首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fruit set of plants largely depends on the biosynthesis and crosstalk of phytohormones. To date the role of cytokinins (CKs) in the fruit development is less understood. Here, we showed that parthenocarpic fruit could be induced by 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU, an active CK) in tomato ( Solanum lycopersicum cv. Micro-Tom). The fresh weight of CPPU-induced parthenocarpic fruits was comparable with that induced by GA3. Importantly, CPPU-induced parthenocarpy was found to be compromised by simultaneous application of paclobutrazol (a GA biosynthesis inhibitor), and this effect could be restored by exogenous GA3. Like pollination, CPPU-induced fruit showed enhanced accumulation of GA1+3 and indole-3-acetic (IAA), which were accompanied by elevated expression of GA biosynthesis genes like SlGPS, SlGA20ox1, SlGA20ox2 and SlGA3ox1, and IAA biosynthesis gene ToFZY. Elevated GAs level in CPPU-induced fruits was also associated with down-regulation of GA inactivation genes, namely SlGA2ox1,2,3,4,5 in comparison with untreated control. These results suggested that CKs may induce parthenocarpy in tomato partially through modulation of GA and IAA metabolisms.  相似文献   

3.
4.
5.
6.
Isolation and expression of GA 2-oxidase2 in tomato.   总被引:1,自引:0,他引:1  
GA 2-oxidases, a key enzyme involves GA biosynthesis, catalyze the degradation of active C(19)-Gibberellins (GAs) through 2-hydroxylation yields inactive GA product. Searching public tomato database, the putative GA2ox2 sequences were assembled. We isolated a full-length GA2ox2 cDNA with primers designed from the assembled sequence. This gene was designed as SlGA2ox2 (GenBank accession No. EF017805). The full-length GA2ox2 gene contained a complete open reading frame (ORF) of 1203 bp, which encoded 322 amino acid residues. Amino acid sequence homology analysis of SlGA2ox2 showed an 88% identity with NtGA2ox2 in tobacco. And alignments of SlGA2ox2 with other known GA2ox from Arabidopsis, Pea, Adzuki Bean, Winter Squash etc indicate low similarity of 47-70%. Semi-quantitative RT-PCR analysis showed a specific expression profile of SlGA2ox2 in different tissues, which mainly expressed in flowers and traces were detected in roots, stems, leaves and immature fruits.  相似文献   

7.
GA 20-oxidase is a key enzyme involved in gibberellin (GA) biosynthesis. In tomato, the GA 20-oxidase gene family consists of three members: GA20ox1, GA20ox2, and GA20ox3. To investigate the roles of these three genes in regulating plant growth and development, we used RNA interference technology to generate three kinds of transgenic tomato plants with suppressed expression of each three individual genes. Suppression of GA20ox1 or GA20ox2 resulted in shorter stems, a decreased length of internodes, and small dark green leaves while plants with decreased expression of GA20ox3 had no visible changes on stems and leaves. The plants of the three transgenic lines can flower and set fruits normally, but the seeds from these plants germinated slower than that from the normal plants. Decreased levels of endogenous GAs were detected in the apex of the three transgenic lines. These results demonstrate that the three GA 20-oxidase genes play different roles in the control of plan vegetative growth, but show no effects on flower and fruit development.Equal contribution authors: J. Xiao and H. Li.  相似文献   

8.
Gibberellins A1/3 (GA1/3) and GA20 appeared earlier in surrounding tissues (pericarps/carpel/placenta) than in developing seeds of morning glory. The content of GA1/3 became higher in seeds than in the surrounding tissues at 9 days after anthesis (DAA), while that of GA20 stayed lower in seeds even at 12 DAA, suggesting the possibility that GA20 was translocated into seeds from the surrounding tissues and converted to GA1/3. The site of biosynthesis of GA20 in the fruits was determined by RNA-blotting and in situ hybridization of GA 20-oxidase genes (InGA20ox1, InGA20ox2). InGA20ox1 was not expressed in the surrounding tissues but in seeds, while no signal due to InGA20ox2 was detected in neither tissue. The expression of InGA20ox1 started in the seed coat near the hilum and spread in the seed coat like those of GA 3-oxidase and GA-inducible alpha-amylase genes. These observations suggest that GA biosynthesis is tissue-specifically and time-dependently regulated in the fruit of morning glory.  相似文献   

9.
10.
We investigated the role of gibberellins (GAs) in the effect of pat-2, a recessive mutation that induces facultative parthenocarpic fruit development in tomato (Lycopersicon esculentum Mill.) using near-isogenic lines with two different genetic backgrounds. Unpollinated wild-type Madrigal (MA/wt) and Cuarenteno (CU/wt) ovaries degenerated, but GA(3) application induced parthenocarpic fruit growth. On the contrary, parthenocarpic growth of MA/pat-2 and CU/pat-2 fruits, which occurs in the absence of pollination and hormone application, was not affected by GA(3). Pollinated MA/wt and parthenocarpic MA/pat-2 ovary development was negated by paclobutrazol, and this inhibitory effect was counteracted by GA(3). The main GAs of the early-13-hydroxylation pathway (GA(1), GA(3), GA(8), GA(19), GA(20), GA(29), GA(44), GA(53), and, tentatively, GA(81)) and two GAs of the non-13-hydroxylation pathway (GA(9) and GA(34)) were identified in MA/wt ovaries by gas chromatography-selected ion monitoring. GAs were quantified in unpollinated ovaries at flower bud, pre-anthesis, and anthesis. In unpollinated MA/pat-2 and CU/pat-2 ovaries, the GA(20) content was much higher (up to 160 times higher) and the GA(19) content was lower than in the corresponding non-parthenocarpic ovaries. The application of an inhibitor of 2-oxoglutarate-dependent dioxygenases suggested that GA(20) is not active per se. The pat-2 mutation may increase GA 20-oxidase activity in unpollinated ovaries, leading to a higher synthesis of GA(20), the precursor of an active GA.  相似文献   

11.
Auxin regulation of the gibberellin pathway in pea   总被引:1,自引:0,他引:1  
O'Neill DP  Ross JJ 《Plant physiology》2002,130(4):1974-1982
  相似文献   

12.
13.
Parthenocarpy, the productions of seedless fruit without pollination or fertilization, is a potentially desirable trait in many commercially grown fruits, especially in pear, which is self‐incompatible. Phytohormones play important roles in fruit set, a process crucial for parthenocarpy. In this study, 2,4‐dichlorophenoxyacetic acid (2,4‐D), an artificially synthesized plant growth regulator with functions similar to auxin, was found to induce parthenocarpy in pear. Histological observations revealed that 2,4‐D promoted cell division and expansion, which increased cortex thickness, but the effect was weakened by paclobutrazol (PAC), a gibberellin (GA) biosynthesis inhibitor. Phenotypic differences in pear may therefore be due to different GA contents. Hormone testing indicated that 2,4‐D mainly induced the production of bioactive GA4, rather than GA3. Three key oxidase genes function in the GA biosynthetic pathway: GA20ox, GA3ox and GA2ox. In a pear group treated with only 2,4‐D, PbGA20ox2‐like and PbGA3ox‐1 were significantly upregulated. When treated with 2,4‐D supplemented with PAC, however, expression levels of these genes were significantly downregulated. Additionally, PbGA2ox1‐like and PbGA2ox2‐like expression levels were significantly downregulated in pear treated with either 2,4‐D only or 2,4‐D supplemented with PAC. We thus hypothesize that 2,4‐D can induce parthenocarpy by enhancing GA4 biosynthesis.  相似文献   

14.
15.
16.
17.
The effect of the le mutation on the growth and gibberellin (GA) content of developing fruits was investigated using the near-isogenic lines of Pisum sativum L. 205+ (LeLe) and 205- (lele). Although stem elongation is known to be reduced in 205- plants by approximately 65%, the growth of pods and seeds was unaffected by the le mutation. GA1, GA3, and GA20 stimulated parthenocarpic development of unpollinated ovaries on both 205+ and 205- plants. GA20 was less active on 205- ovaries than on 205+, whereas GA1 had similar, high activity in both lines. The activity of GA3 was even higher than that of GA1 in both lines. Decapitation of 205+ plants induced parthenocarpic development of unpollinated ovaries, but this treatment was much less effective on 205- plants. The contents of GA1 and GA8 in entire ovaries 6 d after anthesis, as well as in the pod and fertilized ovules, were substantially lower in 205- than in 205+ plants, whereas the reverse was true for the levels of GA20 and GA29. These results suggest that 3[beta]-hydroxylation of GA20 to GA1 is reduced in ovaries as well as in vegetative tissues. Thus, the le mutation appears to be expressed in young reproductive organs of the 205- line, even though it does not affect the fruit phenotype. Because the content of GA3 in the ovary was similar in the two lines, one explanation for the normal fruit size in the 205- line is that GA3 is the native regulator of pod growth. Alternatively, sufficient GA1 may still be produced in 205- fruits to maintain normal pod growth.  相似文献   

18.
Vally K  Selvi MT  Sharma R 《Plant physiology》1995,109(2):517-523
Treatment of pollinated pea (Pisum sativum L. cv Alaska, line V1) ovaries with 3,5-dioxo-4-butyryl-cyclohexane carboxylic acid ethyl ester (LAB), an acylcyclohexanedione derivative that competitively inhibits 2-oxoglutarate-dependent gibberellin (GA) dioxygenases, caused a reduction of pod elongation proportional to the amount of inhibitor applied. The effect of LAB was counteracted by GA1 and GA3, and partially by GA20. The inhibitor decreased the contents of GA1 and GA3 (the purported active GAs) and GA8, increased those of GA19 and GA20, and did not affect that of GA29 in both the pod and the developing seeds. These results provide evidence that GA1 and/or GA3 control pod development in pea and show that GA20 is not active per se. In contrast to its effect on pollinated ovaries, LAB promoted parthenocarpic development of unpollinated ovaries, which is associated with an increase of GA1 and GA8 content. The inhibitor enhanced the response of unpollinated ovaries to GA1 and GA20, but it did not alter the response to GA3. LAB is proposed to promote parthenocarpic development and enhance the response to exogenous GAs by blocking the 2[beta]-hydroxylation of GA1 more efficiently than 3[beta]-hydroxylation of GA20.  相似文献   

19.
The role of gibberellins (GAs) in the induction of parthenocarpic fruit-set and growth by the pat-3/pat-4 genetic system in tomato ( Lycopersicon esculentum Mill.) was investigated using wild type (WT; Cuarenteno) and a near-isogenic line derived from the German line RP75/59 (the source of pat-3/pat-4 parthenocarpy). Unpollinated WT ovaries degenerated but GA3 application induced parthenocarpic fruit growth. On the contrary, parthenocarpic growth of pat-3/pat-4 fruits, which occurs in the absence of pollination and hormone treatment, was not affected by applied GA3. Unpollinated pat-3/pat-4 fruit growth was negated by paclobutrazol, an inhibitor of ent -kaurene oxidase, and this inhibitory effect was negated by GA3. The quantification of the main GAs of the early 13-hydroxylation pathway (GA1, GA8, GA19, GA20, GA29 and GA44) in unpollinated ovaries at 3 developmental stages (flower bud, FB; pre-anthesis, PR; and anthesis, AN), by gas chromatography-selected ion monitoring, showed that the concentration of most of them was higher in pat-3/pat-4 than in WT ovaries at PR and AN stages. The concentration of GA1, suggested previously to be the active GA in tomate, was 2–4 times higher. Unpollinated pat-3/pat-4 ovaries at FB, PR and AN stages also contained relatively high amounts (5–12 ng g−1) of GA3, a GA found at less than 0.5 ng g−1 in WT ovaries. It is concluded that the mutations pat-3/pat-4 may induce natural facultative parthenocarpy capacity in tomato by increasing the concentration of GA1 and GA3 in the ovaries before pollination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号