首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of heat stress on soluble proteins extracted from leaf tissues of bread (Triticum aestivum cv. Gönen-98, tolerant; cv. Cumhuriyet-75, susceptible; genome ABD) and durum (Triticum durum cv. Ege-88, tolerant; cv. Ankara-98, susceptible; genome AB) wheat cultivars differing in sensitivity to high temperature was examined by two-dimensional gel electrophoresis. At acclimation (37°C) and acclimation→high temperature (37°C→50°C) treatments compared to control (25°C), evaluation of gels revealed 31 proteins to be differentially expressed in first leaves as a result of heat stress in heat-susceptible and heat-tolerant cultivars of bread and durum wheats. All of the increased or decreased proteins in amount, newly synthesized and/or disappeared were in low-molecular-weight (LMW, 16.1–24.0 kDa) and generally acidic character (pI 4.8–6.9). The responses of the four cultivars were compared: Twenty-two of 31 proteins were detected as newly synthesized LMW heat shock proteins (LMW HSPs = small HSPs). The number of these sHSPs was different in cultivars which have the same genome. In addition, the number of the sHSPs in heat-tolerant cultivars was higher than in heat-susceptible cultivars. Some of the sHSPs were specific to cultivar. Most of the sHSPs synthesized at 37°C were also detected at 37°C→50°C treatment. It is suggested that sHSPs have special importance in two points: Firstly, sHSPs in cultivars showed abundance and diversity. Secondly, these proteins may play an important role in the acquiring of thermal tolerance.  相似文献   

2.
A wheat regeneration system was developed using mature embryos. Embryos were removed from surface-sterilised mature caryopses (winter wheat Odeon cultivar and spring wheat Minaret cultivar) and ground to pieces through a sterile nylon mesh. The fragments were characterised by means of the image analysis technique. They were 500 M mean diameter and most of them were elongated. They were used as explants to initiate embryogenic calli on solid medium supplemented with 10 M 2,4-dichlorophenoxyacetic acid. The morphogenic pathway of the initiated calli was followed for a 40-day culture period. Active cellular division occurred within 24 hours of cultivation. Several hundred calli were produced from 100 fragmented embryos within 3 days. A 90% callus induction rate was achieved and proembryos appeared by the 8th day of culture. The highest embryogenic calli induction rate of 47% was obtained when 2,4-dichlorophenoxyacetic acid was suppressed after a 3–4 week induction period. Two regeneration methods were finally compared. A total of 513 plantlets were produced. The optimal protocol produced 25–30 plants per 100 embryos. This regeneration method may be suitable for transformation applications.  相似文献   

3.
We describe the early formation of somatic embryos followed by plant regeneration from protoplasts isolated from an embryogenic wheat cell suspension, which was initiated from small granular (0.2 to 1 mm in size) embryogenic calli. These granular calli formed embryogenic cell suspensions within 20 days in liquid culture, and were selected gradually from young inflorescence-derived nodular embryogenic calli of the winter wheat cv. Kehong 1041. The division frequency of protoplasts was 11 to 16%, and the frequency of differentiation into plants was about 0.001% (number of plants formed divided by the total number of protoplasts plated). About 20% of somatic embryos present in the culture formed directly from protoplast-derived cells within 15 days of cultures.  相似文献   

4.
Efficient plant regeneration system from leaf base segments of wheat (Triticum aestivum L.) was developed. The factors affecting the callus formation and regeneration capacity of leaf segments of two genotypes; Bobwhite and Pavon 76, were investigated. The highest number of somatic embryos (SE) was obtained on Murashige and Skoog medium supplemented with 2 mg dm−3 2,4-dichlorophenoxyacetic acid + 1 mg dm−3 naphthalenacetic acid (14.7 SE per segment). Highest frequency of embryogenic callus (96 %) and somatic embryo formation (24.3 SE per segment) were achieved in the first segments. The highest plantlet regeneration was obtained after transfer of embryogenic calli to regeneration medium supplemented with 1 mg dm−3 kinetin (6.3 plantlets per segment).  相似文献   

5.
Brady  D. J.  Gregory  P. J.  Fillery  I. R. P. 《Plant and Soil》1993,(1):155-158
A technique was developed to determine the physiological activity of defined sections of seminal roots of wheat grown in sand. Wheat plants were grown for 2 weeks in narrow columns of N-deficient sand to which all other nutrients had been added. The columns were split longitudinally and 15N-labelled nitrate, in an agar medium, supplied to 2 cm sections of root. Shoots and roots were analysed after 24 h to determine the uptake of 15N. Three sections were examined on either the secondary or tertiary seminal root: 1 cm from the seed (basal segment), 35 cm from the seed (middle segment) and 4 cm from the root apex (apical segment). Total uptake was greatest from the basal and middle segments, declining by 50% from the apical segment. However, uptake per unit root length, including exposed sections of lateral roots, was not significantly different along the root.  相似文献   

6.
Summary The in vitro microspore androgenesis reaction of 25 commercial German spring (including 4 Triticum durum) and 50 winter wheat cultivars was investigated. Tremendous genotypical differences were found in microspore response. The best-responding winter wheat cultivai, Florida, is characterized by the presence of a 1B/1R wheat-rye translocation chromosome. The significance of this finding and other genetic systems for future use of haploids in plant breeding is discussed.  相似文献   

7.
Whether the two tetraploid wheat species, the well known Triticum turgidum L. (macaroni wheat, AABB genomes) and the obscure T. timopheevii Zhuk. (AtAtGG), have monophyletic or diphyletic origin from the same or different diploid species presents an interesting evolutionary problem. Moreover, T. timopheevii and its wild form T. araraticum are an important genetic resource for macaroni and bread-wheat improvement. To study these objectives, the substitution and genetic compensation abilities of individual T. timopheevii chromosomes for missing chromosomes of T. aestivum Chinese Spring (AABBDD) were analyzed. Chinese Spring aneuploids (nullisomic-tetrasomics) were crossed with a T. timopheevii x Aegilops tauschii amphiploid to isolate T. timopheevii chromosomes in a monosomic condition. The F1 hybrids were backcrossed one to four times to Chinese Spring aneuploids without selection for the T. timopheevii chromosome of interest. While spontaneous substitutions involving all At- and G-genome chromosomes were identified, the targeted T. timopheevii chromosome was not always recovered. Lines with spontaneous substitutions from T. timopheevii were chosen for further backcrossing. Six T. timopheevii chromosome substitutions were isolated: 6At (6A), 2G (2B), 3G (3B), 4G (4B), 5G (5B) and 6G (6B). The substitution lines had normal morphology and fertility. The 6At of T. timopheevii was involved in a translocation with chromosome 1G, resulting in the transfer of the group-1 gliadin locus to 6At. Chromosome 2G substituted for 2B at a frequency higher than expected and may carry putative homoeoalleles of gametocidal genes present on group-2 chromosomes of several alien species. Our data indicate a common origin for tetraploid wheat species, but from separate hybridization events because of the presence of a different spectrum of intergenomic translocations.  相似文献   

8.
Shoot tips of Triticum aestivum L. cvs. Turbo and Nandu, both summer wheat varieties, were excised from 4 and 10 day-old seedlings, and used for induction of embryogenic callus. A modified L3 medium, supplemented with 10 M 2,4-dichlorophenoxyacetic acid (2,4-d) for culture initiation, and 5 M 2,4-d for subculturing, was optimal; 90% of 4 day-old Turbo seedlings formed embryogenic callus. Optimal plant regeneration was achieved from callus incubated on a modified MS medium without 2,4-d, but supplemented with 2.22 M 6-benzylaminopurine and 0.27 M naphthaleneacetic acid. Plantlets formed via embryogenesis from all embryogenic Turbo calli initiated from 4 day-old explants, with a mean number of 8 regenerants per explant. Regeneration occured via embryogenesis only. Results obtained using Nandu were within the same range.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid  相似文献   

9.
Summary Using thin-layer chromatography and nulli-tetrasomic and ditellosomic series of Triticum aestivum L. cv. Chinese Spring, it has been possible to relate the phenolic compounds found in adult plant leaves and 12 day-old seedling leaves with the chromosomes or chromosome arms 1 B, 2 BL, 3 BL, 5 A, 6 AL, 7 B and 7 DS.  相似文献   

10.
Field response of wheat to arbuscular mycorrhizal fungi and drought stress   总被引:3,自引:0,他引:3  
Al-Karaki G  McMichael B  Zak J 《Mycorrhiza》2004,14(4):263-269
Mycorrhizal plants often have greater tolerance to drought than nonmycorrhizal plants. This study was conducted to determine the effects of arbuscular mycorrhizal (AM) fungi inoculation on growth, grain yield and mineral acquisition of two winter wheat (Triticum aestivum L.) cultivars grown in the field under well-watered and water-stressed conditions. Wheat seeds were planted in furrows after treatment with or without the AM fungi Glomus mosseae or G. etunicatum. Roots were sampled at four growth stages (leaf, tillering, heading and grain-filling) to quantify AM fungi. There was negligible AM fungi colonization during winter months following seeding (leaf sampling in February), when soil temperature was low. During the spring, AM fungi colonization increased gradually. Mycorrhizal colonization was higher in well-watered plants colonized with AM fungi isolates than water-stressed plants. Plants inoculated with G. etunicatum generally had higher colonization than plants colonized with G. mosseae under both soil moisture conditions. Biomass and grain yields were higher in mycorrhizal than nonmycorrhizal plots irrespective of soil moisture, and G. etunicatum inoculated plants generally had higher biomass and grain yields than those colonized by G. mosseae under either soil moisture condition. The mycorrhizal plants had higher shoot P and Fe concentrations than nonmycorrhizal plants at all samplings regardless of soil moisture conditions. The improved growth, yield and nutrient uptake in wheat plants reported here demonstrate the potential of mycorrhizal inoculation to reduce the effects of drought stress on wheat grown under field conditions in semiarid areas of the world.  相似文献   

11.
Wheat spikelets detached from the spike at anthesis were cultured on solidified media and successfully produced mature grains. These grains resembled normal grains and contained well-developed, embryos. Lower concentrations of glutamine favored dry weight increase in developing grains. Such grains were indistinguishable from grains from greenhouse-grown plants in germination on moist blotting sheets. The technique of individual spikelet culture can be used to study physiology and development of wheat grains and kernels and to study host-pathogen interactions in wheat floret diseases such as Karnal bunt.  相似文献   

12.
Summary The analysis of the individual parts of the Triticum aestivum L. kernel yields a total of 11 peroxidase isozymes: m, n, a, c, d1, d, d2, e, f, g and h (in order from faster to slower migration). Isozymes a, c and d are found in the endosperm (Ed) and seed coats (C), while m, n, d1, d2, e, f, g and h are peculiar to the embryo and scutellum (E + S). The use of the nullitetrasomic and ditellosomic series of Chinese Spring wheat allows peroxidase isozymes to be associated with specific chromosome arms. Isozymes a, c and d (Ed) are associated with chromosome arms 7DS, 4BL and 7AS; whereas isozymes m, d2, e and f are associated with chromosome arms 3DS, 3BL, 3DL and 3DL, respecitvely. Thus, the E + S isozymes are associated with homoeology group 3 and the Ed isozymes with homoeology groups 7 (a and d isozymes) or 4 (c isozymes).  相似文献   

13.
Near-isogenic lines (NILs) for the leaf rust resistance gene Lr9 were screened for polymorphisms at the molecular level. RAPD (random amplified polymorphic DNA) primers as well as RFLP (restriction fragment length polymorphism) markers were used. Out of 395 RAPD primers tested, three showed polymorphisms between NILs, i.e., an additional band was found in resistant lines. One of these polymorphic bands was cloned and sequenced. Specific primers were synthesized, and after amplification only resistant lines showed an amplified product. Thus, these primers define a sequence-tagged site that is specific for the translocated fragment carrying the Lr9 gene. A cross between a resistant NIL and the spelt (Triticum spelta) variety Oberkulmer was made, and F2 plants were analyzed for genetic linkage. All three polymorphisms detected by the PCR (polymerase chain reaction) and one RFLP marker (cMWG684) showed complete linkage to the Lr9 gene in 156 and 133 plants analyzed, respectively. A second RFLP marker (PSR546) was closely linked (8±2.4 cM) to the Lr9 gene and the other four DNA markers. As this marker maps to the distal part of the long arm of chromosome 6B of wheat, Lr9 and the other DNA markers also map to the distal region of 6BL. All three PCR markers detected the Lr9 gene in independently derived breeding lines and varieties, thus proving their general applicability in wheat breeding programs.  相似文献   

14.
Immature zygotic embryos of two wheat (Triticum aestivum L.) genotypes, known for their different ability to generate embryogenic callus, were used as initial explants to establish callus cultures. Embryogenic and non-embryogenic calluses were obtained from the competent genotype (`Combi'), while only non-embryogenic callus was produced by the incompetent one (`Devon'). The morphogenetic competence of each callus type was evaluated by transferring some segments to regeneration conditions. The endogenous hormone concentrations (free indole-3-acetic acid [IAA], abscisic acid [ABA], gibberellins 1, 3 and 20 [GAs], zeatin/zeatin riboside [Z/ZR] and N 6[2-isopentenyl] adenine/ N 6[2-isopentenyl] adenosine; [iP/iPA]) of the initial explants were determined by means of radio-immunoassay and showed that the only difference was the higher concentration of ABA found in the embryos of the most competent genotype; whose embryos showed a reduced rate of precocious germination. When analysing the endogenous hormone concentrations in the various callus types generated in each genotype, it was found that only differences in the free IAA concentrations were associated with variations in the morphogenic properties of the calluses. Higher concentrations of endogenous free IAA were typical of embryogenic callus cultures. It was also observed that a loss in the embryogenic competence of the calluses, due to a prolonged time of culture, occurred concomitantly with a reduction in free IAA concentrations, practically to the concentrations found in the non-embryogenic calluses.  相似文献   

15.
Fertile, green plants were regenerated from immature inflorescence explants from each of four Canadian wheat cultivars. The cultivars were representative of four classes of Canadian wheat. Explants from immature inflorescences of three size ranges were cultured on two types of media: MSI/MSR, which contains 1650 mg l-1 NH4NO3and sucrose as a carbon source, and BII/BIR, which contains 250 mg l-1 NH4NO3and maltose as a carbon source. Regeneration from all cultivars was significantly better on BII/BIR media than on MSI/MSR media. On BII/BIR media, `AC Karma', `Plenty', and `Fielder' gave the highest number of shoots per 10 explants, where the explants were derived from immature inflorescences 5.1 to 10.0 mm in length. 'Columbus' did not regenerate on MSI/MSR medium, and regenerated poorly on BII/BIR medium. Differences were found between cultivars with regard to the number of regenerant plants produced with the best treatments: `Plenty' produced 16.1 shoots per 10 explants, `AC Karma' 12.4, `Fielder' 6.4, and `Columbus' 2.2.  相似文献   

16.
Summary Twenty different wheat genotypes representing a wide genetic variability, were tested for their yield and yield components response to inoculation withAzospirillum brasilense, at two levels of N fertilization. Only two cultivars responded by a significant yield increase of 7.4 and 8.0 per cent — both at the higher N level. The response reflected an increase in the number of grains per plant added as additional spikes. The importance of the host plant genotype for a successful wheat-bacteria association is discussed.  相似文献   

17.
Summary Glycine betaine is readily accumulated in wheat (Triticum aestivum cv. Inia) shoots during periods of salinity stress. The ability of the plant to utilize betaine as a source of nitrogen remains unresolved. We, therefore, conducted solution culture experiments in a greenhouse to test the hypothesis that betaine is degraded in wheat shoots under conditions of severe nitrogen deficiency. Betaine concentrations increased in continuously salt stressed plants for only 17 days after salinity was imposed. After this period, concentrations (dry weight basis) decreased steadily until plants died 32 days later. Decreases in betaine concentration were also observed in treatments where salinity stress was removed. The rate of decrease in concentration was greatest in the N-free treatment. These decreases in betaine concentration were the result of dilution by plant growth. Betaine contents (mol shoot–1) remained unchanged after removal of substrate nitrate. Therefore our results support the hypothesis that betaine is a stable end product of metabolism.  相似文献   

18.
An optimized procedure for transformation of wheat with the use of a Biolistic Particle Delivery System PDS 1000/He to deliver foreign DNA is described in detail. The bacterial uidA and bar genes (both driven by plant promoters) were utilized as the reporter and selectable marker genes, respectively. Moderately high gas pressure appeared to be most important to achieve the highest level of transient GUS expression in target tissues. There was, however, no apparent correlation between transient and stable GUS expression. The presence of telomeric DNA sequences in an uidA gene-containing vector did not influence transient GUS expression but, apparently, prevented its stable expression. Mechanical lesions caused by the bombardment (tungsten particles) seemed to be less severe when embryo- derived calli, instead of freshly excised immature embryos, were used as the target tissue. The limited ability of callus cells for regeneration, together with a restricted number of cells that receive the foreign DNA by particle bombardment, result in a low efficiency of wheat stable transformation.  相似文献   

19.
Spring wheat (Triticum aestivum L.) zygotic embryos were successfully cryopreserved, without the addition of exogenous cryoprotectants, using only an abscisic acid (ABA) pretreatment. Optimum survival was obtained when embryos were cultured in vitro for 10 days on semisolid Murashige and Skoog (MS) nutrient medium supplemented with 0.5 mg/L (±) ABA prior to cryopreservation. The embryos resumed growth within three days when returned to MS medium devoid of ABA but containing 2mg/L 2,4-dichlorophenoxyacetic acid. The embryogenic calli produced from these embryos exhibited normal plant regeneration on auxin-free media. Changes in dw/fw ratio, as well as the esterified fatty acid and sucrose concentrations correlated positively with the development of tolerance to cryopreservation.NRCC Publication No. 33519  相似文献   

20.
Protein kinase activities were extracted from anther tissue of wheat (Triticum aestivum L. cv. Zaragoza) and characterized with regard to the effects of polyamines, second messengers and plant growth hormones. The protein kinases were inhibited by polyamines and cyclic nucleotides, but were stimulated by the addition of auxins, gibberellic acid and kinetin. The dominant polyamine-sensitive kinase activity was partially purified and characterized. The optimal pH of the reaction was 7.5 to 8.0 and casein was the preferred exogenous substrate. Polyamines were inhibiting in the decreasing order of putrecine > spermidine > spermine. The results are discussed against the context of the anther culture technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号