首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The time course of osmoregulatory adjustments and expressional changes of three key ion transporters in the gill were investigated in the striped bass during salinity acclimations. In three experiments, fish were transferred from fresh water (FW) to seawater (SW), from SW to FW, and from 15-ppt brackish water (BW) to either FW or SW, respectively. Each transfer induced minor deflections in serum [Na+] and muscle water content, both being corrected rapidly (24 hr). Transfer from FW to SW increased gill Na+,K+-ATPase activity and Na+,K+,2Cl- co-transporter expression after 3 days. Abundance of Na+,K+-ATPase alpha-subunit mRNA and protein was unchanged. Changes in Na+,K+,2Cl- co-transporter protein were preceded by increased mRNA expression after 24 hr. Expression of V-type H+-ATPase mRNA decreased after 3 days. Transfer from SW to FW induced no change in expression of gill Na+,K+-ATPase. However, Na+,K+,2Cl- co-transporter mRNA and protein levels decreased after 24 hr and 7 days, respectively. Expression of H+-ATPase mRNA increased in response to FW after 7 days. In BW fish transferred to FW and SW, gill Na+,K+-ATPase activity was stimulated by both challenges, suggesting both a hyper- and a hypo-osmoregulatory response of the enzyme. Acclimation of striped bass to SW occurs on a rapid time scale. This seems partly to rely on the relative high abundance of gill Na+,K+-ATPase and Na+,K+,2Cl- co-transporter in FW fish. In a separate study, we found a smaller response to SW in expression of these ion transport proteins in striped bass when compared with the less euryhaline brown trout. In both FW and SW, NEM-sensitive gill H+-ATPase activity was negligible in striped bass and approximately 10-fold higher in brown trout. This suggests that in striped bass Na+-uptake in FW may rely more on a relatively high abundance/activity of Na+,K+-ATPase compared to trout, where H+-ATPase is critical for establishing a thermodynamically favorable gradient for Na+-uptake.  相似文献   

3.
Unidirectional fluxes of Na+ obtained in perfused preparation and mucosal enzyme equipment (alkaline phosphatase, ouabain-sensitive Na+, K+-ATPase) have been determined in the middle and posterior intestine of freshwater (FW) and sea-water (SW) adapted trout. In FW, influxes and outfluxes were higher in the middle than in the posterior intestine, although net fluxes were similar. SW adaptation induced an increase of influxes and net fluxes mainly in the posterior intestine. SW adaptation decreased the alkaline phosphatase activity only in the posterior intestine. Na+,K+-ATPase activity was always higher in the middle than in the posterior intestine in FW and SW and increased in both parts by SW adaptation. Thus, it seems that SW adaptation of rainbow trout modifies Na intestinal absorption principally in its posterior part and in relation with the Na+, K+-ATPase activity.  相似文献   

4.
Two cDNA isoforms of the NKCC1 secretory cotransporter have been isolated from the European eel. The NKCC1a isoform exhibited mRNA expression in a wide range of tissues in a similar fashion to mammals, whereas NKCC1b was expressed primarily in the brain. The effect of freshwater (FW) to seawater (SW) transfer on NKCC1a expression was dependent on the developmental stage. In non-migratory yellow eels, NKCC1a mRNA expression in the gill was transiently up-regulated 4.3-fold after 2 days but also subsequently by 2.5-6-fold 3 weeks after SW transfer. Gill NKCC1a expression was localised mainly in branchial chloride cells of SW acclimated yellow eels. In contrast to yellow eels, NKCC1a mRNA abundance was not significantly different following SW acclimation in silver eel gill. NKCC1a mRNA abundance decreased in the kidney following SW acclimation and this may correlate with lower tubular ion/fluid secretion and urine flow rates in SW teleosts. Kidney NKCC1a mRNA expression in silver eels was also significantly lower than in yellow eels, suggesting some pre-acclimation of mRNA levels. NKCC1a mRNA was expressed at similar low levels in the middle intestine of FW- and SW-acclimated yellow or silver eels, suggesting the presence of an ion secretory mechanism in this gut segment.  相似文献   

5.
10 Freshwater-(FW)-adapted, one-third seawater (1/3 SW)-adapted and seawater (SW) adapted Tilapia mossambica were compared for their branchial Na+ influx and efflux as well as Cl- efflux. Na+ and Cl- effluxes were identical. Rates of effluxes were in 1/3 SW- and in SW-adapted fish 10 times and 200 times higher respectively than in FW specimens. 20 Shock due to handling and transfer to small experimental chambers induced, within 20 to 45 min., a considerable increase in Na+ efflux and a more discrete augmentation of the Na+ influx. 30 Branchial Mg++-and Na+-K+ activated ATPase activities increased significantly upon adaptation from FW to 1/3 SW. No significant increase was apparent upon adaptation from 1/3 SW to SW. 40 The trans-branchial potential observed in SW Tilapia resembled the pattern previously described in other species of teleosts.  相似文献   

6.
1. Unidirectional fluxes of Na+ and Cl-, ouabain-sensitive Na+,K+-ATPase activity and the protein content have been determined in the intestine of trout in fresh water (FW) and 1, 2, 7 days after sea-water (SW) transfer. 2. After abrupt transfer in SW the Na+ and Cl- transports follow in two phases: first, a permeabilization of the epithelium during the first day; secondly, a transient impermeabilization and increase of the protein content of the mucosa (2 days after SW transfer) and a progressive increase of both the unidirectional Na+, Cl- fluxes and the Na+,K+-ATPase activity (7 days after SW transfer). 3. After 7 days SW the adaptation of the enterocytes which is different for Na+ and Cl- and for the middle and the posterior intestine is not achieved.  相似文献   

7.
The teleost gill carries out NaCl uptake in freshwater (FW) and NaCl excretion in seawater (SW). This transformation with salinity requires close regulation of ion transporter capacity and epithelial permeability. This study investigates the regulation of tight-junctional claudins during salinity acclimation in fish. We identified claudin 3- and claudin 4-like immunoreactive proteins and examined their expression and that of select ion transporters by performing Western blot in tilapia (Oreochromis mossambicus) gill during FW and SW acclimation. Transfer of FW tilapia to SW increased plasma osmolality, which was corrected after 4 days, coinciding with increased gill Na+-K+-ATPase and Na+-K+-2Cl(-) cotransporter expression. Gill claudin 3- and claudin 4-like proteins were reduced with exposure to SW. Transfer to FW increased both claudin-like proteins. Immunohistochemistry shows that claudin 3-like protein was localized deep in the FW gill filament, whereas staining was found apically in SW gill. Claudin 4-like proteins are localized predominantly in the filament outer epithelial layer, and staining appears more intense in the gill of FW versus SW fish. In addition, tilapia claudin 28a and 30 genes were characterized, and mRNA expression was found to increase during FW acclimation. These studies are the first to detect putative claudin proteins in teleosts and show their localization and regulation with salinity in gill epithelium. The data indicate that claudins may be important in permeability changes associated with salinity acclimation and possibly the formation of deeper tight junctions in FW gill. This may reduce ion permeability, which is a critical facet of FW osmoregulation.  相似文献   

8.
The natriuretic peptide system of a euryhaline teleost, the Japanese eel (Anguilla japonica), consists of three types of hormones [atrial natriuretic peptide (ANP), ventricular natriuretic peptide (VNP), and C-type natriuretic peptide (CNP)] and four types of receptors [natriuretic peptide receptors (NPR)-A, -B, -C, and -D]. Although ANP is recognized as a volume-regulating hormone that extrudes both Na(+) and water in mammals, ANP more specifically extrudes Na(+) in eels. Accumulating evidence shows that ANP is secreted in response to hypernatremia and acts to inhibit the uptake and to stimulate the excretion of Na(+) but not water, thereby promoting seawater (SW) adaptation. In fact, ANP is secreted immediately after transfer of eels to SW and ameliorates sudden increases in plasma Na(+) concentration through inhibition of drinking and intestinal absorption of NaCl. ANP also stimulates the secretion of cortisol, a long-acting hormone for SW adaptation, whereas ANP itself disappears quickly from the circulation. Thus ANP is a primary hormone responsible for the initial phase of SW adaptation. By contrast, CNP appears to be a hormone involved in freshwater (FW) adaptation. Recent data show that the gene expression of CNP and its specific receptor, NPR-B, is much enhanced in FW eels. In fact, CNP infusion increases (22)Na uptake from the environment in FW eels. These results show that ANP and CNP, despite high sequence identity, have opposite effects on salinity adaptation in eels. This difference apparently originates from the difference in their specific receptors, ANP for NPR-A and CNP for NPR-B. VNP may compensate the effects of ANP and CNP for adaptation to respective media, because it has high affinity to both receptors. On the basis of these data, the authors suggest that the natriuretic peptide system is a key endocrine system that allows this euryhaline fish to adapt to diverse osmotic environments, particularly in the initial phase of adaptation.  相似文献   

9.
Net water fluxes in the isolated gills of Anguilla anguilla were studied during incubation in fresh water (FW) and in sea water (SW). When incubated in FW, water entry was greater in SW-adapted eels than in FW-adapted eels. In contrast, water loss in SW was less in SW-adapted eels than in FW-adapted eels. Rectification of osmotic water fluxes was observed for both FW and SW-adapted eels, net water fluxes in the mucosal-serosal (m-s) direction being greater than those in the opposite (s-m) direction. These results indicate that adaptation to a given external medium brings about a decrease in the osmotic permeability so that water gain in FW or water loss in SW is minimal.  相似文献   

10.
11.
Yuge S  Takei Y 《Zoological science》2007,24(12):1222-1230
Since the gene expression of guanylin peptides and their receptors, guanylyl cyclase Cs, is enhanced in the intestine of seawater (SW)-adapted eels compared with fresh water (FW)-adapted fish, the guanylin family may play an important role in SW adaptation in eels. The present study analyzed the effect of three homologous guanylin peptides, guanylin, uroguanylin and renoguanylin, on ion movement through the eel intestine, and examined the target of guanylin action using Ussing chambers. The middle and posterior parts of the intestine, where water and ion absorption occurs actively in SW eels, exhibited serosa-negative transepithelial potential, while the anterior intestine was serosa-positive. Mucosal application of each guanylin in the middle or posterior intestine reduced the short-circuit current (Isc) dose dependently and reversed it at high doses, and reduced electric tissue resistance. The effects were greater in the middle intestine than in the posterior intestine. All three guanylins showed similar potency in the middle segment, but guanylin was more potent in the posterior segment. 8-bromo cGMP mimicked the effect of guanylins. The intestinal response to guanylin was smaller in FW eels. The mucosal presence of NPPB utilized as a CFTR blocker, but not of other inhibitors of the channels/transporters localized on the luminal surface in SW fish intestine, inhibited the guanylin-induced decrease in Isc. In eels, therefore, the guanylin family may be involved in osmoregulation by the intestine by binding to the receptors and activating CFTR-like channels on the mucosal side through cGMP production, perhaps resulting in Cl(-) and HCO3(-) secretion into the lumen.  相似文献   

12.
13.
The southern flounder is a euryhaline teleost that inhabits ocean, estuarine, and riverine environments. We investigated the osmoregulatory strategy of juvenile flounder by examining the time-course of homeostatic responses, hormone levels, and gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein expression after salinity challenge. Transfer of freshwater (FW)-acclimated flounder to sea water (SW) induced an increase in plasma osmolality and cortisol and a decrease in muscle water content, plasma insulin-like growth factor I (IGF-I) and hepatic IGF-I mRNA, all returning to control levels after 4 days. Gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein levels were elevated in response to SW after 4 days. Transfer of SW-acclimated flounder to FW reduced gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein, increased plasma IGF-I, but did not alter hepatic IGF-I mRNA or plasma cortisol levels. Gill claudin-3 and claudin-4 immunoreactive proteins were elevated in FW versus SW acclimated flounder. The study demonstrates that successful acclimation of southern flounder to SW or FW occurs after an initial crisis period and that the salinity adaptation process is associated with changes in branchial expression of ion transport and putative tight junction claudin proteins known to regulate epithelial permeability in mammalian vertebrates.  相似文献   

14.
15.
The mitochondrion-rich cells (MRCs) in teleost gill and equivalent tissues are important osmoregulatory sites in maintaining ionic balance. These cells express a variety of ion pumps, transporters, and channels, which play central roles in ionic regulation. Recently, two types of MRCs have been identified in euryhaline fishes: seawater (SW)-type MRCs extrude Na and Cl ions in SW conditions; freshwater (FW)-type MRCs take up at least Cl-. Long-term development/differentiation of the two types of MRCs during adaptation to different salinities appears to be regulated mainly by endocrine factors. Osmolality, Ca2+, neurotransmitters, and fast-acting hormones rapidly regulate the SW MRCs. Recent information is assembled in this review and suggests the functional plasticity of highly specialized MRCs.  相似文献   

16.
In fish, gills actively accumulate ions in freshwater (FW) with Na+ absorption taking place at the level of pavement cells, and excrete monovalent ions, mainly Na+ and Cl-, through the chloride cells in sea water (SW). The Na+/K+ATPase plays a crucial role in the functionality of osmoregulatory cells and we showed previously that angiotensin II modulates its activity in the eel gill (1). We here show the effects of synthetic steroid dexamethasone (DEX) on the activity of Na+/K+ATPase in both gill pavement and chloride cells from FW- and SW-adapted animals. Results showed that in the chloride cells 100 nM DEX provoked a significant increment in the activity of Na+/K+ATPase in both SW- and FW-adapted animals. This effect was greatest at 2 hours in SW, and at 6 hours in FW. The increment in the activity of the Na+/K+ATPase was dose-dependent in both environmental adaptations. Conversely, in pavement cells from FW-adapted eels 100 nM DEX decremented the activity of Na+/K+ATPase (4-fold reduction after 6 hour incubations), while in SW, DEX increased the enzyme activity of about 25% at 2 hours, and of about 55% at 6 hours. These results are consistent with the different physiological roles that pavement and chloride cells have in the two different adaptive conditions.  相似文献   

17.
Summary Changes in osmotic water permeability of the isolated gills of the Japanese eel,Anguilla japonica were studied during transfer to seawater or to fresh water. The water permeability increased gradually during the course of seawater transfer and attained a maximal level after 2 weeks. The water permeability of the freshwater eel gills was reduced when calcium ions were added to the incubation medium at a concentration of 1 mM, where-as no effect of the ion was observed on the gills of the seawater-adapted eel even at a higher concentration (10 mM). In contrast to seawater transfer, the water permeability decreased to a low level almost immediately (3 h) after transfer from seawater to fresh water. The acute reduction of the water permeability was also seen in the gills of the hypophysectomized eel after transfer to fresh water.The gradual increase in the gill water permeability during seawater transfer is correlated with an increase in the number of chloride cells. In scanning electron microscopy, chloride cells of seawater-adapted eel gills exhibit a pit-like structure, which was larger than in the freshwater eel. On transfer from seawater to fresh water, the pit diameter became smaller within 6 h. Hypophysectomy did not affect the change in gill surface structures during transfer to fresh water. The junctions between the chloride cells of seawater eel gills are reported to be of the leaky type. The parallel change in osmotic water permeability and in pit size of the chloride cells during seawater or freshwater transfer or after hypophysectomy suggests that these cells could provide a major route of water as well as ion movement.This paper is a portion of a thesis presented to Hokkaido University by t. Ogasawara in partial fulfilment of the requirements for Doctor of Fisheries  相似文献   

18.
Some freshwater (FW) teleosts are capable of acclimating to seawater (SW) when challenged; however, the related energetic and physiological consequences are still unclear. This study was conducted to examine the changes in expression of gill Na(+)-K(+)-ATPase and creatine kinase (CK) in tilapia (Oreochromis mossambicus) as the acute responses to transfer from FW to SW. After 24 h in 25 ppt SW, gill Na(+)-K(+)-ATPase activities were higher than those of fish in FW. Fish in 35 ppt SW did not increase gill Na(+)-K(+)-ATPase activities until 1.5 h after transfer, and then the activities were not significantly different from those of fish in 25 ppt SW. Compared to FW, the gill CK activities in 35 ppt SW declined within 1.5 h and afterward dramatically elevated at 2 h, as in 25 ppt SW, but the levels in 35 ppt SW were lower than those in 25 ppt SW. The Western blot of muscle-type CK (MM form) was in high association with the salinity change, showing a pattern of changes similar to that in CK activity; however, levels in 35 ppt SW were higher than those in 25 ppt SW. The activity of Na(+)-K(+)-ATPase highly correlated with that of CK in fish gill after transfer from FW to SW, suggesting that phosphocreatine acts as an energy source to meet the osmoregulatory demand during acute transfer.  相似文献   

19.
Atrial natriuretic peptide (ANP) is known as a potent natriuretic/diuretic hormone in vertebrates. However, eel ANP infused at doses that did not alter arterial blood pressure (0.3-3.0 pmol/kg/min) decreased urine volume and increased urinary Na concentration in seawater (SW)-adapted eels but not in freshwater (FW)-adapted eels. The renal effects were dose-dependent and disappeared after infusate was switched back to a vehicle (0.9% NaCl). Urinary Na excretion (volume x Na concentration) did not change during ANP infusion. ANP infusion increased plasma ANP concentration, but the increase at the highest dose was still within those observed endogenously after injection of hypertonic saline. Urinary Mg and Ca concentrations increased during ANP infusion in SW eels, but urinary Ca excretion decreased in FW eels. Plasma Na concentration profoundly decreased during ANP infusion only in SW eels, suggesting that ANP stimulates Na extrusion via non-renal routes. These results indicate that ANP is a hormone which specifically extrudes Na ions and thereby promotes SW adaptation in the eel. This is in sharp contrast with mammals where ANP is a volume regulating hormone that extrudes both Na and water.  相似文献   

20.
Changes in expression of Na, K-ATPase (NKA) and morphometry of mitochondrion-rich (MR) cells in gills of tilapia were investigated on a 96-hr time course following transfer from seawater (SW) to fresh water (FW). A transient decline in plasma osmolality and Na+, Cl- concentrations occurred from 3 hrs onward. Gills responded to FW transfer by decreasing NKA activity as early as 3 hrs from transfer. This response was followed by a significant decrease in the NKA isoform alpha1-mRNA abundance, which was detected by real-time PCR at 6 hrs post transfer. Next, a decrease of alpha1-protein amounts were observed from 6 hrs until 24 hrs post transfer. Additionally, during the time course of FW transfer, modifications in number and size of subtypes of gill MR cells were observed although no significant difference was found in densities of all subtypes of MR cells. These modifications were found as early as 3 hrs, evident at 6 hrs (exhibition of 3 subtypes of MR cells), and mostly completed by 24 hrs post transfer. Such rapid responses (in 3 hrs) as concurrent changes in branchial NKA expression and modifications of MR cell subtypes are thought to improve the osmoregulatory capacity of tilapia in acclimation from hypertonic SW to hypotonic FW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号