首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change alters species distributions, causing plants and animals to move north or to higher elevations with current warming. Bioclimatic models predict species distributions based on extant realized niches and assume niche conservation. Here, we evaluate if proxies for niches (i.e., range areas) are conserved at the family level through deep time, from the Eocene to the Pleistocene. We analyze the occurrence of all mammalian families in the continental USA, calculating range area, percent range area occupied, range area rank, and range polygon centroids during each epoch. Percent range area occupied significantly increases from the Oligocene to the Miocene and again from the Pliocene to the Pleistocene; however, mammalian families maintain statistical concordance between rank orders across time. Families with greater taxonomic diversity occupy a greater percent of available range area during each epoch and net changes in taxonomic diversity are significantly positively related to changes in percent range area occupied from the Eocene to the Pleistocene. Furthermore, gains and losses in generic and species diversity are remarkably consistent with ~2.3 species gained per generic increase. Centroids demonstrate southeastern shifts from the Eocene through the Pleistocene that may correspond to major environmental events and/or climate changes during the Cenozoic. These results demonstrate range conservation at the family level and support the idea that niche conservation at higher taxonomic levels operates over deep time and may be controlled by life history traits. Furthermore, families containing megafauna and/or terminal Pleistocene extinction victims do not incur significantly greater declines in range area rank than families containing only smaller taxa and/or only survivors, from the Pliocene to Pleistocene. Collectively, these data evince the resilience of families to climate and/or environmental change in deep time, the absence of terminal Pleistocene "extinction prone" families, and provide valuable insights to understanding mammalian responses to current climate change.  相似文献   

2.
Groups of Israeli and Australian science educationists, practising secondary school science teachers, practising scientists, and science graduates preparing to become science teachers were questioned as to the suitability of teleologically and anthropomorphically formulated statements for inclusion in fourth/fifth-form (14–16 year olds) level study material. Respondents' awareness of the dangers involved (i.e. literal acceptance by pupils of such statements) was acute in the science educationist group, but progressively less so with the teachers, the scientists, and the prospective teachers. It was recommended that all persons connected with science teaching become more aware of the problem, in particular persons engaged in teacher training, and those responsible for preparing texts.  相似文献   

3.
4.
5.
In certain cases the extrapolation into the geological past of conditions and processes relevant to present-day ecology is not automatically valid. Do anatomical designs show improvements through time? How do we treat fossil organisms with no living parallels? What might be the influence of shifts in atmospheric composition? If the end-Cretaceous extinctions are caused by bolide impact, why does ecological trauma persist for hundreds of thousands of years? What was the ecology of the 'Cambrian explosion'? Has the role of competition been seriously underplayed? Ancient ecosystems may differ from those of today in a variety of unexpected ways.  相似文献   

6.
Lentiviruses are a distinctive genus of retroviruses that cause chronic, persistent infections in mammals, including humans. The emergence of pandemic HIV type-1 (HIV-1) infection during the late 20th century shaped a view of lentiviruses as 'modern' viruses. However, recent research has revealed an entirely different perspective, elucidating aspects of an evolutionary relationship with mammals that extends across many millions of years. Such deep evolutionary history is likely to be typical of many host-virus systems, fundamentally underpinning their interactions in the present day. For this reason, establishing the deep history of virus and host interaction is key to developing a fully informed approach to tackling viral diseases. Here, I use the example of lentiviruses to illustrate how paleovirological, geographic and genetic calibrations allow observations of virus and host interaction across a wide range of temporal and spatial scales to be integrated into a coherent ecological and evolutionary framework.  相似文献   

7.
With the completion of the human and a few model organisms' genomes, and with the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time-based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Our method requires approximately 6 . N byte memory and a computational time of N log N to extract all the repeat-related and periodic or quasi-periodic features from a sequence of length N without any prior knowledge on the consensus sequence of those features, hence enables us to carry out sequence analysis on the whole genomic scale by a PC.  相似文献   

8.
Lukas J  Lukas C  Bartek J 《DNA Repair》2004,3(8-9):997-1007
The major mission of the cell division cycle is a faithful and complete duplication of the genome followed by an equal partitioning of chromosomes to subsequent cell generations. In this review, we discuss the advances in our understanding of how mammalian cells control the fidelity of these fundamental processes when exposed to diverse genotoxic insults. We focus on the most recent insights into the molecular pathways that link the sites of DNA lesions with the cell cycle machinery in specific phases of the cell cycle. We also highlight the potential of a new technology allowing direct visualization of molecular interactions and redistribution of checkpoint proteins in live cell nuclei, and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal organization of the DNA damage response network.  相似文献   

9.
The recent increase in accessibility and scale of genetic data available through next-generation sequencing (NGS) technology has transformed biological inquiry. As a direct result, the application and analysis of NGS data has quickly become an important skill for future scientists. However, the steep learning curve for applying NGS technology to biological questions, including the complexity of sample preparation for sequencing and the analysis of large data sets, are deterrents to the integration of NGS into undergraduate education. Here, we present a course-based undergraduate research experience (CURE) designed to aid in overcoming these limitations through NGS investigations of prokaryotic diversity. Specifically, we use 16S rRNA sequencing to explore patterns of diversity stemming from student-directed hypothesis development. This CURE addresses three learning objectives: (1) it provides a forum for experimental design hypothesis generation, (2) it introduces modern genomic tools through a hands-on experience generating an NGS data-set, and (3) it provides students with an introductory experience in bioinformatics.  相似文献   

10.

Background

Epithelial invagination is important for initiation of ectodermal organogenesis. Although many factors regulate ectodermal organogenesis, there is not any report about their functions in real-time study. Electric cell-substrate impedance sensing (ECIS), a non-invasive, real-time surveillance system, had been used to detect changes in organ cell layer thickness through quantitative monitoring of the impedance of a cell-to-microelectrode interface over time. It was shown to be a good method for identifying significant real-time changes of cells. The purpose of this study is to establish a combined bioengineered organ-ECIS model for investigating the real time effects of fibroblast growth factor-9 (FGF-9) on epithelial invagination in bioengineered ectodermal organs. We dissected epithelial and mesenchymal cells from stage E14.5 murine molar tooth germs and identified the real-time effects of FGF-9 on epithelial-mesenchymal interactions using this combined bioengineered organ-ECIS model.

Results

Measurement of bioengineered ectodermal organ thickness showed that Fibroblast growth factor-9 (FGF-9) accelerates epithelial invagination in reaggregated mesenchymal cell layer within 3 days. Gene expression analysis revealed that FGF-9 stimulates and sustains early Ameloblastin and Amelogenin expression during odontogenesis.

Conclusions

This is the first real-time study to show that, FGF-9 plays an important role in epithelial invagination and initiates ectodermal organogenesis. Based on these findings, we suggest FGF-9 can be applied for further study in ectodermal organ regeneration, and we also proposed that the ‘FGF-BMP balancing system’ is important for manipulating the morphogenesis of ectodermal organs. The combined bioengineered organ-ECIS model is a promising method for ectodermal organ engineering and regeneration research.  相似文献   

11.
In this work, we describe the use of several strategies employing the philosophies of active learning and problem-based learning (PBL) that may be used to improve the teaching of metabolic biochemistry to medical and nutritional undergraduate students. The main activities are as follows: 1) a seminar/poster system in a mini-congress format (using topics of applied biochemistry); 2) a true/false applied biochemistry exam (written by peer tutors); 3) a 9-h exam on metabolism (based in real publications); 4) the Advanced Biochemistry course (directed to peer tutors, where students learn how to read and criticize real medical papers); 5) experiments about nutrition and metabolism, using students as volunteers, and about free radicals (real science for students); 6) the BioBio blog (taking advantage of the "web age," this enhances out of class exchanges of information between the professor, students, and peer tutors); 7) student lectures on public health issues and metabolic disorders directed to the community and lay people; and 8) the BioBio quiz show. The main objective of these activities is to provide students with a more practical and interesting approach to biochemistry, such as the application of theoretical knowledge to real situations (diseases, experiments, media information, and scientific discoveries). In addition, we emphasize the importance of peer tutor activities for optimized learning of both students and peer tutors, the importance of a closer interaction between students and teaching staff, and the necessity to initiate students precociously in two broad fields of medical activity: "real" basic science and contact with the public (also helping students--future doctors and nutritionists--to be able to communicate with lay people). Most activities were evaluated by the students through written questionnaires and informal conversations, along various semesters, indicating good acceptance and approval of these methods. Good student scores in the biochemistry exams and seminars indicated that these activities are also working as valid educational tools.  相似文献   

12.
Inferring insect pollination from compression fossils and amber inclusions is difficult because of a lack of consensus on defining an insect pollinator and the challenge of recognizing this ecological relationship in deep time. We propose a conceptual definition for such insects and an operational classification into pollinator or presumed pollinator. Using this approach, we identified 15 insect families that include fossil pollinators and show that pollination relationships have existed since at least the Upper Jurassic (~163 Ma). Insects prior to this can only be classified as presumed pollinators. This gives a more nuanced insight into the origin and evolution of an ecological relationship that is vital to the establishment, composition and conservation of modern terrestrial ecosystems.  相似文献   

13.
The consideration of some of the earliest structural topics has been produced in a general book of Biochemistry. Fischer's convention about stereoisomers is well explained for glyceraldehyde. The convention is also assumed for other sugars with more than one asymetric carbon. The fact that ‘the horizontal bonds extend forward from the plane of the paper and the vertical bonds extend to the rear’ is a difficult concept for two-dimensional representation. In our experience, the visualization of sugars generated by computer programs of molecular modelling helps students to understand the absolute configuration of the sugar and Fischer's convention for bidimensional projections. In addition, it allows discussion about the possibilities for sugar cyclation. In this report, we encourage textbook authors to introduce sugar structures generated by computer.  相似文献   

14.
15.
In their senior year, biochemistry majors take “Recent Advances in Biochemistry Related to Societal Issues” in which new advances in biochemical sciences are explored through the reading and presenting of recent articles from the literature. Emphasis is placed on the analysis and interpretation of experimental results and the ethical and societal implications of the work including the significance of the findings to the improvement of life. To fulfill the objectives of the course, a group project was implemented in which the goal was to write a dialogue that explores one area in which advances in biochemical research give rise to ethical and societal considerations. This assignment required the groups to research the topics and then creatively integrate the information into a dialogue format representing different views on the subject. The dialogue was presented to the rest of the class and invited guests in skit format and then a discussion followed. Based upon evaluations, the project was regarded highly by the students. The assignment, group and topic selection, examples of presentations and issues raised during discussions, and results from student and audience evaluations will be discussed.  相似文献   

16.
Photoperiodism is a process whereby organisms are able to use both absolute measures of day length and the direction of day length change as a basis for regulating seasonal changes in physiology and behavior. The use of day length cues allows organisms to essentially track time-of-year and to "anticipate" relatively predictable annual variations in important environmental parameters. Thus, adaptive types of seasonal biological changes can be molded through evolution to fit annual environmental cycles. Studies of the formal properties of photoperiodic mechanisms have revealed that most organisms use circadian oscillators to measure day length. Two types of paradigms, designated as the external and internal coincidence models, have been proposed to account for photoperiodic time measurement by a circadian mechanism. Both models postulate that the timing of light exposure, rather than the total amount of light, is critical to the organism's perception of day length. In mammals, a circadian oscillator(s) in the suprachiasmatic nucleus of the hypothalamus receives photic stimuli via the retinohypothalamic tract. The circadian system regulates the rhythmic secretion of the pineal hormone, melatonin. Melatonin is secreted at night, and the duration of secretion varies in inverse relation to day length; thus, photoperiod information is "encoded" in the melatonin signal. The melatonin signal is presumably "decoded" in melatonin target tissues that are involved in the regulation of a variety of seasonal responses. Variations in photoperiodic response are seen not only between species but also between breeding populations within a species and between individuals within single breeding populations. Sometimes these variations appear to be the result of differences in responsiveness to melatonin; in other cases, variations in photoperiod responsiveness may depend on differences in patterns of melatonin secretion related to circadian variation. Sites of action for melatonin in mammals are not yet well characterized, but potential targets of particular interest include the pars tuberalis of the pituitary gland and the suprachiasmatic nuclei. Both these sites exhibit uptake of radiolabeled melatonin in various species, and there is some evidence for direct action of melatonin at these sites. However, it appears that there are species differences with respect to the importance and specific functions of various melatonin target sites.  相似文献   

17.
Modularization of different functional segments in plasmid vectors eases creation of genetic tools á la carte for Pseudomonas.
  相似文献   

18.
Theran P 《Lab animal》2001,30(7):38-40, 42
The author proposes a cultural shift within biomedical research, suggesting that scientists should view the use of any animal as a privilege only to be used under careful scrutiny and after a thorough search for alternatives. He further suggests that the IACUC can be a vehicle for such a change.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号