首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The aim of this study is to explore the expression of alpha-synuclein (α-synuclein) in benign, atypical, and anaplastic meningiomas and determine its role in the malignant progression of meningiomas.

Methods

Expression of α-synuclein was measured in 44 meningioma samples by real-time PCR analysis. The effects of overexpression or knockdown of α-synuclein on meningioma cell growth, invasiveness, and tumorigenicity were determined.

Results

Atypical and anaplastic meningiomas displayed significantly greater levels of α-synuclein mRNA, relative to benign tumors. Depletion of α-synuclein decreased cell proliferation and colony formation and promoted apoptosis in IOMM-Lee meningioma cells, whereas overexpression of α-synuclein facilitated cell proliferation and colony formation in CH-157MN meningioma cells. Silencing of α-synuclein attenuated IOMM-Lee cell migration and invasion. In contrast, ectopic expression of α-synuclein increased the invasiveness of CH-157MN cells. In vivo studies further demonstrated that downregulation of α-synuclein significantly retarded meningioma growth in nude mice. At the molecular level, the phosphorylation levels of Akt, mTOR, p70S6K and 4EBP were significantly decreased in α-synuclein-depleted IOMM-Lee cells.

Conclusions

In conclusion, α-synuclein upregulation contributes to aggressive phenotypes of meningiomas via the Akt/mTOR pathway and thus represents a potential therapeutic target for malignant meningiomas.
  相似文献   

2.

Background

Prevalence of fibroproliferative diseases, including chronic kidney disease is rapidly increasing and has become a major public health problem worldwide. Fibroproliferative diseases are characterized by increased expression of α smooth muscle actin (α-SMA) that belongs to the family of the six conserved actin isoforms showing high degree homology. The aim of the present study was to develop real-time PCRs that clearly discriminate α-SMA and ß-actin from other actin isoforms.

Results

Real-time PCRs using self-designed mouse, human and rat specific α-SMA or ß-actin primer pairs resulted in the specific amplification of the artificial DNA templates corresponding to mouse, human or rat α-SMA or ß-actin, however ß-actin showed cross-reaction with the housekeeping γ-cyto-actin. We have shown that the use of improperly designed literary primer pairs significantly affects the results of PCRs measuring mRNA expression of α-SMA or ß-actin in the kidney of mice underwent UUO.

Conclusion

We developed a set of carefully designed primer pairs and PCR conditions to selectively determine the expression of mouse, human or rat α-SMA and ß-actin isoforms. We demonstrated the importance of primer specificity in experiments where the results are normalized to the expression of ß-actin especially when fibrosis and thus increased expression of α-SMA is occur.
  相似文献   

3.

Objective

To investigate the roles of miR-145 in lung adenocarcinoma (LAC) and to clarify the regulation of N-cadherin by miR-145.

Results

In 57 paired clinical LAC tissues, diminished miR-145 was significantly correlated with the lymph node metastasis and was negatively correlated with N-cadherin mRNA level expression. Wound healing and transwell assays revealed a reduced capability of tumor metastasis induced by miR-145 in LAC. miR-145 negatively regulated the invasion of cell lines through targeting N-cadherin by directly binding to its 3′-untranslated region. Silencing of N-cadherin inhibited invasion and migration of LAC cell lines similar to miR-145 overexpression.

Conclusions

MiR-145 could inhibit invasion and migration of lung adenocarcinoma cell lines by directly targeting N-cadherin.
  相似文献   

4.

Objectives

To build a three-dimensional co-culture model in a microfluidic device for cancer research and evaluate its feasibility by investigating cancer stem-like cells (SCs) induced migration of human umbilical vein endothelial cells (ECs).

Results

The microfluidic device provided two-dimensional and three-dimensional (2D/3D) culture and co-culture environments without affecting cell viability. The device also provided an effective concentration for the chemiotaxis of cells, and to support real-time monitoring of cell behavior. In this model, SCs significantly increased the migration area of ECs with a hepatocarcinoma cell line (MHCC97H; MCs). The presence of ECs also induced both MCs and SCs invasion into Matrigel. The migration area of MCs and SCs significantly increased when co-cultured with ECs.

Conclusions

This 3D co-culture microfluidic model is a suitable model in cancer research. Compared with MCs, SCs had greater potential in inducing EC migration and interacting with ECs.
  相似文献   

5.

Background

Several recent studies have demonstrated the great potential of bone marrow cells in regenerative medicine, not only for their ability to differentiate to match a damaged cell type, but also because they synthesize and release various growth factors and cytokines.We examined the effect of bone marrow cell-conditioned medium in the healing process, especially in terms of fibroblast proliferation and migration.

Methods

These in vitro studies consisted of co-culture (without direct contact) of dermal fibroblasts with mononuclear bone marrow cells and the use of conditioned medium obtained from these cultures in a scratch wound model.

Results

Mononuclear cells were found to increase the proliferation of fibroblasts, and the conditioned medium showed a stimulatory effect on the migration of fibroblasts.

Conclusion

When considered together with the observed increase in growth factor levels in conditioned medium, it appears that these cells act through a paracrine mechanism.
  相似文献   

6.

Background

The pathological features of Parkinson’s disease (PD) include an abnormal accumulation of α-synuclein in the surviving dopaminergic neurons. Though PD is multifactorial, several epidemiological reports show an increased incidence of PD with co-exposure to pesticides such as Maneb and paraquat (MP). In pesticide-related PD, mitochondrial dysfunction and α-synuclein oligomers have been strongly implicated, but the link between the two has not yet been understood. Similarly, the biological effects of α-synuclein or its radical chemistry in PD is largely unknown. Mitochondrial dysfunction during PD pathogenesis leads to release of cytochrome c in the cytosol. Once in the cytosol, cytochrome c has one of two fates: It either binds to apaf1 and initiates apoptosis or can act as a peroxidase. We hypothesized that as a peroxidase, cytochrome c leaked out from mitochondria can form radicals on α-synuclein and initiate its oligomerization.

Method

Samples from controls, and MP co-exposed wild-type and α-synuclein knockout mice were studied using immuno-spin trapping, confocal microscopy, immunohistochemistry, and microarray experiments.

Results

Experiments with MP co-exposed mice showed cytochrome c release in cytosol and its co-localization with α-synuclein. Subsequently, we used immuno-spin trapping method to detect the formation of α-synuclein radical in samples from an in vitro reaction mixture consisting of cytochrome c, α-synuclein, and hydrogen peroxide. These experiments indicated that cytochrome c plays a role in α-synuclein radical formation and oligomerization. Experiments with MP co-exposed α-synuclein knockout mice, in which cytochrome c-α synuclein co-localization and interaction cannot occur, mice showed diminished protein radical formation and neuronal death, compared to wild-type MP co-exposed mice. Microarray data from MP co-exposed wild-type and α-synuclein knockout mice further showed that the absence of α-synuclein per se or its co-localization with cytochrome c confers protection from MP co-exposure, as several important pathways were unaffected in α-synuclein knockout mice.

Conclusions

Altogether, these results show that peroxidase activity of cytochrome c contributes to α-synuclein radical formation and oligomerization, and that α-synuclein, through its co-localization with cytochrome c or on its own, affects several biological pathways which contribute to increased neuronal death in an MP-induced model of PD.
  相似文献   

7.

Introduction

Zearalenone (ZEN) is one of the most widely distributed toxins that contaminates many crops and foods. Its major metabolites are α-Zearalenol (α-zol) and β-Zearalenol. Previous studies showed that ZEN and α-zol have estrogenic properties and are able to induce growth promoting effect in breast tissues.

Objectivies

Considering that tumorigenesis is dependent on the reprogramming of cellular metabolism and that the evaluation of the cellular metabolome is useful to understand the metabolic changes that can occur during the cancer development and progression or after treatments, aim of our work is to study, for the first time, the effects of α-zol on the metabolomic profile of an estrogen positive breast cancer cell line, MCF-7, and of an estrogen negative breast cancer cell lines MDA-MB231.

Methods

Firstly, we tested the effects of α-zol on the cell viability after 24, 48 and 72 h of treatments with 10?10, 10?8 and 10?6 M concentrations on breast cancer MCF-7 and MDA-MB231 cell lines in comparison to human non-cancerous breast MCF10A cell line. Then, we evaluated cell cycle progression, levels of reactive oxygen species (ROS) and the metabolomic profiling by 1H-NMR approach on MCF-7 and MDA-MB231 before and after 72 h treatments. Principal component analysis was used to compare the obtained spectra.

Results

α-zol is resulted able to induce: (i) an increase of the cell viability on MCF-7 cells mainly after 72 h treatment, (ii) a slight decrease of the cell viability on MDA-MB231 cells, and (iii) an increase of cells in S phase of the cell cycle and of ROS only in MCF-7 cells. Moreover, the evaluation of metabolomics profile evidenced that after treatment with α-zol the levels of some metabolites increased in MCF-7 cells whereas decreased slightly in MDA-MB231 cells.

Conclusions

Our results showed that α-zol was able to increase the protein biosynthesis as well as the lipid metabolism in MCF-7 cells, and, hence, to induce an estrogen positive breast cancer progression.
  相似文献   

8.

Objectives

To evaluate the transduction efficiency of human umbilical cord-derived, late endothelial progenitor cells late (HUCB-late EPCs) with nine recombinant adeno-associated virus (rAAV) serotypes and the ability of proliferation and migration of the cells after transduction.

Results

rAAV2 and rAAV6 showed a greater ability than other serotypes to transduce late EPCs (P < 0.05). After transduction, cell proliferation ability weakened (P < 0.05), but the ability of migration to stromal cell-derived factor (SDF-1) unchanged.

Conclusion

There is an advantage of choosing the optimal rAAV serotype as a gene vector to alter the biologic characteristics of late EPCs.
  相似文献   

9.
10.

Background

Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancy. Semaphorin 3F (SEMA3F) is highly conserved but present at a lower level in various cancers than in healthy tissues. While it has been reported that SEMA3F is involved in cancer cell proliferation, migration and invasion, its function in OSCC remains unknown.

Methods

The expression of SEMA3F in OSCC tissues and OSCC-derived cells was analyzed using qRT-PCR and western blotting. Using SAS and HSC2 cells, we also monitored the effect of SEMA3F on OSCC cell proliferation, migration and invasion using MTT, colony formation and transwell assays. The function of SEMA3F in OSCC tumor formation was also assessed in vivo.

Results

SEMA3F was significantly downregulated in OSCC tissues and OSCC-derived cells. SEMA3F shows growth inhibitory activity in SAS and HSC2 cells and may act as a tumor suppressor. It can inhibit the migration and invasion potential of OSCC cells. Our results also demonstrate that SEMA3F can suppress the growth of OSCC cells in vivo.

Conclusions

This study revealed that SEMA3F plays a role as a tumor suppressor in OSCC cell proliferation, migration and invasion. Our finding provides new insight into the progression of OSCC. Therapeutically, SEMA3F has some potential as a target for OSCC treatment, given sufficient future research.
  相似文献   

11.

Background

EBP50 and NHERF2 adaptor proteins are incriminated in various signaling pathways of the cell. They can bind ERM proteins and mediate ERM-membrane protein interactions.

Results

Binding of ERM to EBP50 and NHERF2 was compared in pulmonary artery endothelial cells by immunoprecipitation. NHERF2 associates with all three ERM, but EBP50 appeared to be a weak binding partner if at all. Furthermore, we detected co-localization of NHERF2 and phospho-ERM at the cell membrane and in the filopodia of dividing cells. Silencing of NHERF2 prevented agonist or angiogenesis induced phosphorylation of ERM, while overexpression of the adaptor elevated the phosphorylation level of ERM, likely catalyzed by Rho kinase 2, which co-immunoprecipitated with NHERF2/ERM in control EC, but did not bind to ERM in NHERF2 depleted cells. Dependence of ERM phosphorylation on NHERF2 was also shown in Matrigel tube formation assay, and NHERF2 was proved to be important in angiogenesis as well. Furthermore, when NHERF2 was depleted or cells were overexpressing a mutant form of NHERF2 unable to bind ERM, we found attenuated cell attachment with ECIS measurements, while it was supported by overexpression of wild type NHERF2.

Conclusions

Pivotal role of NHERF2 in the phosphorylation process of ERM in pulmonary artery endothelial cells is shown. We propose that NHERF2 provides a common anchoring surface for ERM and Rho kinase 2. Our results demonstrate the essential role of NHERF2 in endothelial cell adhesion/migration and angiogenesis.
  相似文献   

12.

Objectives

To explore therapeutic effects of conditioned medium from human umbilical cord mesenchymal stem cells (hUC-MSCs) on nasal mucosa radiation damage both in vivo and in vitro.

Results

The mucus cilia clearance time (7 and 30 days), degree of mucosal edema (7, 30, 90 and 180 days), cilia coverage (180 days) of concentrated conditioned medium group improved compared with radiotherapy control group. The proliferation and migration abilities of irradiated and non-irradiated nasal epithelial cells significantly increased after culture in bronchial epithelial cell growth medium (BEGM) containing 10% conditioned medium of hUC-MSCs compared to cells cultured in BEGM alone.

Conclusions

Soluble factors secreted by hUC-MSCs may promote nasal epithelial cell proliferation and migration. Intranasal administration of hUC-MSC conditioned medium effectively repairs nasal mucosa radiation damage.
  相似文献   

13.

Background

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third most common cause of cancer-related death worldwide. The 5-year survival rate remains low despite considerable research into treatments of HCC, including surgery, radiotherapy and chemotherapy. Many mechanisms within HCC still require investigation, including the influence of hypoxia, which has a crucial role in many cancers and is associated with metastasis. Hypoxia inducible factor-1α (HIF-1α) is known to regulate the expression of many chemokines, including interleukin-8 (IL-8), which is associated with tumor metastasis. Although many studies have reported that HIF-1α is associated with HCC migration and invasion, the underlying mechanisms remain unknown.

Methods

The expression level of HIF-1α was determined in HCC cells. The correlation of IL-8 and HIF-1α expressions was assessed via knockdown of HIF-1α. HCC cells were also used to assess the influence of HIF-1α on HCC cell migration and invasion. LY294002, an inhibitor of the Akt pathway, was used to confirm the associated signaling pathways.

Results

We observed a significant attenuation of cell migration and invasion after silencing of HIF-1α. Exogenously expressing IL-8 restored migration and invasion. Akt was found to be involved in this process.

Conclusion

Hypoxia promotes HCC cell migration and invasion through the HIF-1α–IL-8–Akt axis.
  相似文献   

14.

Background

We have reported that the phosphatidylinositol-3 kinase (PI3K)/Akt/RhoA signaling pathway mediates Wnt5a-induced cell migration of osteosarcoma cells. However, the specific receptors responding to Wnt5a ligand remain poorly defined in osteosarcoma metastasis.

Methods

Wound healing assays were used to measure the migration rate of osteosarcoma cells transfected with shRNA or siRNA specific against ROR2 or indicated constructs. We evaluated the RhoA activation in osteosarcoma MG-63 and U2OS cells with RhoA activation assay. A panel of inhibitors of PI3K and Akt treated osteosarcoma cells and blocked kinase activity. Western blotting assays were employed to measure the expression and activation of Akt. Clonogenic assays were used to measure the cell proliferation of ROR2-knockdown or ROR2-overexpressed osteosarcoma cells.

Results

Wnt5a-induced osteosarcoma cell migration was largely abolished by shRNA or siRNA specific against ROR2. Overexpression of RhoA-CA (GFP-RhoA-V14) was able to rescue the Wnt5a-induced cell migration blocked by ROR2 knockdown. The Wnt5a-induced activation of RhoA was mostly blocked by ROR2 knockdown, and elevated by ROR2 overexpression, respectively. Furthermore, we found that Wnt5a-induced cell migration was significantly retarded by RhoA-siRNA transfection or pretreatment of HS-173 (PI3Kα inhibitor), MK-2206 (Akt inhibitor), A-674563 (Akt1 inhibitor), or CCT128930 (Akt2 inhibitor). The activation of Akt was upregulated or downregulated by transfected with ROR2-Flag or ROR2-siRNA, respectively. Lastly, Wnt5a/ROR2 signaling does not alter the cell proliferation of MG-63 osteosarcoma cells.

Conclusions

Taken together, we demonstrate that ROR2 receptor responding to Wnt5a ligand activates PI3K/Akt/RhoA signaling and promotes the migration of osteosarcoma cells.
  相似文献   

15.

Background

α-Santalol, an active component of sandalwood oil, has shown chemopreventive effects on skin cancer in different murine models. However, effects of α-santalol on cell cycle have not been studied. Thus, the objective of this study was to investigate effects of α-santalol on cell cycle progression in both p53 mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells to elucidate the mechanism(s) of action.

Methods

MTT assay was used to determine cell viability in A431 cells and UACC-62; fluorescence-activated cell sorting (FACS) analysis of propidium iodide staining was used for determining cell cycle distribution in A431 cells and UACC-62 cells; immunoblotting was used for determining the expression of various proteins and protein complexes involved in the cell cycle progression; siRNA were used to knockdown of p21 or p53 in A431 and UACC-62 cells and immunofluorescence microscopy was used to investigate microtubules in UACC-62 cells.

Results

α-Santalol at 50-100 μM decreased cell viability from 24 h treatment and α-santalol at 50 μM-75 μM induced G2/M phase cell cycle arrest from 6 h treatment in both A431 and UACC-62 cells. α-Santalol altered expressions of cell cycle proteins such as cyclin A, cyclin B1, Cdc2, Cdc25c, p-Cdc25c and Cdk2. All of these proteins are critical for G2/M transition. α-Santalol treatment up-regulated the expression of p21 and suppressed expressions of mutated p53 in A431 cells; whereas, α-santalol treatment increased expressions of wild-type p53 in UACC-62 cells. Knockdown of p21 in A431 cells, knockdown of p21 and p53 in UACC-62 cells did not affect cell cycle arrest caused by α-santalol. Furthermore, α-santalol caused depolymerization of microtubules similar to vinblastine in UACC-62 cells.

Conclusions

This study for the first time identifies effects of α-santalol in G2/M phase arrest and describes detailed mechanisms of G2/M phase arrest by this agent, which might be contributing to its overall cancer preventive efficacy in various mouse skin cancer models.
  相似文献   

16.

Objective

To study the effects of recombinant neuritin expressed by Pichia pastoris GS115 on the senescence, apoptosis, proliferation, and migration associated with rat bone marrow-derived mesenchymal stem cells (BMSCs).

Results

Recombinant neuritin was purified by Ni-affinity chromatography and identified by western blot and MALDI-TOF spectrometry. The effects of recombinant neuritin on senescence, apoptosis, proliferation, and migration of rat BMSCs WERE investigated. β-Galactosidase staining indicated that recombinant neuritin administration significantly inhibited BMSCs senescence at 1 μg neuritin/ml. Additionally, recombinant neuritin reduced the number of apoptotic cells at the early stage according to Annexin V/propidium iodide staining and inhibited cell proliferation according to MTT assay results. Moreover wound healing assay results showed that recombinant neuritin promoted BMSCs migration in the neuritin-treatment group.

Conclusion

Recombinant neuritin affects the senescence, apoptosis, proliferation, migration of rat BMSCs. Our findings offer insight into neuritin function outside of the nervous system.
  相似文献   

17.
18.

Background

Kallistatin is a serine proteinase inhibitor and heparin-binding protein. It is considered an endogenous angiogenic inhibitor. In addition, multiple studies demonstrated that kallistatin directly inhibits cancer cell growth. However, the molecular mechanisms underlying these effects remain unclear.

Methods

Pull-down, immunoprecipitation, and immunoblotting were used for binding experiments. To elucidate the mechanisms, integrin β3 knockdown (siRNA) or blockage (antibody treatment) on the cell surface of small the cell lung cancer NCI-H446 cell line was used.

Results

Interestingly, kallistatin was capable of binding integrin β3 on the cell surface of NCI-H446 cells. Meanwhile, integrin β3 knockdown or blockage resulted in loss of antitumor activities induced by kallistatin. Furthermore, kallistatin suppressed tyrosine phosphorylation of integrin β3 and its downstream signaling pathways, including FAK/-Src, AKT and Erk/MAPK. Viability, proliferation and migration of NCI-H446 cells were inhibited by kallistatin, with Bcl-2 and Grb2 downregulation, and Bax, cleaved caspase-9 and caspase 3 upregulation.

Conclusions

These findings reveal a novel role for kallistatin in preventing small cell lung cancer growth and mobility, by direct interaction with integrin β3, leading to blockade of the related signaling pathway.
  相似文献   

19.

Objectives

To investigate whether miR-1260b can regulate migration and invasion of hepatocellular carcinoma (HCC) by targeting RGS22.

Results

miR-1260b was up-regulated in HCC tissues compared with their corresponding non-cancerous tissues. Over-expression of miR-1260b increased migration and invasion of HepG2 and SMMC-7721 cells associated with HCC. Regulator of G-protein signaling 22 (RGS22) was identified as a directly target of miR-1260b and was inhibited by miR-1260b. Knockdown of RGS22 increased proliferation of HCC cells.

Conclusions

The new identified miR-1260b/RGS22 axis provides useful therapeutic methods for treatment of HCC deepening on our understanding of underlying mechanisms of HCC tumorigenesis.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号