the dipteran species D. melanogaster, Ceratitis capitata (Medfly) and Musca domestica (Housefly). We found a distinct and reproducible pattern of male-specific phosphorylation on protein extracts enriched for SR proteins in C. capitata suggesting that differential phosphorylation may also contribute to the regulation of sex-specific splicing in the Medfly.  相似文献   

3.
Vascular smooth muscle cell (VSMC) proliferation and migration are pivotal for the pathogenesis of atherosclerosis and post-angioplasty restenosis. We have recently reported that a disintegrin and metalloproteinase with thrombospondin motifs-7 (ADAMTS-7), a novel metalloproteinase, contributes directly to neointima formation by mediating VSMC migration. However, whether ADAMTS-7 affects VSMC proliferation remains unclear. In this study, we found that luminal adenoviral delivery of ADAMTS-7 aggravated intimal hyperplasia 7 d after injury, paralleled by an increased percentage of PCNA-positive cells in both intima and media. In contrast, perivascular administration of ADAMTS-7 siRNA, but not scrambled siRNA to injured arteries attenuated intimal thickening at day 7, paralleled with reduced intimal VSMC replication, without alteration of VSMC proliferation in the media. In accordance, [3H]-thymidine incorporation assay in primary cultured rat VSMCs revealed an enhanced replication rate (by 61%) upon ADAMTS-7 overexpression and retarded proliferation (by 23%) upon ADAMTS-7 siRNA administration. Our data demonstrates that ADAMTS-7 promotes VSMC proliferation both in vitro and in vivo. ADAMTS-7 may therefore serve as a novel therapeutic target for atherosclerosis and post-angioplasty restenosis.  相似文献   

4.

Background

The regulation of the immediate-early gene c-fos serves as a paradigm for signal-activated gene induction. Lysophosphatidic acid is a potent serum-borne mitogen able to induce c-fos.

Results

Analysing the signalling events following stimulation of mouse embryonic stem cells with serum and lysophosphatidic acid, we show that the extracellular signal-regulated kinase (ERK) pathway is involved in mediating c-fos induction. We demonstrate that the ERK-activated kinase MSK1 is required for full c-fos promoter activation, as well as for the phosphorylation of cAMP-responsive element (CRE) binding proteins. We propose that MSK1 contributes to ERK-mediated c-fos promoter activation by targeting CRE binding proteins.

Conclusion

These results show that MSK1 is an important ERK-activated mediator of mitogen-stimulated c-fos induction. In addition, they indicate that MSK1 could act through CRE binding proteins to achieve c-fos promoter activation. Thus, they further our understanding of the complex regulation of the model immediate-early gene c-fos.
  相似文献   

5.

Background

Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation. Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and are expressed in both embryonic and adult zebrafish, but their specific roles in embryogenesis remain to be fully understood.

Results

Using CRISPR/Cas9 genome editing technology, we generated zebrafish lines harboring germ line deletions in dusp6 and dusp2. We do not detect any overt defects in dusp2 mutants, but we find that approximately 50% of offspring from homozygous dusp6 mutants do not proceed through embryonic development. These embryos are fertilized, but are unable to proceed past the first zygotic mitosis and stall at the 1-cell stage for several hours before dying by 10 h post fertilization. We demonstrate that dusp6 is expressed in gonads of both male and female zebrafish, suggesting that loss of dusp6 causes defects in germ cell production. Notably, the 50% of homozygous dusp6 mutants that complete the first cell division appear to progress through embryogenesis normally and give rise to fertile adults.

Conclusions

The fact that offspring of homozygous dusp6 mutants stall prior to activation of the zygotic genome, suggests that loss of dusp6 affects gametogenesis and/or parentally-directed early development. Further, since only approximately 50% of homozygous dusp6 mutants are affected, we postulate that ERK signaling is tightly regulated and that dusp6 is required to keep ERK signaling within a range that is permissive for proper embryogenesis. Lastly, since dusp6 is expressed throughout zebrafish embryogenesis, but dusp6 mutants do not exhibit defects after the first cell division, it is possible that other regulators of the ERK pathway compensate for loss of dusp6 at later stages.
  相似文献   

6.
7.
8.
Protein phosphorylation/dephosphorylation is a major signalling event induced by abiotic stresses in plants. Sucrose nonfermenting 1-related protein kinase 2 (SnRK2) plays important roles in response to osmotic stress. In the present study, four SnRK2s, TpSnRK2.1/3/7/8, were cloned and characterized from Triticum polonicum L. (dwarf Polish wheat, DPW, AABB). All of these were individually located on 2AL, 1AL, 2AL, and 5BL. Two spliced isoforms of TpSnRK2.8 (TpSnRK2.8a and TpSnRK2.8b) were observed. TpSnRK2.1 and TpSnRK2.3 were classified into the group II; TpSnRK2.7 was classified into the group I; and TpSnRK2.8a/b were classified into the group III. Expression patterns revealed that TpSnRK2.1 responded to cold, NaCl, polyethylene glycol (PEG), and abscisic acid (ABA) in both roots and leaves; TpSnRK2.3 was strongly regulated by cold, NaCl, and ABA in both roots and leaves, and by PEG in roots; TpSnRK2.7 was induced by NaCl and PEG in roots, but was not activated by ABA; and TpSnRK2.8s were significantly activated by cold, NaCl, PEG, and ABA in both roots and leaves. From the above results, we inferred that TpSnRK2.1/3/8 may participate in the responses to environmental stresses in ABA-dependent signal transduction pathway but TpSnRK2.7 is possibly involved in responses to environmental stresses in a non-ABA-dependent manner. They play important roles in specific tissues under different stresses.  相似文献   

9.
Silibinin is a natural phenol found in the seeds of the milk thistle plant. Recent data have shown its effectiveness for preventing/treating bladder tumours. Therefore, in this study we investigated the cytotoxic and toxicogenetic activity of silibinin in bladder cancer cells with different TP53 statuses. Two bladder urothelial carcinoma cell lines were used: RT4 (wild-type TP53 gene) and T24 (mutated TP53 gene). Cell proliferation, clonogenic survival, apoptosis rates, genotoxicity and relative expression profile of FRAP/mTOR, FGFR3, AKT2 and DNMT1 genes and of miR100 and miR203 were evaluated. Silibinin promoted decreased proliferation and increased late apoptosis in TP53 mutated cells. Increased early apoptosis rates, primary DNA damage, and decrease of cell colonies in the clonogenic survival assay were detected in both RT4 and T24 cell lines. Down-regulation of FRAP/mTOR, AKT2, FGFR3, DNMT1 and miR100 expression occurred in RT4 cells. Modulation of miR203 was observed in both cell lines. In conclusion, despite the reduction of clone formation in both cell lines, the toxicogenomic effect of silibinin on FRAP/mTOR, AKT2, FGFR3, DNMT1 and miR100 was dependent on the TP53 status. Taken together, the data confirmed the role of silibinin as an antiproliferative compound, whose mechanism of action was related to the TP53 status.  相似文献   

10.
Glioblastomas (GBL) are the most common and aggressive brain tumors. They are distinguished by high resistance to radiation and chemotherapy. To find novel approaches for GBL classification, we obtained 16 primary GBL cell cultures and tested them with real-time PCR for mRNA expression of several genes (YB-1, MGMT, MELK, MVP, MDR1, BCRP) involved in controlling cell proliferation and drug resistance. The primary GBL cultures differed in terms of proliferation rate, wherein a group of GBL cell cultures with low proliferation rate demonstrated higher resistance to temozolomide. We found that GBL primary cell cultures characterized by high proliferation rate and lower resistance to temozolomide expressed higher mRNA level of the YB-1 and MDR1 genes, whereas upregulated expression of MVP/LRP mRNA was a marker in the group of GBL with low proliferation rate and high resistance. A moderate correlation between expression of YB-1 and MELK as well as YB-1 and MDR1 was found. In the case of YB-1 and MGMT expression, no correlation was found. A significant negative correlation was revealed between mRNA expression of MVP/LRP and MELK, MDR1, and BCRP. No correlation in expression of YB-1 and MVP/LRP genes was observed. It seems that mRNA expression of YB-1 and MVP/LRP may serve as a marker for GBL cell cultures belonging to distinct groups, each of which is characterized by a unique pattern of gene activity.  相似文献   

11.
12.
13.

Background

Polycomb repressive complex 2 (PRC2)-catalyzed H3K27me3 marks are tightly associated with the WUS-AG negative feedback loop to terminate floral stem cell fate to promote carpel development, but the roles of Polycomb repressive complex 1 (PRC1) in this event remain largely uncharacterized.

Results

Here we show conspicuous variability in the morphology and number of carpels among individual flowers in the absence of the PRC1 core components AtRING1a and AtRING1b, which contrasts with the wild-type floral meristem consumed by uniform carpel production in Arabidopsis thaliana. Promoter-driven GUS reporter analysis showed that AtRING1a and AtRING1b display a largely similar expression pattern, except in the case of the exclusively maternal-preferred expression of AtRING1b, but not AtRING1a, in the endosperm. Indeterminate carpel development in the atring1a;atring1b double mutant is due to replum/ovule-to-carpel conversion in association with ectopic expression of class I KNOX (KNOX-I) genes. Moreover, AtRING1a and AtRING1b also play a critical role in ovule development, mainly through promoting the degeneration of non-functional megaspores and proper integument formation. Genetic interaction analysis indicates that the AtRING1a/b-regulated KNOX-I pathway acts largely in a complementary manner with the WUS-AG pathway in controlling floral stem cell maintenance and proper carpel development.

Conclusions

Our study uncovers a novel mechanistic pathway through which AtRING1a and AtRING1b repress KNOX-I expression to terminate floral stem cell activities and establish carpel cell fate identities.
  相似文献   

14.

Background

Campylobacter jejuni causes acute disease characterized by severe diarrhea containing blood and leukocytes, fever, and abdominal cramping. Disease caused by C. jejuni is dependent on numerous bacterial and host factors. C. jejuni invasion of the intestinal epithelial cells is seen in both clinical samples and animal models indicating that host cell invasion is, in part, necessary for disease. C. jejuni utilizes a flagellar Type III Secretion System (T3SS) to deliver the Campylobacter invasion antigens (Cia) to host cells. The Cia proteins modulate host cell signaling leading to actin cytoskeleton rearrangement necessary for C. jejuni host cell invasion, and are required for the development of disease.

Results

This study was based on the hypothesis that the C. jejuni CiaD effector protein mediates Erk 1/2 dependent cytoskeleton rearrangement. We showed that CiaD was required for the maximal phosphorylation of Erk 1/2 by performing an immunoblot with a p-Erk 1/2 specific antibody and that Erk 1/2 participates in C. jejuni invasion of host cells by performing the gentamicin protection assay in the presence and absence of the PD98059 (a potent inhibitor of Erk 1/2 activation). CiaD was also found to be required for the maximal phosphorylation of cortactin S405 and S418, as judged by immunoblot analysis. The response of human INT 407 epithelial cells to infection with C. jejuni was evaluated by confocal microscopy and scanning electron microscopy to determine the extent of membrane ruffling. This analysis revealed that CiaD, Erk 1/2, and cortactin participate in C. jejuni-induced membrane ruffling. Finally, cortactin and N-WASP were found to be involved in C. jejuni invasion of host cells using siRNA to N-WASP, and siRNA to cortactin, coupled with the gentamicin protection assay.

Conclusion

We conclude that CiaD is involved in the activation of Erk 1/2 and that activated Erk 1/2 facilitates C. jejuni invasion by phosphorylation of cortactin on serine 405 and 418. This is the first time that cortactin and N-WASP have been shown to be involved in C. jejuni invasion of host cells. These data also provide a mechanistic basis for the requirement of Erk 1/2 in C. jejuni-mediated cytoskeletal rearrangement.
  相似文献   

15.
Autophagy is a conserved process of protein and organelle degradation that serves to maintain cell viability. Autophagy is frequently induced in response to stress or to exposure to DNA-damaging agents or retinoids, as well as to starvation and deficiency of growth factors. In this work, autophagy induced in E1A+cHA-RAS transformed cells in response to X-ray radiation was studied, with a focus on the role of the MEK/ERK signaling pathway in the regulation of radiation-induced autophagy. It was found that inhibition of the MEK/ERK pathway diminished cell viability and altered the sequence of events in radiation-induced autophagy. In particular, it caused aberrations in its final stages, leading to cytoplasmic accumulation of the p62/SQSTM1 adaptor protein in autophagic cavities of unclear origin. Thus, the MEK/ERK pathway activity is essential for the induction and maintenance of autophagy, increasing the viability of exposed cells in response to radiation.  相似文献   

16.
Zizania latifolia is a perennial herb belonging to the family Gramineae that has been used as a health food in Asian countries. In this study, we investigated the antimicrobial effect of Z. latifolia, which increased human beta-defensin 2 (hBD2) expression in HaCaT cells. hBD2 expression was further increased in cells treated with Z. latifolia extracts and subsequently infected with Staphylococcus aureus. Inversely, S. aureus infection decreased after treatment. The induction of hBD2 in HaCaT cells was mediated by the Toll-like receptor 2 (TLR2) signaling pathway, including the activation of extracellular signal-regulated kinase (ERK) and activator protein 1 (AP-1). Further study using siRNA revealed that hBD2 played an important role in the inhibition of S. aureus infection in HaCaT cells. Our data suggest that Z. latifolia extracts can be used as an antimicrobial ingredient for skin treatment formulas.  相似文献   

17.
Two new species found in northern Thailand, Cordyceps chiangdaoensis and Cordyceps morakotii, pathogenic to Coleoptera larvae and Odontomachus ant pupae, respectively, are described using morphological and molecular phylogenetic data. Both species produce narrowly ovoid superficial perithecia at the end of a cylindrical stroma, bola ascospores, Evlachovaea-like conidial morph, and cylindrical conidia with rounded ends. These two species differ from other bola ascospore-producing species in the genus Cordyceps in the sizes of the ascospores and perithecia, as well as the host. Phylogenetic analyses based on internal transcribed spacer (ITS) regions of the rDNA and partial sequences of translation elongation factor 1-alpha (TEF1) data strongly support these two fungi as two distinct new species in the Cordycipitaceae.  相似文献   

18.
Ku70-binding proteins associate with Ku70 and their expression levels can affect DSB repair efficiency via the DNA-PK-dependent repair pathway. However, how Ku70-binding proteins in plants exert a regulatory function under abiotic stress is poorly understood. Here, we cloned and characterized a PoKub3 gene from 500-year-old Platycladus orientalis. With increasing age, PoKub3 expression in P. orientalis increased gradually. The PoKub3 expression levels in leaves were upregulated under salt, heat, UV-C and abscisic acid treatments according to qRT-PCR. Moreover, PoKub3 overexpression in Arabidopsis thaliana improved tolerance to salt and drought stress compared with wild-type (WT) and vector control (VC) plants. High RAB18 and DREB2A expression and low JAZ1 and ABI2 expression provided strong evidence that salt tolerance was enhanced in the overexpression plants. Similarly, high RAB18 and DREB2A expression, accompanied by low JAZ1 and LOX1 expression and high DREB1A, CPK10, GSTF6 and APX1 expression, suggested the drought tolerance mechanism was associated with the abscisic acid pathway. In addition, lower malondialdehyde content, electrolyte leakage and stomatal conductance, and higher soluble sugar and relative water contents in PoKub3 overexpression lines than in WT and VC plants demonstrated its role in salt and drought tolerance. Together, these findings show that PoKub3 positively regulates salt and drought tolerance by regulating stress-related genes.  相似文献   

19.

Background

MYO18B has been identified as a novel tumor suppressor gene in several cancers. However, its specific roles in the progression of hepatocellular carcinoma (HCC) has not been well defined.

Methods

We firstly identified the expression and prognostic values of MYO18B in HCC using TCGA cohort and our clinical data. Then, MYO18B knockdown by RNA inference was implemented to investigate the effects of MYO18B on HCC cells. Quantitative RT-PCR and Western blot were used to determine gene and protein expression levels. CCK-8 and colony formation assays were performed to examine cell proliferation capacity. Wound healing and transwell assays were used to evaluate the migration and invasion of HepG2 cells.

Results

MYO18B was overexpressed and correlated with poor prognosis in HCC. MYO18B expression was an independent risk factor for overall survival. Knockdown of MYO18B significantly inhibited the proliferation, migration and invasion of HepG2 cells. Meanwhile, MYO18B knockdown could effectively suppress the phosphorylation of PI3K, AKT, mTOR and P70S6K, suggesting that MYO18B might promote HCC progression by targeting PI3K/AKT/mTOR signaling pathway.

Conclusions

MYO18B promoted tumor growth and migration via the activation of PI3K/AKT/mTOR signaling pathway. MYO18B might be a promising target for clinical intervention of HCC.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号