首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the relationship between mitochondrial NADH (NADH(m)) and cardiac work output, NADH(m) and the amplitude and frequency of the contractile response of electrically paced rat heart cells were measured at 25 degrees C. With 5.4 mM glucose plus 2 mM beta-hydroxybutyrate, NADH(m) was reversibly decreased by 23%, and the amplitude of contraction was reversibly decreased by 27% during 4-Hz pacing. With glucose plus 2 mM pyruvate or with 10 mM 2-deoxy-D-glucose, NADH(m) was maintained during rapid pacing, and the contractile amplitude remained high. Phosphocreatine levels decreased with 2-deoxy-D-glucose administration but not with rapid pacing. Respiration increased to meet the increased ATP demand at 30 degrees C. The data suggest that 1) when NADH(m) is decreased during rapid pacing with defined substrates, the amplitude of contraction is decreased; 2) the amplitude of contraction during electrical pacing does not change with rate of pacing when both the ATP and NADH(m) levels are continuously replenished; and 3) the replenishment of NADH(m) during pacing with physiological substrates may be rate-limited by substrate supply to mitochondrial dehydrogenases. During activation of mitochondrial dehydrogenases, or a significant increase in free ADP induced by 2-deoxy-D-glucose, this rate limitation is bypassed or overcome.  相似文献   

2.
We have previously shown that increased cardiac work initially caused a rapid Ca(2+)-independent fall of mitochondrial [NADH] ([NADH](m)) to a minimum level, and this was followed by a slow Ca(2+)-dependent recovery toward control level (Brandes and Bers, Biophys. J. 71:1024-1035, 1996; Brandes and Bers, Circ. Res. 80:82-87, 1997). The purpose of this study is to improve our understanding of the factors that control [NADH](m) during increased work. [NADH](m) was monitored using fluorescence spectroscopy in intact rat trabeculae isolated from the right ventricular wall. Work was increased by increasing sarcomere length, pacing frequency, external [Ca(2+)], or by decreased temperature. The results were: 1) The initial fall of [NADH](m) during increased pacing frequency depends independently on increased myofilament work and on increased Ca(2+)-transport ATPase activity. 2) The [NADH](m) recovery process depends on average cytosolic [Ca(2+)] (Av[Ca(2+)](c)), but not on absolute work level. 3) The initial fall of [NADH](m) and the [NADH](m) recovery are similar whether increased work is associated with low frequency and high Ca(2+)-transient amplitude or vice versa (at the same myofilament work level and Av[Ca(2+)](c)). 4) The mechanisms associated with the smaller fall and recovery of [NADH](m) at 37 degrees C versus 27 degrees C, may be explained by lowered Av[Ca(2+)](c) and myofilament work. The NADH control mechanisms that operate at lower temperature are thus qualitatively similar at more physiological temperatures.  相似文献   

3.
The main goal of this study is to investigate the role of mitochondrial [Ca(2+)], [Ca(2+)](m), in the possible up-regulation of the NADH production rate during increased workload. Such up-regulation is necessary to support increased flux through the electron transport chain and increased ATP synthesis rates. Intact cardiac trabeculae were loaded with Rhod-2(AM), and [Ca(2+)](m) and mitochondrial [NADH] ([NADH](m)) were simultaneously measured during increased pacing frequency. It was found that 53% of Rhod-2 was localized in mitochondria. Increased pacing frequency caused a fast, followed by a slow rise of the Rhod-2 signal, which could be attributed to an abrupt increase in resting cytosolic [Ca(2+)], and a more gradual rise of [Ca(2+)](m), respectively. When the pacing frequency was increased from 0.25 to 2 Hz, the slow Rhod-2 component and the NADH signal increased by 18 and 11%, respectively. Based on a new calibration method, the 18% increase of the Rhod-2 signal was calculated to correspond to a 43% increase of [Ca(2+)](m). There was also a close temporal relationship between the rise (time constant approximately 25 s) and fall (time constant approximately 65 s) of [Ca(2+)](m) and [NADH](m) when the pacing frequency was increased and decreased, respectively, suggesting that increased workload and [Ca(2+)](c) cause increased [Ca(2+)](m) and consequently up-regulation of the NADH production rate.  相似文献   

4.
A dynamic computer model of oxidative phosphorylation in intact heart was developed by modifying the model of oxidative phosphorylation in intact skeletal muscle published previously. Next, this model was used for theoretical studies on the regulation of oxidative phosphorylation in intact heart in vivo during transition between different work intensities. It is shown that neither a direct activation of ATP usage alone nor a direct activation of both ATP usage and substrate dehydrogenation, including the calcium-activated tricarboxylate acid cycle dehydrogenases, can account for the constancy of [ADP], [PCr], [P(i)] and [NADH] during a significant increase in oxygen consumption and ATP turnover encountered in intact heart in vivo. Only a direct activation of all oxidative phosphorylation complexes in parallel with a stimulation of ATP usage and substrate dehydrogenation enabled to reproduce the experimental data concerning the constancy of metabolite concentrations. The molecular background of the differences between heart and skeletal muscle in the kinetic behaviour of the oxidative phosphorylation system is also discussed.  相似文献   

5.
1. The effect of various inhibitors and uncouplers of mitochondrial oxidative phosphorylation on phosphorylation by Azotobacter particles is reported.

2. The ATPase activity of Azotobacter particles and of the soluble factor involved in oxidative phosphorylation is stimulated 10–20-fold by incubation with trypsin. The trypsin-induced ATPase is Mg2+ or Ca2+ dependent, Mg2+ being the more effective cation. The ATPase is stimulated somewhat by 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole, desaspidin and carbonyl cyandie m-chlorophenylhydrazone, and inhibited by atebrin and Dio-9.

3. In previous work ADP was shown to stimulate the oxidation of NADH but not of the Site-II substrates malate, lactate or succinate. Stimulation by ADP of oxidation of malate has now been observed by inhibiting electron transport by 2-heptyl-4-hydroxyquinoline-N-oxide or by increasing the electron flow by adding lactate. The stimulation is, therefore, not confined to phosphorylation Site I.  相似文献   


6.
The relationships between Na/K pump activity and adenosine triphosphate (ATP) production were determined in isolated rat brain synaptosomes. The activity of the enzyme was modulated by altering [K+]e, [Na+]i, and [ATP]i while synaptosomal oxygen uptake and lactate production were measured simultaneously. KCl increased respiration and glycolysis with an apparent Km of about 1 mM which suggests that, at the [K+]e normally present in brain, 3.3-4 mM, the pump is near saturation with this cation. Depolarization with 6-40 mM KCl had negligible effect on ouabain-sensitive O2 uptake indicating that at the voltages involved the activity of the Na/K ATPase is largely independent of membrane potential. Increases in [Na+]i by addition of veratridine markedly enhanced glycoside-inhibitable respiration and lactate production. Calculations of the rates of ATP synthesis necessary to support the operation of the pump showed that greater than 90% of the energy was derived from oxidative phosphorylation. Consistent with this: (a) the ouabain-sensitive Rb/O2 ratio was close to 12 (i.e., Rb/ATP ratio of 2); (b) inhibition of mitochondrial ATP synthesis by Amytal resulted in a decrease in the glycoside-dependent rate of 86Rb uptake. Analyses of the mechanisms responsible for activation of the energy-producing pathways during enhanced Na and K movements indicate that glycolysis is predominantly stimulated by increase in activity of phosphofructokinase mediated via a rise in the concentrations of adenosine monophosphate [AMP] and inorganic phosphate [Pi] and a fall in the concentration of phosphocreatine [PCr]; the main moving force for the elevation in mitochondrial ATP generation is the decline in [ATP]/[ADP] [Pi] (or equivalent) and consequent readjustments in the ratio of the intramitochondrial pyridine nucleotides [( NAD]m/[NADH]m). Direct stimulation of pyruvate dehydrogenase by calcium appears to be of secondary importance. It is concluded that synaptosomal Na/K pump is fueled primarily by oxidative phosphorylation and that a fall in [ATP]/[ADP][Pi] is the chief factor responsible for increased energy production.  相似文献   

7.
The fluorometric technique for measuring the levels of reduced pyridine nucleotides was used to study oxidative metabolism in isolated rabbit papillary muscle at 23°C. The 100% standard level of tissue fluorescence was defined as that measured for muscles resting in oxygenated 10 mM pyruvate solution. This level increased 15% with anoxia and decreased 45% with stimulation in substrate-free solution. Thus, about one-half of the standard tissue fluorescence was metabolically labile and this labile fraction is suggested to be mitochondrial in origin. Decreased tissue fluorescence following mechanical activity was identified with increased oxidation of mitochondrial reduced nicotinamide adenine dinucleotide (NADH) owing to stimulation by adenosine diphosphate (ADP), released during activity, of mitochondrial respiration. The kinetics of the fluorescence transients were slowed fourfold by removal of pyruvate. This effect was not significantly reversed by addition of 10 mM glucose. The time integrals of the fluorescence transients were linearly related to the amounts of mechanical activity in the presence, but not in the absence, of pyruvate. A positive correlation was observed between the steady-state peak tension at constant stimulus rate and the resting level of reduction of pyridine nucleotides in various media. The fluorometric results are interpreted to be indicative of the steady and transient states established by the substrate dehydrogenases and the respiratory chain during oxidative phosphorylation in mitochondria.  相似文献   

8.
Incubation of [gamma-32P]ATP with a molar excess of the membrane-bound form of mitochondrial ATPase (F1) results in binding of the bulk of the radioactive nucleotide in high affinity catalytic sites (Ka = 10(12) M-1). Subsequent initiation of respiration by addition of succinate or NADH is accompanied by a profound decrease in the affinity for ATP. About one-third of the bound radioactive ATP appears to dissociate, that is, the [gamma-32P]ATP becomes accessible to hexokinase. The NADH-stimulated dissociation of [gamma-32P]ATP is energy-dependent since the stimulation is inhibited by uncouplers of oxidative phosphorylation and is prevented by respiratory chain inhibitors. The rate of the energy-dependent dissociation of ATP that occurs in the presence of NADH, ADP, and Pi is commensurate with the measured initial rate of ATP synthesis in NADH-supported oxidative phosphorylation catalyzed by the same submitochondrial particles. Thus, the rate of dissociation of ATP from the high affinity catalytic site of submitochondrial particles meets the criterion of kinetic competency under the conditions of oxidative phosphorylation. These experiments provide evidence in support of the argument that energy conserved during the oxidation of substrates by the respiratory chain can be utilized to reduce the very tight binding of product ATP in high affinity catalytic sites and to promote dissociation of the nucleotide.  相似文献   

9.
During increases in cardiac work there are net increases in cytosolic [Ca(2+)] and ATP hydrolysis by myofiliments and ion transport ATPases. However, it is still unclear what role Ca(2+)or the ATP hydrolysis products, ADP and Pi, have on the regulation of mitochondrial ATP production. In this study, work jumps were simulated by simultaneous additions of Ca(2+) and ATPase to porcine heart mitochondria. The net effects on the mitochondrial ATP production were monitored by simultaneously monitoring respiration (mVo2), [NADH], [ADP] and membrane potential (deltapsi) at 37 degrees C. Addition of exogenous ATPase (300 mlU.ml(-1))]ATP (3.4 mM) was used to generate a 'resting' background production of ADP. This resting metabolic rate was 200% higher than the quiescent rate while [NADH] and deltapsi were reduced. Subsequent ATPase additions (1.3IU.ml(-)) were made with varying amounts of Ca(2+)(0 to 535 nM) to simulate step increases in cardiac work. Ca(2+) additions increased mVo2 and depolarized deltapsi, and were consistent with an activation of Fo/F1)ATPase. In contrast, Ca(2+) reduced the [NADH] response to the ATPase addition, consistent with Ca(2+)-sensitive dehydrogenase activity (CaDH). The calculated free ADP response to ATPase decreased \2-fold in the presence of Ca(2+). The addition of 172nM free Ca(2+)] ATPase increased mVo2 by 300% (P<0.05, n=8) while deltapsi decreased by 14.9+/-0.1 mV without changes in [NADH] (P > or =0.05, n=8), consistent with working heart preparations. The addition of Ca(2+) and ATPase combined increased the mitochondrial ATP production rate with changes in deltapsi, NADH and [ADP], consistent with an activation of CaDH and F o /F(1)ATPase activity. These balancing effects of ATPase activity and [Ca(2+)] may explain several aspects of metabolic regulation in the heart during work transitions in vivo.  相似文献   

10.
The efficiency of stimulation of mitochondrial respiration in permeabilized muscle cells by ADP produced at different intracellular sites, e.g. cytosolic or mitochondrial intermembrane space, was evaluated in wild-type and creatine kinase (CK)-deficient mice. To activate respiration by endogenous production of ADP in permeabilized cells, ATP was added either alone or together with creatine. In cardiac fibers, while ATP alone activated respiration to half of the maximal rate, creatine plus ATP increased the respiratory rate up to its maximum. To find out whether the stimulation by creatine is a consequence of extramitochondrial [ADP] increase, or whether it directly correlates with ADP generation by mitochondrial CK in the mitochondrial intermembrane space, an exogenous ADP-trap system was added to rephosphorylate all cytosolic ADP. Under these conditions, creatine plus ATP still increased the respiration rate by 2.5 times, compared with ATP alone, for the same extramitochondrial [ADP] of 14 microM. Moreover, this stimulatory effect of creatine, observed in wild-type cardiac fibers disappeared in mitochondrial CK deficient, but not in cytosolic CK-deficient muscle. It is concluded that respiration rates can be dissociated from cytosolic [ADP], and ADP generated by mitochondrial CK is an important regulator of oxidative phosphorylation.  相似文献   

11.
The steady-state reactant levels of triose-phosphate isomerase and the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase system were examined in guinea-pig cardiac muscle. Key glycolytic intermediates, including glyceraldehyde 3-phosphate were directly measured and compared with those of creatine kinase. Non-working Langendorff hearts as well as isolated working hearts were perfused with 5 mM glucose (plus insulin) under normoxia conditions to maintain lactate dehydrogenase near-equilibrium. The cytosolic phosphorylation potential ([ATP]/([ADP].[Pi])) was derived from creatine kinase and the free [NAD+]/([NADH].[H+]) ratio from lactate dehydrogenase. In Langendorff hearts glycolysis was varied from near-zero flux (hyperkalemic cardiac arrest) to higher than normal flux (normal and maximum catecholamine stimulation). The triose-phosphate isomerase was near-equilibrium only in control or potassium-arrested Langendorff hearts as well as in postischemic 'stunned' hearts. However, when glycolytic flux increased due to norepinephrine or due to physiological pressure-volume work the enzyme was displaced from equilibrium. The alternative phosphorylation ratio [ATP]'/([ADP]).[Pi]) was derived from the magnesium-dependent glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase system assigning free magnesium different values in the physiological range (0.1-2.0 mM). As predicted, [ATP]/([ADP].[Pi]) and [ATP]'/([ADP]'.[Pi]') were in excellent agreement when glycolysis was virtually halted by hyperkalemic arrest (flux approximately 0.2 mumol C3.min-1.g dry mass-1). However, the equality between the two phosphorylation ratios was not abolished upon resumption of spontaneous beating and also not during adrenergic stimulation (flux approximately 5-14 mumol C3.min-1.g dry mass-1). In contrast, when flux increased due to transition from no-work to physiological pressure-volume work (rate increase from approximately 3 to 11 mumol C3.min-1.g dry mass-1), the two ratios were markedly different indicating disequilibrium of the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase. Only during adrenergic stimulation or postischemic myocardial 'stunning', not due to hydraulic work load per se, glyceraldehyde-3-phosphate levels increased from about 4 microM to greater than or equal to 16 microM. Thus the guinea-pig cardiac glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase system can realize the potential for near-equilibrium catalysis at significant flux provided glyceraldehyde-3-phosphate levels rise, e.g., due to 'stunning' or adrenergic hormones.  相似文献   

12.
1. The proportion of active (dephosphorylated) pyruvate dehydrogenase in rat heart mitochondria was correlated with total concentration ratios of ATP/ADP, NADH/NAD+ and acetyl-CoA/CoA. These metabolites were measured with ATP-dependent and NADH-dependent luciferases. 2. Increase in the concentration ratio of NADH/NAD+ at constant [ATP]/[ADP] and [acetyl-CoA]/[CoA] was associated with increased phosphorylation and inactivation of pyruvate dehydrogenase. This was based on comparison between mitochondria incubated with 0.4mM- or 1mM-succinate and mitochondria incubated with 0.4mM-succinate+/-rotenone. 3. Increase in the concentration ratio acetyl-CoA/CoA at constant [ATP]/[ADP] and [NADH][NAD+] was associated with increased phosphorylation and inactivation of pyruvate dehydrogenase. This was based on comparison between incubations in 50 micrometer-palmitotoyl-L-carnitine and in 250 micrometer-2-oxoglutarate +50 micrometer-L-malate. 4. These findings are consistent with activation of the pyruvate dehydrogenase kinase reaction by high ratios of [NADH]/[NAD+] and of [acetyl-CoA]/[CoA]. 5. Comparison between mitochondria from hearts of diabetic and non-diabetic rats shows that phosphorylation and inactivation of pyruvate dehydrogenase is enhanced in alloxan-diabetes by some factor other than concentration ratios of ATP/ADP, NADH/NAD+ or acetyl-CoA/CoA.  相似文献   

13.
Endurance muscle performance is highly dependent on ATP production from mitochondrial oxidative phosphorylation. To study the role of the mitochondrial oxidative enzymes in muscle fatigue, we analyzed the relationship between the concentrations of substrates associated with ATP synthesis and the muscle performance of electrically stimulated rabbit muscle under CO2-induced acidosis. Two different conditions of pacing-induced muscle performance were produced in the gastrocnemius and soleus muscle groups in anesthetized rabbits by stimulating the sciatic nerve submaximally at two frequencies. Phosphorus nuclear magnetic resonance was used to measure ATP, phosphocreatine, and Pi and to provide data for a calculation of intracellular pH and free ADP. To induce acidosis, the animal was ventilated with 20% CO2. The administration of CO2 effectively reduced the intracellular pH from 6.9 to 6.7 and reduced the isometric tension-time integral (TTI) to below half the value measured in normocapnia at the low pacing frequency. A twofold increase in the pacing frequency resulted in a doubling of the TTI in normocapnia and a tripling of TTI in hypercapnia. The increases in TTI corresponded with increases in free ADP and Pi concentrations. Under the various conditions, all free ADP values were near the in vitro Michaelis-Menten constant (Km) of ADP. The Michaelis-Menten relationship of the oxidative phosphorylative enzymes was applied to the change in substrate concentrations with respect to TTI. From this relationship we observed that the in vivo Km of free ADP was 26 microM, which is close to the in nitro Km, and that Km and maximal reaction velocity did not change under hypercapnia and increased pacing frequency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
1. The concentrations of free ATP, phosphocreatine (PCr), Pi, H+ and ADP (calculated) were monitored in perfused rat hearts by 31P n.m.r. before and during positive inotropic stimulation. Data were accumulated in 20 s blocks. 2. Administration of 0.1 microM-(-)-isoprenaline resulted in no significant changes in ATP, transient decreases in PCr, and transient increases in ADP and Pi. However, the concentrations of all of these metabolites returned to pre-stimulated values within 1 min, whereas cardiac work and O2 uptake remained elevated. 3. In contrast, in hearts perfused continuously with Ruthenium Red (2.5 micrograms/ml), a potent inhibitor of mitochondrial Ca2+ uptake, administration of isoprenaline caused significant decreases in ATP, and also much larger and more prolonged changes in the concentrations of ADP, PCr and Pi. In this instance values did not fully return to pre-stimulated concentrations. Administration of Ruthenium Red alone to unstimulated hearts had minor effects. 4. It is proposed that, in the absence of Ruthenium Red, the transmission of changes in cytoplasmic Ca2+ across the mitochondrial inner membrane is able to maintain the phosphorylation potential of the heart during positive inotropic stimulation, through activation of the Ca2+-sensitive intramitochondrial dehydrogenases (pyruvate, NAD+-isocitrate and 2-oxoglutarate dehydrogenases) leading to enhanced NADH production. 5. This mechanism is unavailable in the presence of Ruthenium Red, and oxidative phosphorylation must be stimulated primarily by a fall in phosphorylation potential, in accordance with the classical concept of respiratory control. However, the full oxidative response of the heart to stimulation may not be achievable under such circumstances.  相似文献   

15.
Oxidative phosphorylation catalyzed by bovine heart submitochondrial particles appears to exhibit negative cooperativity with respect to [ADP] and positive cooperativity in catalysis. Eadie-Hofstee plots (v/[S]versus v) of the kinetics of oxidative phosphorylation at the variable ADP concentration range of 1-1200 microM were curvilinear and could be analyzed for two apparent KmADP values differing by one order of magnitude, and two apparent Vmax values. The KmADP values with either NADH or succinate as the respiratory substrate were in the ranges of 10 and 100 microM, and the Vmax values in nmol of ATP formed X min-1 (mg of protein)-1 were, respectively, 500 and 1840 when NADH was the oxidizable substrate, and 550 and 100 when succinate was the energy source. Site-site cooperativity of the ATP synthase, which is a central feature of current theories for the mechanism of oxidative phosphorylation, has been well-documented for ATP hydrolysis by isolated F1-ATPase, but never before demonstrated for mitochondrial ATP synthesis.  相似文献   

16.
We examined the metabolic responses of the hypoxia-tolerant killifish (Fundulus heteroclitus) to 15 h of severe hypoxia and recovery with emphasis on muscle substrate usage and the regulation of the mitochondrial protein pyruvate dehydrogenase (PDH), which controls carbohydrate oxidation. Hypoxia survival involved a transient activation of substrate-level phosphorylation in muscle (decreases in [creatine phospate] and increases in [lactate]) during which time mechanisms to reduce overall ATP consumption were initiated. This metabolic transition did not affect total cellular [ATP], but had an impact on cellular energy status as indicated by large decreases in [ATP]/[ADP(free)] and [ATP]/[AMP(free)] and a significant loss of phosphorylation potential and Gibbs free energy of ATP hydrolysis (DeltafG'). The activity of PDH was rapidly (within 3 h) decreased by approximately 50% upon hypoxia exposure and remained depressed relative to normoxic samples throughout. Inactivation of PDH was primarily mediated via posttranslational modification following the accumulation of acetyl-CoA and subsequent activation of pyruvate dehydrogenase kinase (PDK). Estimated changes in cytoplasmic and mitochondrial [NAD(+)]/[NADH] did not parallel one another, suggesting the mitochondrial NADH shuttles do not function during hypoxia exposure. Large increases in the expression of PDK (PDK isoform 2) were consistent with decreased PDH activity; however, these changes in mRNA were not associated with changes in total PDK-2 protein content assessed using mammalian antibodies. No other changes in the expression of other known hypoxia-responsive genes (e.g., lactate dehydrogenase-A or -B) were observed in either muscle or liver.  相似文献   

17.
The lifetimes of fluorescent components of matrix NADH in isolated porcine heart mitochondria were investigated using time-resolved fluorescence spectroscopy. Three distinct lifetimes of fluorescence were resolved: 0.4 (63%), 1.8 (30%), and 5.7 (7%) ns (% total NADH). The 0.4 ns lifetime and the emission wavelength of the short component were consistent with free NADH. In addition to their longer lifetimes, the remaining pools also had a blue-shifted emission spectrum consistent with immobilized NADH. On the basis of emission frequency and lifetime data, the immobilized pools contributed >80% of NADH fluorescence. The steady-state kinetics of NADH entering the immobilized pools was measured in intact mitochondria and in isolated mitochondrial membranes. The apparent binding constants (K(D)s) for NADH in intact mitochondria, 2.8 mM (1.9 ns pool) and >3 mM (5.7 ns pool), were on the order of the estimated matrix [NADH] (approximately 3.5 mM). The affinities and fluorescence lifetimes resulted in an essentially linear relationship between matrix [NADH] and NADH fluorescence intensity. Mitochondrial membranes had shorter emission lifetimes in the immobilized poo1s [1 ns (34%) and 4.1 ns (8%)] with much higher apparent K(D)s of 100 microM and 20 microM, respectively. The source of the stronger NADH binding affinity in membranes is unknown but could be related to high order structure or other cofactors that are diluted out in the membrane preparation. In both preparations, the rate of NADH oxidation was proportional to the amount of NADH in the long lifetime pools, suggesting that a significant fraction of the bound NADH might be associated with oxidative phosphorylation, potentially in complex 1.  相似文献   

18.
暗中培养的绿豆幼苗子叶在萌发后3—4天时,外观出现衰老征状,6天后子叶凋落。随子叶日龄的增加,子叶的呼吸强度一直下降,呼吸商始终小于1。当外加L—苹果酸、a—酮戊二酸、琥珀酸和NADH为底物测定离体线粒体氧化活性时,衰老子叶的线粒体对上述四种底物的氧化活性有不同程度的增加;抗氰呼吸也有所升高。子叶衰老时,线粒体的ADP/O和呼吸控制(RC值均降低);线粒体ATPase水解ATP的活性升高。衰老绿豆子叶线粒体氧化磷酸化偶联效率的降低和ATPase水解活性的增强是与线粒体结构改变相联系的一种功能变化,它导致能量亏缺,并进一步加速了衰老的恶化进程。  相似文献   

19.
The relationship of NADH/NAD to O2 consumption with respect to the different phases of contraction in vascular smooth muscle in response to a maximal depolarizing concentration of KCl was investigated. The NADH bound to cellular proteins could be distinguished from free NADH in whole tissue homogenates. Evidence suggested that the NADH was bound to pyruvate dehydrogenase and perhaps to other dehydrogenases since binding paralleled the changes in the activity of pyruvate dehydrogenase with contraction. The measured changes in NADH were attributed to that within the mitochondrial compartment since the contribution of reducing equivalents within the cytoplasmic compartment was negligible. During the phase of contraction in which force was initially being generated and at which O2 consumption was the highest, there was a net increase in NADH/NAD. After stable isometric force was maintained, at which time O2 consumption had returned to slightly above the basal pre-contraction level, there was a net decrease in NADH/NAD. Previous evidence indicates the phosphorylation potential (ATP/ADP) may decrease during this phase of contraction. It is concluded that contraction of vascular smooth muscle is accompanied by a changing pool of reducing equivalents. Factors which govern O2 consumption may change during the different phases of muscle contraction.  相似文献   

20.
A dynamic computer model of oxidative phosphorylation in oxidative mammalian skeletal muscle was developed. The previously published model of oxidative phosphorylation in isolated skeletal muscle mitochondria was extended by incorporation of the creatine kinase system (creatine kinase plus phosphocreatine/creatine pair), cytosolic proton production/consumption system (proton production/consumption by the creatine kinase-catalysed reaction, efflux/influx of protons), physiological size of the adenine nucleotide pool and some additional minor changes. Theoretical studies performed by means of the extended model demonstrated that the CK system, which allows for large changes in P(i) in relation to isolated mitochondria system, has no significant influence on the kinetic properties of oxidative phosphorylation, as inorganic phosphate only slightly modifies the relationship between the respiration rate and [ADP]. Computer simulations also suggested that the second-order dependence of oxidative phosphorylation on [ADP] proposed in the literature refers only to the ATP synthesis flux, but not to the oxygen consumption flux (the difference between these two fluxes being due to the proton leak). Next, time courses of changes in fluxes and metabolite concentrations during transition between different steady-states were simulated. The model suggests, in accordance with previous theoretical predictions, that activation of oxidative phosphorylation by an increase in [ADP] can (roughly) explain the behaviour of the system only at low work intensities, while at higher work intensities parallel activation of different steps of oxidative phosphorylation is involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号