首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Retinol dehydrogenase 13 (RDH13) is a recently identified short-chain dehydrogenase/reductase related to microsomal retinoid oxidoreductase RDH11. In this study, we examined the distribution of RDH13 in human tissues, determined its subcellular localization and characterized the substrate and cofactor specificity of purified RDH13 in order to better understand its properties. The results of this study demonstrate that RDH13 exhibits a wide tissue distribution and, by contrast with other members of the RDH11-like group of short-chain dehydrogenases/reductases, is a mitochondrial rather than a microsomal protein. Protease protection assays suggest that RDH13 is localized on the outer side of the inner mitochondrial membrane. Kinetic analysis of the purified protein shows that RDH13 is catalytically active and recognizes retinoids as substrates. Similar to the microsomal RDHs, RDH11, RDH12 and RDH14, RDH13 exhibits a much lower Km value for NADPH than for NADH and has a greater catalytic efficiency in the reductive than in the oxidative direction. The localization of RDH13 at the entrance to the mitochondrial matrix suggests that it may function to protect mitochondria against oxidative stress associated with the highly reactive retinaldehyde produced from dietary beta-carotene.  相似文献   

3.
4.
Beef with yellow fat is considered undesirable by consumers in most European and Asian markets. β-Carotene is the major carotenoid deposited in the adipose tissue and milk fat of cattle (Bos taurus), which can result in the yellowness. The effects of retinal short-chain dehydrogenase reductase (RDHE2) and β, β-carotene 9',10-dioxygenase (BCO2) were considered jointly as major candidate genes for causing the yellow fat colour, based on their genomic locations in the fat colour quantitative trait loci (QTL) and their roles in the metabolism of β-carotene. In a secondary pathway, BCO2 cleaves β-carotene into retinoic acid, the most potent form of vitamin A. RDHE2 converts trans-retinol to trans-retinal, a less active form of vitamin A. We evaluated the effects of two amino acid variants of the RDHE2 gene (V6A and V33A) along with a mutation in the BCO2 gene that results in a stop codon (W80X) in seven cattle populations. The RDHE2 V6A genotype affected several fat colour traits but the size of the effect varied in the populations studied. The genotype effect of the RDHE2 V33A variant was observed only in New Zealand samples of unknown breed. In general, the individual effects of RDHE2 V6A and V33A SNPs genotypes were greater in the random New Zealand samples than in samples from pedigreed Jersey-Limousin backcross progeny, accounting for 8-17 % of the variance in one population. Epistasis between the BCO2 W80X and RDHE2 variants was observed, and in some populations this explained more of the variation than the effects of the individual RDHE2 variants.  相似文献   

5.
Liu S  Huang C  Li D  Ren W  Zhang H  Qi M  Li X  Yu L 《Acta biochimica Polonica》2007,54(1):213-218
We report here the cloning and characterization of a novel human short-chain dehydrogenases/reductase gene SCDR9, isolated from a human liver cDNA library, and mapped to 4q22.1 by browsing the UCSC genomic database. SCDR9 containing an ORF with a length of 900 bp, encoding a protein with a signal peptide sequence and an adh_short domain. GFP localization shows SCDR9 protein concentrated in some site of the cytoplasm, but not in the ER. Expression pattern in eighteen tissues revealed that SCDR9 is expressed highly in liver. Soluble recombinant protein was successfully purified from Escherichia coli using pET28A(+) expression vector. Our data provides important information for further study of the function of the SCDR9 gene and its products.  相似文献   

6.
Mammalian carbonyl reductase (EC 1.1.1.184) is an enzyme that can catalyze the reduction of many carbonyl compounds, using NAD(P)H. We isolated a cDNA of carbonyl reductase (CHO-CR) from CHO-K1 cells which was 1208 bp long, including a poly(A) tail, and contained an 831-bp ORF. The deduced amino-acid sequence of 277 residues contained a typical motif for NADP+-binding (TGxxxGxG) and an SDR active site motif (S-Y-K). CHO-CR closely resembles mammalian carbonyl reductases with 71-73% identity. CHO-CR cDNA had the highest similarity to human CBR3 with 86% identity. Using the pET-28a expression vector, recombinant CHO-CR (rCHO-CR) was expressed in Escherichia coli BL21 (DE3) cells and purified with a Ni2+-affinity resin to homogeneity with a 35% yield. rCHO-CR had broad substrate specificity towards xenobiotic carbonyl compounds. RT-PCR of Chinese hamster tissues suggest that CHO-CR is highly expressed in kidney, testis, brain, heart, liver, uterus and ovary. Southern blotting analysis indicated the complexity of the Chinese hamster carbonyl reductase gene.  相似文献   

7.
Recently, we reported the first biochemical characterization of a novel member of the short-chain dehydrogenase/reductase superfamily, retinal reductase 1 (RalR1) (Kedishvili et al. (2002) J. Biol. Chem. 277, 28909-28915). In the present study, we purified the recombinant enzyme from the microsomal membranes of insect Sf9 cells, determined its catalytic efficiency for the reduction of retinal and the oxidation of retinol, established its transmembrane topology, and examined the distribution of RalR1 in human tissues and cell lines. Purified RalR1-His(6) exhibited the apparent K(m) values for all-trans-retinal and all-trans-retinol of 0.12 and 0.6 microM, respectively. The catalytic efficiency (k(cat)/K(m)) for the reduction of all-trans-retinal (150,000 min(-1) mM(-1)) was 8-fold higher than that for the oxidation of all-trans-retinol (18,000 min(-1) mM(-1)). Protease protection assays and site-directed mutagenesis suggested that the enzyme is anchored in the membrane by the N-terminal signal-anchor domain, with the majority of the polypeptide chain located on the cytosolic side of the membrane. An important feature that prevented the translocation of RalR1 across the membrane was the positively charged R(25)K motif flanking the N-terminal signal-anchor. The cytosolic orientation of RalR1 suggested that, in intact cells, the enzyme would function predominantly as a reductase. Western blot analysis revealed that RalR1 is expressed in a wide variety of normal human tissues and cancer cell lines. The expression pattern and the high catalytic efficiency of RalR1 are consistent with the hypothesis that RalR1 contributes to the reduction of retinal in various human tissues.  相似文献   

8.
9.
The open reading frame YLR070c of Saccharomyces cerevisiae has high sequence similarity to S. cerevisiae sorbitol dehydrogenase and to xylitol dehydrogenase of Pichia stipitis. Overexpression of this open reading frame in S. cerevisiae resulted in xylitol dehydrogenase activity. The enzyme is specific for NADH. The following Michaelis constants were estimated: D-xylulose, 1.1 mM; NADH, 240 microM (at pH 7.0); xylitol, 25 mM; NAD, 100 microM (at pH 9.0). Xylitol dehydrogenase activity with the same kinetic properties can also be induced by xylose in wild type S. cerevisiae cells.  相似文献   

10.
Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-directed mutagenesis of the screened residues, was used to study the molecular determinants of the cofactor specificity of ZmRDH. A homologous conserved amino acid, Ser156, in the substrate-binding pocket of the wild-type ZmRDH was identified as an important residue affecting the cofactor specificity of ZmRDH. Further insights into the function of the Ser156 residue were obtained by substituting it with other hydrophobic nonpolar or polar amino acids. Substituting Ser156 with the negatively charged amino acids (Asp and Glu) altered the cofactor specificity of ZmRDH toward NAD(+) (S156D, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 10.9, where K(m)(,NAD) is the K(m) for NAD(+) and K(m)(,NADP) is the K(m) for NADP(+)). In contrast, the mutants containing positively charged amino acids (His, Lys, or Arg) at position 156 showed a higher efficiency with NADP(+) as the cofactor (S156H, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 0.11). These data, in addition to those of molecular dynamics and isothermal titration calorimetry studies, suggest that the cofactor specificity of ZmRDH can be modulated by manipulating the amino acid residue at position 156.  相似文献   

11.
The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases (SDRs) superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh gene was heterologously overexpressed in Escherichia coli, and the protein (SaADH) was purified to homogeneity and characterized. SaADH is a tetrameric enzyme consisting of identical 28,978-Da subunits, each composed of 264 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 75°C and a 30-min half-inactivation temperature of ~90°C, and shows good tolerance to common organic solvents. SaADH has a strict requirement for NAD(H) as the coenzyme, and displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and α-keto esters, but is poorly active on aliphatic, cyclic and aromatic alcohols, and shows no activity on aldehydes. The enzyme catalyses the reduction of α-methyl and α-ethyl benzoylformate, and methyl o-chlorobenzoylformate with 100% conversion to methyl (S)-mandelate [17% enantiomeric excess (ee)], ethyl (R)-mandelate (50% ee), and methyl (R)-o-chloromandelate (72% ee), respectively, with an efficient in situ NADH-recycling system which involves glucose and a thermophilic glucose dehydrogenase. This study provides further evidence supporting the critical role of the D37 residue in discriminating NAD(H) from NAD(P)H in members of the SDR superfamily.  相似文献   

12.
FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating that FQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated from Escherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathione S-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress.  相似文献   

13.
Human DHRS4 is a peroxisomal member of the short-chain dehydrogenase/reductase superfamily, but its enzymatic properties, except for displaying NADP(H)-dependent retinol dehydrogenase/reductase activity, are unknown. We show that the human enzyme, a tetramer composed of 27 kDa subunits, is inactivated at low temperature without dissociation into subunits. The cold inactivation was prevented by a mutation of Thr177 with the corresponding residue, Asn, in cold-stable pig DHRS4, where this residue is hydrogen-bonded to Asn165 in a substrate-binding loop of other subunit. Human DHRS4 reduced various aromatic ketones and α-dicarbonyl compounds including cytotoxic 9,10-phenanthrenequinone. The overexpression of the peroxisomal enzyme in cultured cells did not increase the cytotoxicity of 9,10-phenanthrenequinone. While its activity towards all-trans-retinal was low, human DHRS4 efficiently reduced 3-keto-C19/C21-steroids into 3β-hydroxysteroids. The stereospecific conversion to 3β-hydroxysteroids was observed in endothelial cells transfected with vectors expressing the enzyme. The mRNA for the enzyme was ubiquitously expressed in human tissues and several cancer cells, and the enzyme in HepG2 cells was induced by peroxisome-proliferator-activated receptor α ligands. The results suggest a novel mechanism of cold inactivation and role of the inducible human DHRS4 in 3β-hydroxysteroid synthesis and xenobiotic carbonyl metabolism.  相似文献   

14.
Chinese hamster monomeric carbonyl reductases (CHCRs) belong to the short-chain dehydrogenase/reductase (SDR) superfamily, which is a family of enzymes that metabolize many endogenous and xenobiotic compounds. We previously cloned three carbonyl reductase cDNAs-Chcr1, Chcr2, and Chcr3. By performing spectrophotometric analyses, we indicated that the enzymes CHCR1, CHCR2, and CHCR3 had similar specificities toward steroids; only CHCR3 did not show any reactivity with prostaglandins (PGs). In the present study, we investigated the characteristics of CHCRs in detail, that is, the differences in their expression patterns, physicochemical properties, and enzymatic activities. CHCR1 exhibited sex-dependent expression patterns. CHCRs showed multiple surface potentials in the zeta potential analysis and CHCR3 exhibited an isatin reductase activity with a high K(m) value. By the present HPLC-analysis, all the three enzymes exhibited PGF(2alpha) dehydrogenase activity and could oxidize PGF(2alpha) to PGE(2) and 15-keto-PGF(2alpha), i.e., the three enzymes exhibited 9- and 15-hydroxy PG dehydrogenase activities. Moreover, 15-keto-PGE(2) was detected in a comparatively higher amount in the dehydrogenase reaction products of CHCR2 than in those of CHCR1 and CHCR3, suggesting that CHCR2 can oxidize PGE(2) and/or 15-keto-PGF(2alpha) to 15-keto-PGE(2); however, these two PGs did not seem to be efficient substrates of CHCR1. Despite the differences in the dehydrogenase activities between CHCR1 and CHCR2, PGE(2) reductase activities of the two enzymes were similar, and PGF(2alpha) was predominantly produced from PGE(2) as a result of the PG 9-keto reductase activity. On the other hand, CHCR3 exhibited a reduced PGE(2) reductase activity. In conclusion, although the CHCRs share a high degree of sequence identity (>70%), they clearly differed in their enzymatic characteristics.  相似文献   

15.
16.
Chen W  Song MS  Napoli JL 《Gene》2002,294(1-2):141-146
We report cloning a cDNA that encodes a novel short-chain dehydrogenase/reductase, SDR-O, conserved in mouse, human and rat. Human and mouse liver express SDR-O (short-chain dehydrogenase/reductase-orphan) mRNA intensely. The mouse embryo expresses SDR-O mRNA as early as day seven. Human SDR-O localizes on chromosome 12; mouse SDR-O localizes on chromosome 10 with CRAD1, CRAD2 and RDH4. SDR-O shares highest amino acid similarity with rat RoDH1 and mouse RDH1 (69-70%), but does not have the retinol and 3alpha-hydroxysteroid dehydrogenase activity of either, nor is it active as a 17beta- or 11beta-hydroxysteroid dehydrogenase. Short-chain dehydrogenase/reductases catalyse the metabolism of ligands that bind with nuclear receptors: the occurrence of 'orphan' nuclear receptors may imply existence of 'orphan' SDR, suggesting that SDR-O may catalyse the metabolism of another class of nuclear receptor ligand. Alternatively, SDR-O may not have a catalytic function, but may regulate metabolism by binding substrates/products and/or by serving as a regulatory factor.  相似文献   

17.
DHRS4, a member of the short-chain dehydrogenase/reductase superfamily, reduces all-trans-retinal and xenobiotic carbonyl compounds. Human DHRS4 differs from other animal enzymes in kinetic constants for the substrates, particularly in its low reactivity to retinoids. We have found that pig, rabbit and dog DHRS4s reduce benzil and 3-ketosteroids into S-benzoin and 3α-hydroxysteroids, respectively, in contrast to the stereoselectivity of human DHRS4 which produces R-benzoin and 3β-hydroxysteroids. Among substrate-binding residues predicted from the crystal structure of pig DHRS4, F158 and L161 in the animal DHRS4 are serine and phenylalanine, respectively, in the human enzyme. Double mutation (F158S/L161F) of pig DHRS4 led to an effective switch of its substrate affinity and stereochemistry into those similar to human DHRS4. The roles of the two residues in determining the stereospecificity in 3-ketosteroid reduction were confirmed by reverse mutation (S158F/F161L) in the human enzyme. The stereochemical control was evaluated by comparison of the 3D models of pig wild-type and mutant DHRS4s with the modeled substrates. Additional mutation of T177N into the human S158F/F161L mutant resulted in almost complete kinetic conversion into a pig DHRS4-type form, suggesting a role of N177 in forming the substrate-binding cavity through an intersubunit interaction in pig and other animal DHRS4s, and explaining why the human enzyme shows low reactivity towards retinoids.  相似文献   

18.
Direct cloning of the trxB gene that encodes thioredoxin reductase.   总被引:4,自引:2,他引:4       下载免费PDF全文
A strain was constructed which contains mutations in the genes encoding thioredoxin (trxA) and thioredoxin reductase (trxB) such that filamentous phage f1 cannot grow. The complementation of either mutation with its wild-type allele permits phage growth. We used this strain to select f1 phage which contain a cloned trxB gene. The location of the gene on the cloned fragment was determined, and its protein product was identified. Plasmid subclones that contain this gene overproduce thioredoxin reductase.  相似文献   

19.
BackgroundAn amino alcohol dehydrogenase gene (RE_AADH) from Rhodococcus erythropolis BCRC 10909 has been used for the conversion of 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) to (S)-phenylephrine [(S)-PE]. However RE_AADH uses NADPH as cofactor, and only limited production of (S)-PE from HPMAE is achieved.MethodsA short-chain dehydrogenase/reductase gene (SQ_SDR) from Serratia quinivorans BCRC 14811 was expressed in Escherichia coli BL21 (DE3) for the conversion of HPMAE to (S)-PE.ResultsThe SQ_SDR enzyme was capable of converting HPMAE to (S)-PE in the presence of NADH and NADPH, with specific activities of 26.5 ± 2.3 U/mg protein and 0.24 ± 0.01 U/mg protein, respectively, at 30 °C and at a pH of 7.0. The E. coli BL21 (DE3), expressing NADH-preferring SQ_SDR, converted HPMAE to (S)-PE with more than 99% enantiomeric excess, a conversion yield of 86.6% and a productivity of 20.2 mmol/l h, which was much higher than our previous report using E. coli NovaBlue expressing NADPH-dependent RE_AADH as the biocatalyst.ConclusionThe SQ_SDR enzyme with its high catalytic activity and strong preference for NADH as a cofactor provided a significant advantage in bioreduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号