共查询到20条相似文献,搜索用时 0 毫秒
1.
Gabriela de Lima Menezes Ricardo Lemes Gonçalves Raisa Melo Lima Maristela Pereira Marcos Lázaro Moreli 《Journal of biomolecular structure & dynamics》2020,38(17):5277-5286
Communicated by Ramaswamy H. Sarma 相似文献
2.
Characterization and modification of the carboxy-terminal sequences of bluetongue virus type 10 NS1 protein in relation to tubule formation and location of an antigenic epitope in the vicinity of the carboxy terminus of the protein.
下载免费PDF全文

Bluetongue virus produces large numbers of tubules during infection. The tubules are formed from a 552-amino-acid, 64-kDa NS1 protein encoded by the viral double-stranded RNA segment M6. A series of deletion and extension mutants of bluetongue virus serotype 10 NS1 has been generated and expressed in insect cells in order to identify the carboxy-terminal components of the protein which are important for tubule formation. The mutants AcCT5 and AcCT10, lacking 5 and 10 of the carboxy-terminal residues, respectively, were prepared. By analyzing their abilities to form tubules, it was shown that AcCT5 was capable of this function whereas AcCT10 was not, indicating that the last five amino acids are not strongly involved in NS1 tubule formation. Extension mutants including foreign antigenic sequences involving up to 16 amino acids added to the C terminus of NS1 were shown to form tubules, although an extension of 19 amino acids inhibited tubule formation. Analysis of a panel of monoclonal antibodies has established that an NS1 antigenic site is located near the carboxy terminus of the protein. It appears to be exposed on the surface of tubules. The opportunities to develop new vaccines using recombinant NS1 to deliver foreign epitopes are discussed. 相似文献
3.
Deletion and mutational analyses of bluetongue virus NS2 protein indicate that the amino but not the carboxy terminus of the protein is critical for RNA-protein interactions. 总被引:1,自引:0,他引:1
下载免费PDF全文

Genome segment 8 (S8) of bluetongue virus serotype 10 (BTV-10) encodes the nonstructural protein NS2. This protein, which has single-stranded RNA (ssRNA) binding capacity, is found in BTV-infected cells in the form of virus inclusion bodies (VIBs). To identify the domain(s) important for RNA binding and oligomerization of the protein, a number of deletions were made in regions of the gene that code for either the amino or carboxy terminus of the protein. The modified genes were cloned into and expressed from baculovirus vectors based on Autographa californica nuclear polyhedrosis virus. Truncated NS2 proteins were individually analyzed for the ability to bind ssRNA and to form VIBs. The results indicated that the carboxy terminus of the protein is involved neither in RNA binding nor in the formation of VIBs. The amino terminus of NS2 was shown to be essential for ssRNA binding but not for NS2 protein oligomerization. Point mutations that involved the substitution of various charged residues at the amino terminus of NS2 were generated and tested for the ability to bind ssRNA. The results showed that the arginines at amino acid residues 6 and 7 and the lysine at residue 4, but not the glutamic acid at residue 2, are involved in ssRNA binding. 相似文献
4.
5.
Two nuclear location signals in the influenza virus NS1 nonstructural protein. 总被引:15,自引:13,他引:15
下载免费PDF全文

The NS1 protein of influenza A virus has been shown to enter and accumulate in the nuclei of virus-infected cells independently of any other influenza viral protein. Therefore, the NS1 protein contains within its polypeptide sequence the information that codes for its nuclear localization. To define the nuclear signal of the NS1 protein, a series of recombinant simian virus 40 vectors that express deletion mutants or fusion proteins was constructed. Analysis of the proteins expressed resulted in identification of two regions of the NS1 protein which affect its cellular location. Nuclear localization signal 1 (NLS1) contains the stretch of basic amino acids Asp-Arg-Leu-Arg-Arg (codons 34 to 38). This sequence is conserved in all NS1 proteins of influenza A viruses, as well as in that of influenza B viruses. NLS2 is defined within the region between amino acids 203 and 237. This domain is present in the NS1 proteins of most influenza A virus strains. NLS1 and NLS2 contain basic amino acids and are similar to previously defined nuclear signal sequences of other proteins. 相似文献
6.
A M Wade-Evans 《Gene》1992,118(2):295-296
Bluetongue virus has a ten-segment double-stranded RNA genome, of which segment 8 encodes a nonstructural protein NS2. This protein is the only bluetongue viral protein to be phosphorylated and also has the ability to bind single-stranded RNA. At present, the function of NS2 is unknown and in order to analyse its characteristics in more detail, it was first necessary to obtain a full-length cDNA clone of the genome segment. 相似文献
7.
Bluetongue virus tubules made in insect cells by recombinant baculoviruses: expression of the NS1 gene of bluetongue virus serotype 10. 总被引:5,自引:6,他引:5
下载免费PDF全文

Bluetongue virus (BTV) forms tubules in mammalian cells. These tubules appear to be composed of only one type of protein, NS1, a major nonstructural protein of the virus. To obtain direct evidence for the origin of the tubules, the complete M6 gene of BTV serotype 10 was inserted into the baculovirus transfer vector pAcYM1, so that it was under the control of the polyhedrin promoter of Autographa californica nuclear polyhedrosis virus. After cotransfection of Spodoptera frugiperda cells with wild-type A. californica nuclear polyhedrosis virus DNA in the presence of recombinant transfer vector DNA, polyhedrin-negative baculoviruses were recovered. When S. frugiperda cells were infected with one of the derived recombinant viruses, a protein similar in size and antigenic properties to the authentic BTV NS1 protein was made (representing ca. 50% of the stained cellular proteins). The protein reacted with BTV antibody and formed numerous tubular structures in the cytoplasm of S. frugiperda cells. The tubular structures have been purified to homogeneity from infected-cell extracts by gradient centrifugation. By enzyme-linked immunosorbent assay, the recombinant virus antigen has been used to identify antibodies to five United States BTV serotypes in infected sheep sera, indicating the potentiality of the expressed protein as a group-reactive antigen in the diagnosis of BTV infections. 相似文献
8.
Proper processing of dengue virus nonstructural glycoprotein NS1 requires the N-terminal hydrophobic signal sequence and the downstream nonstructural protein NS2a. 总被引:5,自引:20,他引:5
下载免费PDF全文

Expression of dengue virus gene products involves specific proteolytic cleavages of a precursor polyprotein. To study the flanking sequences required for expression of the dengue virus nonstructural glycoprotein NS1, we constructed a series of recombinant vaccinia viruses that contain the coding sequence for NS1 in combination with various lengths of upstream and downstream sequences. The NS1 products expressed by these viruses in infected CV-1 cells were immune precipitated and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The data show that the 24-residue hydrophobic sequence preceding NS1 was necessary and sufficient for the production of glycosylated NS1 and that this sequence was cleaved from NS1 in the absence of most dengue virus proteins. This finding is consistent with previous proposals that this hydrophobic sequence serves as an N-terminal signal sequence that is cleaved by signal peptidase. The cleavage between the C terminus of NS1 and the downstream protein NS2a occurred when the complete NS2a was present. Recombinant viruses containing NS1 plus 15 or 49% of NS2a produced proteins larger than authentic NS1, indicating that the cleavage between NS1 and NS2a had not occurred. Failure of cleavage was not corrected by coinfection with a recombinant virus capable of cleavage. These results suggest that NS2a may be a cis-acting protease that cleaves itself from NS1, or NS2a may provide sequences for recognition by a specific cellular protease that cleaves at the NS1-NS2a junction. 相似文献
9.
Masaya Miyazaki Hiroshi Nishihara Hideki Hasegawa Masato Tashiro Lei Wang Taichi Kimura Mishie Tanino Masumi Tsuda Shinya Tanaka 《Biochemical and biophysical research communications》2013
The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while the physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated. 相似文献
10.
Expression of influenza virus NS2 nonstructural protein in bacteria and localization of NS2 in infected eucaryotic cells. 总被引:5,自引:5,他引:5
下载免费PDF全文

D Greenspan M Krystal S Nakada H Arnheiter D S Lyles P Palese 《Journal of virology》1985,54(3):833-843
The nonstructural NS2 protein of influenza A/PR/8/34 virus was efficiently expressed in bacteria, and monospecific antisera were prepared against the bacterially synthesized polypeptide. These antisera were cross-reactive among the NS2 proteins of various influenza A viruses. However, they did not react with the NS2 of influenza B/Lee/40 virus nor with other proteins of influenza A viruses such as NS1. Antisera against NS2 were used to determine that the NS2 protein is localized in the cell nucleus during influenza virus infection, as shown by immunofluorescence microscopy. Cells infected with simian virus 40 recombinants containing the influenza virus NS gene revealed that both the NS1 and NS2 proteins appeared in the nucleus, even in the absence of expression of other influenza virus-specific components. 相似文献
11.
Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees 总被引:7,自引:0,他引:7
下载免费PDF全文

Whitehead SS Bukreyev A Teng MN Firestone CY St Claire M Elkins WR Collins PL Murphy BR 《Journal of virology》1999,73(4):3438-3442
The NS2 and SH genes of respiratory syncytial virus (RSV) have been separately deleted from a recombinant wild-type RSV strain, A2 (M. N. Teng and P. L. Collins, J. Virol. 73:466-473, 1998; A. Bukreyev et al., J. Virol. 71:8973-8982, 1997; and this study). The resulting viruses, designated rA2DeltaNS2 and rA2DeltaSH, were administered to chimpanzees to evaluate their levels of attenuation and immunogenicity. Recombinant virus rA2DeltaNS2 replicated to moderate levels in the upper respiratory tract, was highly attenuated in the lower respiratory tract, and induced significant resistance to challenge with wild-type RSV. The replication of rA2DeltaSH virus was only moderately reduced in the lower, but not the upper, respiratory tract. However, chimpanzees infected with either virus developed significantly less rhinorrhea than those infected with wild-type RSV. These findings demonstrate that a recombinant RSV mutant lacking either the NS2 or SH gene is attenuated and indicate that these deletions may be useful as attenuating mutations in new, live recombinant RSV vaccine candidates for both pediatric and elderly populations. The DeltaSH mutation was incorporated into a recombinant form of the cpts248/404 vaccine candidate, was evaluated for safety in seronegative chimpanzees, and can now be evaluated as a vaccine for humans. 相似文献
12.
Epstein-Barr virus latent infection membrane protein alters the human B-lymphocyte phenotype: deletion of the amino terminus abolishes activity. 总被引:23,自引:38,他引:23
下载免费PDF全文

D Wang D Liebowitz F Wang C Gregory A Rickinson R Larson T Springer E Kieff 《Journal of virology》1988,62(11):4173-4184
A latent infection membrane protein (LMP) encoded by the Epstein-Barr virus (EBV) genome in latently infected, growth-transformed lymphocytes alters the phenotype of a human EBV-negative B-lymphoma cell line (Louckes) when introduced by gene transfer. These LMP-expressing cells exhibit increased homotypic adhesion due to increased expression of the adhesion molecules LFA-1 and ICAM-1. Increased homotypic adhesion could foster B-cell growth by facilitating autocrine growth factor effects. LFA-3 expression is also induced. The induction of LFA-3 and ICAM-1 results in increased heterotypic adhesion to T lymphocytes. This could result in more effective T-cell immune surveillance. Since LMP is expressed in EBV-transformed lymphocytes and has been demonstrated to transform rodent fibroblasts in vitro, a wide range of possible effects on B-lymphoma cell growth were assayed. In the Louckes B-lymphoma cell line, EBV LMP causes increased cell size, acid production, plasma membrane ruffling, and villous projections. Although cell proliferation rate was not greatly affected, the steady-state intracellular free calcium level, transforming growth factor beta responsiveness, and expression of the lymphocyte activation markers (CD23 and transferrin receptor) were increased. Thus, LMP appears to be a mediator of EBV effects on B-cell transformation. In transfected lymphoma cells, LMP localizes to patches at the cell periphery and associates with the cytoskeleton as it does in EBV-transformed B lymphocytes or in rodent fibroblasts. A partially deleted form of LMP (D1LMP) does not aggregate in patches or associate with the cytoskeleton and had little effect on B-cell growth. Thus, cytoskeletal association may be integral to LMP activity. 相似文献
13.
Mutational analysis of the human immunodeficiency virus type 1 Rev transactivator: essential residues near the amino terminus. 总被引:5,自引:27,他引:5
下载免费PDF全文

The expression of certain mRNAs from human immunodeficiency virus type 1 (HIV-1) is controlled by the viral transactivator Rev, a nucleolar protein that binds a cis-acting element in these mRNAs. Rev is encoded by two viral exons that specify amino acids 1 to 26 and 27 to 116, respectively. Earlier studies have mapped essential regions of the protein that are encoded in the second exon. By further mutational analysis of Rev, we have now identified a novel locus encoded by the first exon that also is essential for transactivation in vivo. Defined by mutations at residues 14 to 20, this locus coincides with a cluster of positively charged and nonpolar amino acids that is conserved in Rev proteins of all known primate immunodeficiency viruses. Rev proteins that contained mutations at this site were defective in both nuclear localization and transactivation and did not function as trans-dominant inhibitors of wild-type Rev. Fusion of these mutants to a heterologous nuclear protein complemented the defect in localization but did not restore biological activity. Our findings suggest that this N-terminal locus may play a direct role in transactivation, perhaps contributing to essential protein-protein interactions or forming part of the RNA-binding domain of Rev. 相似文献
14.
Immunization of mice with recombinant vaccinia virus expressing authentic dengue virus nonstructural protein NS1 protects against lethal dengue virus encephalitis. 总被引:7,自引:12,他引:7
下载免费PDF全文

The protective immunity conferred by a set of recombinant vaccinia viruses containing the entire coding sequence of dengue virus type 4 nonstructural glycoprotein NS1 plus various flanking sequences was evaluated by using a mouse encephalitis model. Mice immunized with recombinant vNS1-NS2a, which expresses authentic NS1, were solidly protected against intracerebral dengue virus challenge. However, mice immunized with recombinants vNS1-15%NS2a and vRSVG/NS1-15%NS2a, which express aberrant forms of NS1, were only partially protected (63 to 67% survival rate). Serologic analysis showed that mice immunized with vNS1-NS2a developed high titers of antibodies to NS1 as measured by radioimmunoprecipitation, enzyme-linked immunosorbent assay, and complement-mediated cytolytic assays. In addition, a pool of sera from these animals was protective in a passive transfer experiment. Lower titers of NS1-specific antibodies were detected in sera of animals immunized with vNS1-15%NS2a or vRSVG/NS1-15%NS2a by all three assays. These data support the view that protection against dengue virus infection in mice may be mediated at least in part by NS1-specific antibodies through a mechanism of complement-mediated lysis of infected cells. Additionally, immunization with two recombinant viruses expressing authentic NS1 of dengue virus type 2 conferred partial protection (30-50%) against dengue virus type 2 challenge. 相似文献
15.
The N-terminal region of hepatitis C virus nonstructural protein 3 (NS3) is essential for stable complex formation with NS4A. 总被引:2,自引:9,他引:2
下载免费PDF全文

Hepatitis C virus proteins are produced by proteolytic processing of the viral precursor polyprotein that is encoded in the largest open reading frame of the viral genome. Processing of the nonstructural viral polyprotein requires the viral serine-type proteinase present in nonstructural protein 3 (NS3). The cleavage of the junction between NS4B and NS5A is mediated by NS3 only when NS4A is present. NS4A is thought to be a cofactor that enhances the cleavage efficiency of NS3 in hepatitis C virus protein-producing cells. Stable NS3-NS4A complex formation required the N-terminal 22 amino acid residues of NS3. This interaction contributed to stabilization of the NS3 product as well as increased the efficiency of cleavage at the NS4B/5A site. The N-terminal 22 amino acid residues fused to Escherichia coli dihydrofolate reductase also formed a stable complex with NS4A. NS3 derivatives which lacked the N-terminal 22 amino acid residues showed drastically reduced cleavage activity at the NS4B/5A site even in the presence of NS4A. These data suggested that the interaction with NS4A through the 22 amino acid residues of NS3 is primarily important for the NS4A-dependent processing of the NS4B/5A site by NS3. 相似文献
16.
C C Chao 《The Journal of biological chemistry》1992,267(4):2142-2148
I am investigating the role of protein folding in the transport of influenza virus hemagglutinin (HA), a membrane-bound protein, along the exocytotic pathway. From a previous work (Gething, M.-J., McCammon, K., and Sambrook, J. (1986) Cell 46, 939-950), it has been shown that a subset of alterations of the COOH-terminal sequences of the HA molecule inhibit folding and impede its transport to the cell surface. Current studies establish that the integrity of the NH2-terminal sequences of the HA is essential for assembly and transport of the molecule. Mutants lacking just 1 or 2 amino acids immediately COOH-terminal to the signal cleavage site are translocated and core glycosylated, but also incorrectly folded. The mutant molecules are not terminally glycosylated and are thus confined inside the cells. A hypothesis will be presented to explain why sequences at opposite ends of the HA molecule are essential for the assembly of native structures and why correct folding is necessary for transport along the exocytotic pathway of mammalian cells. 相似文献
17.
Cleavage of dengue virus NS1-NS2A requires an octapeptide sequence at the C terminus of NS1. 总被引:3,自引:12,他引:3
下载免费PDF全文

The length of amino acid sequence at the NS1-NS2A juncture of dengue virus that is required for specific cleavage effected by the cis-acting function of NS2A was identified by deletion analysis. Recombinant DNA sequences of NS1-NS2A, each containing a deletion in NS1 followed by a sequence of 3 to 20 amino acids at the C terminus of NS1 preceding the cleavage site, were constructed and expressed with vaccinia virus as a vector. The NS1 product of recombinant vaccinia virus-infected cells was immunoprecipitated and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The occurrence of cleavage between NS1 and NS2A was indicated by the appearance of shortened NS1. Failure to cleave this site yielded a large NS1-NS2A fusion protein. This analysis indicated that a minimum length of eight amino acids at the NS1 C terminus preceding the NS1-NS2A juncture is required for cleavage to take place. Comparison of this eight-amino-acid sequence of the NS1 C terminus of dengue type 4 virus with the analogous sequences of 12 other flaviviruses suggests that the consensus cleavage site sequence is as follows: (table; see text) 相似文献
18.
19.
20.
Mutational analysis of the cysteine residues in the hepatitis B virus small envelope protein. 总被引:9,自引:4,他引:9
下载免费PDF全文

The small envelope protein of hepatitis B virus is the major component of the viral coat and is also secreted from cells as a 20-nm subviral particle, even in the absence of other viral proteins. Such empty envelope particles are composed of approximately 100 copies of this polypeptide and host-derived lipids and are stabilized by extensive intermolecular disulfide cross-linking. To study the contribution of disulfide bonds to assembly and secretion of the viral envelope, single and multiple mutants involving all 14 cysteines in HepG2 and COS-7 cells were analyzed. Of the six cysteines located outside the region carrying the surface antigen, Cys-48, Cys-65, and Cys-69 were each found to be essential for secretion of 20-nm particles, whereas Cys-76, Cys-90, and Cys-221 were dispensable. By introduction of an additional cysteine substituting serine 58, the yield of secreted particles was increased. Of four mutants involving the eight cysteines located in the antigenic region, only the double mutant lacking Cys-121 and Cys-124 was secreted with wild-type efficiency. Secretion-competent envelope proteins were intracellularly retained by secretion-deficient cysteine mutants. According to alkylation studies, both intracellular and secreted envelope proteins contained free sulfhydryl groups. Disulfide-linked oligomers were studied by gel electrophoresis under nonreducing conditions. 相似文献