首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.

Background

We investigated the effects of three weeks of renutrition with a normal protein diet on oxidant/antioxidant status in malnourished rats using biochemistry and histology.

Methods

Eighteen young Wistar rats were divided into three groups: control group was fed on a normal protein diet; malnourished group was fed on low protein diet and renourished group was fed on low protein diet followed by a normal protein diet. Serum albumin was evaluated. Malondialdehyde, protein carbonyl, superoxide dismutase and catalase levels were determined in the intestine, muscle and liver. Intestinal and hepatic damage were assessed by histological examination.

Results

Protein malnutrition resulted in a significant decrease of body weight, albumin level, villus length, intraepithelial lymphocytes counts (IELC) and superoxide dismutase level (liver and muscle). However, catalase activity increased significantly in muscle and gut but there was no difference in liver. In all organs, malondialdehyde and protein carbonyl content of malnourished group showed a significant increase. Interestingly, a normal protein diet for three weeks resulted in a return to normal levels of superoxide dismutase, albumin, malondialdehyde and protein carbonyl in all organs. Catalase activity decreased in the muscle and gut and exhibited no significant difference in the liver. The renutrition diet enhanced also the recovery of intestinal epithelium by increasing villus length. Hepatic damage of rats fed normal protein diet was markedly reduced (macrovesicular steatosis decreased by 45%).

Conclusion

The normal protein diet could improve the oxidant/antioxidant imbalance and organ damage induced by protein malnutrition.
  相似文献   

3.

Introduction

Physiological adaptations in the energy metabolism of dairy cows during the periparturient period are partly mediated by insulin resistance (IR), which may subsequently induce metabolic disorders postpartum. The molecular mechanisms underlying IR in dairy cows are largely unknown.

Objective

This study aimed to find a novel insight into the molecular mechanisms underlying IR in dairy cows during the periparturient period by analyzing the effects of prepartal overfeeding on the lipidomic profiles in the liver and adipose tissue (AT).

Methods

Sixteen cows were allocated to controlled-energy and high-energy feeding groups. Lipidomic profiling was conducted on liver and adipose tissue samples collected at 8 days prior to the predicted parturition, and 1 day (only AT) and 9 days after the actual parturition.

Results

Five ceramides (Cers) were identified to be significantly increased by prepartal overfeeding in AT in the analysis of the variance between groups within time points. Principal component-linear discriminant analysis showed that lipidomic profiles between the feeding groups were mainly characterized by phosphatidylcholines (PC), phosphatidylethanolamines (PE), lysophophosphatidylcholines (LysoPC), and lysophosphatidylethanolamines (LysoPE) in the liver, and by Cer, PE, and phosphatidylinositols (PI) in AT. Lipid class levels indicated that prepartal overfeeding elevated the concentration of PE, PI, LysoPC, LysoPE, and sphingomyelin in the liver, and increased the concentration of Cer in AT during the periparturient period.

Conclusion

Prepartal overfeeding significantly altered the concentrations of various sphingolipids, phospholipids, and lysophospholipids in the liver and AT of dairy cows during the periparturient period.
  相似文献   

4.

Background

Duchenne muscular dystrophy is a highly complex multi-system disease caused by primary abnormalities in the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle degeneration, this neuromuscular disorder is also associated with pathophysiological perturbations in many other organs including the liver. To determine potential proteome-wide alterations in liver tissue, we have used a comparative and mass spectrometry-based approach to study the dystrophic mdx-4cv mouse model of dystrophinopathy.

Methods

The comparative proteomic profiling of mdx-4cv versus wild type liver extracts was carried out with an Orbitrap Fusion Tribrid mass spectrometer. The distribution of identified liver proteins within protein families and potential protein interaction patterns were analysed by systems bioinformatics. Key findings on fatty acid binding proteins were confirmed by immunoblot analysis and immunofluorescence microscopy.

Results

The proteomic analysis revealed changes in a variety of protein families, affecting especially fatty acid, carbohydrate and amino acid metabolism, biotransformation, the cellular stress response and ion handling in the mdx-4cv liver. Drastically increased protein species were identified as fatty acid binding protein FABP5, ferritin and calumenin. Decreased liver proteins included phosphoglycerate kinase, apolipoprotein and perilipin. The drastic change in FABP5 was independently verified by immunoblotting and immunofluorescence microscopy.

Conclusions

The proteomic results presented here indicate that the intricate and multifaceted pathogenesis of the mdx-4cv model of dystrophinopathy is associated with secondary alterations in the liver affecting especially fatty acid transportation. Since FABP5 levels were also shown to be elevated in serum from dystrophic mice, this protein might be a useful indicator for monitoring liver changes in X-linked muscular dystrophy.
  相似文献   

5.

Objectives

Adult stem cells (ASCs) have great potential for tissue regeneration; however, comparative studies of ASCs from different niches are required to understand the characteristics of each population for their potential therapeutic uses.

Results

We compared the proliferation, stem cell marker expression, and differentiation potential of ASCs from bone marrow, skin dermis, and adipose tissue. ASCs from bone marrow and skin dermis showed 50–100 % increased proliferation in comparison to the ASCs from adipose tissues. Furthermore, ASCs from each stem cell niche showed differential expression of stem cell marker genes, and preferentially differentiated into cell types of their tissue of origin.

Conclusion

Different characters of each ASC might be major factors for their effective use for therapeutics and tissue regeneration.
  相似文献   

6.

Introduction

Maternal obesity is associated with a range of pregnancy complications, including fetal growth restriction (FGR), whereby a fetus fails to reach its genetically determined growth. Placental insufficiency and reduced nutrient transport play a role in the onset of FGR.

Objectives

Metabolomic profiling was used to reveal altered maternal and fetal metabolic pathways in a model of diet induced obesity during pregnancy, leading to reduced fetal growth.

Methods

We examined the metabolome of maternal and fetal livers, and placenta following a high fat and salt intake. Sprague–Dawley rats were assigned to (a) control diet (CD; 1 % salt, 10 % kcal from fat), (b) high salt diet (SD; 4 % salt, 10 % kcal from fat), (c) high fat diet (HF; 1 % salt, 45 % kcal from fat) or (d) high-fat high-salt diet (HFSD; 4 % salt, 45 % kcal from fat) 21 days prior to pregnancy and during gestation. Metabolites from maternal and fetal livers, and placenta were identified using gas and liquid chromatography combined with mass spectrometry.

Results

Maternal HF intake resulted in reduced fetal weight. Altered metabolite profiles were observed in the HF maternal and fetal liver, and placenta. Polyunsaturated fatty acid metabolism was significantly altered in maternal and fetal liver by maternal fat intake.

Conclusion

Excess of linoleic and α-linoleic acid (essential fatty acids) may be detrimental during placentation and associated with a reduction in fetal weight. Additionally, maternal, placental and fetal response to increased fat consumption seems likely to involve palmitoleic acid utilization as an adaptive response during maternal obesity.
  相似文献   

7.

Introduction

Intrahepatic cholestasis of pregnancy (ICP) is a common maternal liver disease; development can result in devastating consequences, including sudden fetal death and stillbirth. Currently, recognition of ICP only occurs following onset of clinical symptoms.

Objective

Investigate the maternal hair metabolome for predictive biomarkers of ICP.

Methods

The maternal hair metabolome (gestational age of sampling between 17 and 41 weeks) of 38 Chinese women with ICP and 46 pregnant controls was analysed using gas chromatography–mass spectrometry.

Results

Of 105 metabolites detected in hair, none were significantly associated with ICP.

Conclusion

Hair samples represent accumulative environmental exposure over time. Samples collected at the onset of ICP did not reveal any metabolic shifts, suggesting rapid development of the disease.
  相似文献   

8.

Purpose of review

Black yeast-like fungi are capable of causing a wide range of infections, including invasive disease. The diagnosis of infections caused by these species can be problematic. We review the changes in the nomenclature and taxonomy of these fungi, and methods used for detection and species identification that aid in diagnosis.

Recent findings

Molecular assays, including DNA barcode analysis and rolling circle amplification, have improved our ability to correctly identify these species. A proteomic approach using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has also shown promising results. While progress has been made with molecular techniques using direct specimens, data are currently limited.

Summary

Molecular and proteomic assays have improved the identification of black yeast-like fungi. However, improved molecular and proteomic databases and better assays for the detection and identification in direct specimens are needed to improve the diagnosis of disease caused by black yeast-like fungi.
  相似文献   

9.

Introduction

Poultry is one of the most consumed meat in the world and its related industry is always looking for ways to improve animal welfare and productivity. It is therefore essential to understand the metabolic response of the chicken to new feed formulas, various supplements, infections and treatments.

Objectives

As a basis for future research investigating the impact of diet and infections on chicken’s metabolism, we established a high-resolution proton nuclear magnetic resonance (NMR)-based metabolic atlas of the healthy chicken (Gallus gallus).

Methods

Metabolic extractions were performed prior to 1H-NMR and 2D NMR spectra acquisition on twelve biological matrices: liver, kidney, spleen, plasma, egg yolk and white, colon, caecum, faecal water, ileum, pectoral muscle and brain of 6 chickens. Metabolic profiles were then exhaustively characterized.

Results

Nearly 80 metabolites were identified. A cross-comparison of these matrices was performed to determine metabolic variations between and within each section and highlighted that only eight core metabolites were systematically found in every matrice.

Conclusion

This work constitutes a database for future NMR-based metabolomic investigations in relation to avian production and health.
  相似文献   

10.

Background

Liver models that closely mimic the in vivo microenvironment are useful for understanding liver functions, capabilities, and intercellular communication processes. Three-dimensional (3D) liver models assembled using hepatocytes and liver sinusoidal endothelial cells (LSECs) separated by a polyelectrolyte multilayer (PEM) provide a functional system while also permitting isolation of individual cell types for proteomic analyses.

Methods

To better understand the mechanisms and processes that underlie liver model function, hepatocytes were maintained as monolayers and 3D PEM-based formats in the presence or absence of primary LSECs. The resulting hepatocyte proteomes, the proteins in the PEM, and extracellular levels of urea, albumin and glucose after three days of culture were compared.

Results

All systems were ketogenic and found to release glucose. The presence of the PEM led to increases in proteins associated with both mitochondrial and peroxisomal-based β-oxidation. The PEMs also limited production of structural and migratory proteins associated with dedifferentiation. The presence of LSECs increased levels of Phase I and Phase II biotransformation enzymes as well as several proteins associated with the endoplasmic reticulum and extracellular matrix remodeling. The proteomic analysis of the PEMs indicated that there was no significant change after three days of culture. These results are discussed in relation to liver model function.

Conclusions

Heterotypic cell-cell and cell-ECM interactions exert different effects on hepatocyte functions and phenotypes.
  相似文献   

11.

Introduction

Feed optimization is a key step to the environmental and economic sustainability of aquaculture, especially for carnivorous species. Plant-derived ingredients can contribute to reduce costs and nitrogenous effluents while sparing wild fish stocks. However, the metabolic use of carbohydrates from vegetable sources by carnivorous fish is still not completely understood.

Objectives

We aimed to study the effects of diets with carbohydrates of different digestibilities, gelatinized starch (DS) and raw starch (RS), in the muscle metabolome of European seabass (Dicentrarchus labrax).

Methods

We followed an NMR-metabolomics approach, using two sample preparation procedures, the intact muscle (HRMAS) and the aqueous muscle extracts (1H NMR), to compare the variations in muscle metabolome between the two diets.

Results

In muscle, multivariate analysis revealed similar metabolome shifts for DS and RS diets, when compared with the control diet. HRMAS of intact muscle, which included both hydrophobic and hydrophilic metabolites, showed increased lipid in DS-fed fish by univariate analysis. Regardless of the nature of the starch, increased glycine and phenylalanine, and decreased proline were observed when compared to the Ctr diet. Combined univariate analysis of intact muscle and aqueous extracts indicated specific diet related changes in lipid and amino acid metabolism, consistent with increased dietary carbohydrate supplementation.

Conclusions

Due to differential sample processing, outputs differ in detail but provide complementary information. After tracing nutritional alterations by profiling fillet components, DS seems to be the most promising alternative to fishmeal-based diets in aquaculture. This approach should be reproducible for other farmed fish species and provide valuable information on nutritional and organoleptic properties of the final product.
  相似文献   

12.

Background

Ingestion of the poisonous weed ragwort (Senecio jacobea) by horses leads to irreversible liver damage. The principal toxins of ragwort are the pyrrolizidine alkaloids that are rapidly metabolised to highly reactive and cytotoxic pyrroles, which can escape into the circulation and bind to proteins. In this study a non-invasive in vitro model system has been developed to investigate whether pyrrole toxins induce specific modifications of equine blood proteins that are detectable by proteomic methods.

Results

One dimensional gel electrophoresis revealed a significant alteration in the equine plasma protein profile following pyrrole exposure and the formation of a high molecular weight protein aggregate. Using mass spectrometry and confirmation by western blotting the major components of this aggregate were identified as fibrinogen, serum albumin and transferrin.

Conclusion

These findings demonstrate that pyrrolic metabolites can modify equine plasma proteins. The high molecular weight aggregate may result from extensive inter- and intra-molecular cross-linking of fibrinogen with the pyrrole. This model has the potential to form the basis of a novel proteomic strategy aimed at identifying surrogate protein biomarkers of ragwort exposure in horses and other livestock.
  相似文献   

13.
14.

Background

Hepatitis B virus (HBV) is a global health problem, and infected patients if left untreated may develop cirrhosis and eventually hepatocellular carcinoma. This study aims to enlighten pathways associated with HBV related liver fibrosis for delineation of potential new therapeutic targets and biomarkers.

Methods

Tissue samples from 47 HBV infected patients with different fibrotic stages (F1 to F6) were enrolled for 2D-DIGE proteomic screening. Differentially expressed proteins were identified by mass spectrometry and verified by western blotting. Functional proteomic associations were analyzed by EnrichNet application.

Results

Fibrotic stage variations were observed for apolipoprotein A1 (APOA1), pyruvate kinase PKM (KPYM), glyceraldehyde 3-phospahate dehydrogenase (GAPDH), glutamate dehydrogenase (DHE3), aldehyde dehydrogenase (ALDH2), alcohol dehydrogenase (ALDH1A1), transferrin (TRFE), peroxiredoxin 3 (PRDX3), phenazine biosynthesis-like domain-containing protein (PBLD), immuglobulin kappa chain C region (IGKC), annexin A4 (ANXA4), keratin 5 (KRT5). Enrichment analysis with Reactome and Kegg databases highlighted the possible involvement of platelet release, glycolysis and HDL mediated lipid transport pathways. Moreover, string analysis revealed that HIF-1α (Hypoxia-inducible factor 1-alpha), one of the interacting partners of HBx (Hepatitis B X protein), may play a role in the altered glycolytic response and oxidative stress observed in liver fibrosis.

Conclusions

To our knowledge, this is the first protomic research that studies HBV infected fibrotic human liver tissues to investigate alterations in protein levels and affected pathways among different fibrotic stages. Observed changes in the glycolytic pathway caused by HBx presence and therefore its interactions with HIF-1α can be a target pathway for novel therapeutic purposes.
  相似文献   

15.

Introduction

Everolimus selectively inhibits mammalian target of rapamycin complex 1 (mTORC1) and exerts an antineoplastic effect. Metabolic disturbance has emerged as a common and unique side effect of everolimus.

Objectives

We used targeted metabolomic analysis to investigate the effects of everolimus on the intracellular glycometabolic pathway.

Methods

Mouse skeletal muscle cells (C2C12) were exposed to everolimus for 48 h, and changes in intracellular metabolites were determined by capillary electrophoresis time-of-flight mass spectrometry. mRNA abundance, protein expression and activity were measured for enzymes involved in glycometabolism and related pathways.

Results

Both extracellular and intracellular glucose levels increased with exposure to everolimus. Most intracellular glycometabolites were decreased by everolimus, including those involved in glycolysis and the pentose phosphate pathway, whereas no changes were observed in the tricarboxylic acid cycle. Everolimus suppressed mRNA expression of enzymes related to glycolysis, downstream of mTOR signaling enzymes and adenosine 5′-monophosphate protein kinases. The activity of key enzymes involved in glycolysis and the pentose phosphate pathway were decreased by everolimus. These results show that everolimus impairs glucose utilization in intracellular metabolism.

Conclusions

The present metabolomic analysis indicates that everolimus impairs glucose metabolism in muscle cells by lowering the activities of glycolysis and the pentose phosphate pathway.
  相似文献   

16.

Introduction

Data processing is one of the biggest problems in metabolomics, given the high number of samples analyzed and the need of multiple software packages for each step of the processing workflow.

Objectives

Merge in the same platform the steps required for metabolomics data processing.

Methods

KniMet is a workflow for the processing of mass spectrometry-metabolomics data based on the KNIME Analytics platform.

Results

The approach includes key steps to follow in metabolomics data processing: feature filtering, missing value imputation, normalization, batch correction and annotation.

Conclusion

KniMet provides the user with a local, modular and customizable workflow for the processing of both GC–MS and LC–MS open profiling data.
  相似文献   

17.

Introduction

Untargeted and targeted analyses are two classes of metabolic study. Both strategies have been advanced by high resolution mass spectrometers coupled with chromatography, which have the advantages of high mass sensitivity and accuracy. State-of-art methods for mass spectrometric data sets do not always quantify metabolites of interest in a targeted assay efficiently and accurately.

Objectives

TarMet can quantify targeted metabolites as well as their isotopologues through a reactive and user-friendly graphical user interface.

Methods

TarMet accepts vendor-neutral data files (NetCDF, mzXML and mzML) as inputs. Then it extracts ion chromatograms, detects peak position and bounds and confirms the metabolites via the isotope patterns. It can integrate peak areas for all isotopologues automatically.

Results

TarMet detects more isotopologues and quantify them better than state-of-art methods, and it can process isotope tracer assay well.

Conclusion

TarMet is a better tool for targeted metabolic and stable isotope tracer analyses.
  相似文献   

18.

Background

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. However, its molecular pathogenesis is incompletely characterized and clinical biomarkers remain scarce. The aims of these experiments were to identify and characterize liver protein alterations in an animal model of early, diet-related, liver injury and to assess novel candidate biomarkers in NAFLD patients.

Methods

Liver membrane and cytosolic protein fractions from high fat fed apolipoprotein E knockout (ApoE?/?) animals were analyzed by quantitative proteomics, utilizing isobaric tags for relative and absolute quantitation (iTRAQ) combined with nano-liquid chromatography and tandem mass spectrometry (nLC-MS/MS). Differential protein expression was confirmed independently by immunoblotting and immunohistochemistry in both murine tissue and biopsies from paediatric NAFLD patients. Candidate biomarkers were analyzed by enzyme-linked immunosorbent assay in serum from adult NAFLD patients.

Results

Through proteomic profiling, we identified decreased expression of hepatic glyoxalase 1 (GLO1) in a murine model. GLO1 protein expression was also found altered in tissue biopsies from paediatric NAFLD patients. In vitro experiments demonstrated that, in response to lipid loading in hepatocytes, GLO1 is first hyperacetylated then ubiquitinated and degraded, leading to an increase in reactive methylglyoxal. In a cohort of 59 biopsy-confirmed adult NAFLD patients, increased serum levels of the primary methylglyoxal-derived advanced glycation endproduct, hydroimidazolone (MG-H1) were significantly correlated with body mass index (r?=?0.520, p <?0.0001).

Conclusion

Collectively these results demonstrate the dysregulation of GLO1 in NAFLD and implicate the acetylation-ubquitination degradation pathway as the functional mechanism. Further investigation of the role of GLO1 in the molecular pathogenesis of NAFLD is warranted.
  相似文献   

19.

Background

Thyroid dysfunction is more common in the female population, however, the impact of sex on disease characteristics has rarely been addressed. Using a murine model, we asked whether sex has an influence on phenotypes, thyroid hormone status, and thyroid hormone tissue response in hyper- and hypothyroidism.

Methods

Hypo- and hyperthyroidism were induced in 5-month-old female and male wildtype C57BL/6N mice, by LoI/MMI/ClO4 ? or T4 i.p. treatment over 7 weeks, and control animals underwent sham treatment (N?=?8 animals/sex/treatment). Animals were investigated for impact of sex on body weight, food and water intake, body temperature, heart rate, behaviour (locomotor activity, motor coordination, and strength), liver function, serum thyroid hormone status, and cellular TH effects on gene expression in brown adipose tissue, heart, and liver.

Results

Male and female mice showed significant differences in behavioural, functional, metabolic, biochemical, and molecular traits of hyper- and hypothyroidism. Hyperthyroidism resulted in increased locomotor activity in female mice but decreased muscle strength and motor coordination preferably in male animals. Hypothyroidism led to increased water intake in male but not female mice and significantly higher serum cholesterol in male mice. Natural sex differences in body temperature, body weight gain, food and water intake were preserved under hyperthyroid conditions. In contrast, natural sex differences in heart rate disappeared with TH excess and deprivation. The variations of hyper- or hypothyroid traits of male and female mice were not explained by classical T3/T4 serum state. TH serum concentrations were significantly increased in female mice under hyperthyroidism, but no sex differences were found under eu- or hypothyroid conditions. Interestingly, analysis of expression of TH target genes and TH transporters revealed little sex dependency in heart, while sex differences in target genes were present in liver and brown adipose tissue in line with altered functional and metabolic traits of hyper- and hypothyroidism.

Conclusions

These data demonstrate that the phenotypes of hypo- and hyperthyroidism differ between male and female mice and indicate that sex is an important modifier of phenotypic manifestations.
  相似文献   

20.

Introduction

Atherosclerotic diseases are the leading cause of death worldwide. Biomarkers of atherosclerosis are required to monitor and prevent disease progression. While mass spectrometry is a promising technique to search for such biomarkers, its clinical application is hampered by the laborious processes for sample preparation and analysis.

Methods

We developed a rapid method to detect plasma metabolites by probe electrospray ionization mass spectrometry (PESI-MS), which employs an ambient ionization technique enabling atmospheric pressure rapid mass spectrometry. To create an automatic diagnosis system of atherosclerotic disorders, we applied machine learning techniques to the obtained spectra.

Results

Using our system, we successfully discriminated between rabbits with and without dyslipidemia. The causes of dyslipidemia (genetic lipoprotein receptor deficiency or dietary cholesterol overload) were also distinguishable by this method. Furthermore, after induction of atherosclerosis in rabbits with a cholesterol-rich diet, we were able to detect dynamic changes in plasma metabolites. The major metabolites detected by PESI-MS included cholesterol sulfate and a phospholipid (PE18:0/20:4), which are promising new biomarkers of atherosclerosis.

Conclusion

We developed a remarkably fast and easy method to detect potential new biomarkers of atherosclerosis in plasma using PESI-MS.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号