首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Octopamine and an agonist, chlordimeform, increase the responsiveness of adult and pharate adult Manduca sexta to gentle mechanical stimulation of the wing. Higher doses of chlordimeform elicit almost continuous production of the flight motor pattern in both adults and pharate adults, and the effect persists for more than 24 h. The dose of chlordimeform necessary for this effect increases with age. Mechanical stimulation of the wing of pharate adults elicits several cycles of flight motor pattern, but with repeated stimulation the animal habituates. Habituation is slower in chlordimeform-treated animals than in controls. Injection of octopamine (1–8 × 10?8 mol) or chlordimeform (3 × 10?9 mol) into the mesothoracic ganglion elicits the flight motor pattern. The excitatory actions of both compounds can be blocked by cyproheptidine. Chlordimeform (5 × 10?8 mol) in acetone applied to the wing does not cause a noticeably greater increase in the electrical activity of sensory neurons than does acetone applied alone; this result suggests that chlordimeform does not act on these peripheral sites or on axonal membranes in general. We suggest that chlordimeform and octapamine act on the thoracic ganglia to alter the level of excitation on reffectiveness of synaptic transmission among central neurons, including those involved in producing the flight motor pattern.  相似文献   

2.
Summary In the locust,Locusta migratoria, the pairs of connectives between the three thoracic ganglia and in the neck were transected in all possible combinations. Each of these preparations was tested for the production of rhythmic flight motor activity, with sensory input from the wing receptors intact and after deafferentation. The motor activity elicited in these preparations was characterized by intracellular recordings from motoneurons and electromyographic analyses.The motor patterns observed in locusts with either the neck or the pro-mesothoracic connectives severed (Figs. 2, 3, and 4) were very similar to the flight motor pattern produced by animals with intact connectives. The activity recorded in mesothoracic flight motoneurons of locusts with either only the meso-metathoracic connectives cut or both the meso-metathoracic and the neck connectives transected were similar to each other. Rhythmic motor activity could be observed in these preparations only as long as sensory feedback from the wing receptors was intact. These patterns were significantly different from the intact motor pattern (Figs. 5, 6, and 7). Similar results were obtained when the mesothoracic ganglion was isolated from the other two thoracic ganglia, although the oscillations produced under these conditions were weak (Fig. 8 upper). In the isolated metathorax no rhythmic flight motor activity could be recorded (Fig. 8 lower), even when wing afferents were intact.Considering the differences between the motor patterns observed in the various preparations these results suggest that the ganglia of the locust ventral nerve cord do not contain segmental, homologous flight oscillators which are coupled to produce the intact flight rhythm. Instead they support the idea that the functional flight oscillator network is distributed throughout the thoracic ganglia (Robertson and Pearson 1984). The results also provide further evidence that sensory feedback from the wing sense organs is necessary for establishing the correct motor pattern in the intact animal (Wendler 1974, 1983; Pearson 1985; Wolf and Pearson 1987 a).Abbreviations CPG central pattern generator - EMG electromyogram  相似文献   

3.
This study analyses the maturation of centrally generated flight motor patterns during metamorphosis of Manduca sexta. Bath application of the octopamine agonist chlordimeform to the isolated central nervous system of adult moths reliably induces fictive flight patterns in wing depressor and elevator motoneurons. Pattern maturation is investigated by chlordimeform application at different developmental stages. Chlordimeform also induces motor patterns in larval ganglia, which differ from fictive flight, indicating that in larvae and adults, octopamine affects different networks. First changes in motoneuron activity occur at the pupal stage P10. Rhythmic motor output is induced in depressor, but not in elevator motoneurons at P12. Adult-like fictive flight activity in motoneurons is observed at P16 and increases in speed and precision until emergence 2 days later. Pharmacological block of chloride channels with picrotoxin also induces fictive flight in adults, suggesting that the pattern-generating network can be activated by the removal of inhibition, and that proper network function does not rely on GABAA receptors. Our results suggest that the flight pattern-generating network becomes gradually established between P12 and P16, and is further refined until adulthood. These findings are discussed in the context of known physiological and structural CNS development during Manduca metamorphosis.  相似文献   

4.
The effect of the biogenic amines octopamine and serotonin, and of both amines combined (cocktails) on transmitter release at neuromuscular junctions of two crustaceans was studied. octopamine (10(-8) mol l(-1) to 10(-6) mol l(-1)) either enhanced or decreased evoked transmitter release through presynaptic effects. The results were identical for the slow and the fast excitor in the closer muscle of the crab, and for the excitor in the opener muscle of the crayfish. Application of serotonin always resulted in a strong increase of release. However, this potentiating effect of serotonin was reduced in strength by subsequent application of cocktails consisting of serotonin and octopamine. In all experiments, a cocktail of serotonin and octopamine was less effective than serotonin alone. The decrease in the mean quantal content m by octopamine was due to a reduction of the probability of release p. Since both amines are synthesized in the central nervous system and are released from neurohaemal organs into the haemolymph bathing the neuromuscular junctions, the results suggest that the two amines, when present together, modulate transmitter release in an antagonistic way, and that the level of the two determines synaptic efficacy.  相似文献   

5.
Summary The flight behavior of locusts with hemisected mesothoracic or metathoracic ganglia was observed in unrestrained animals and monitored electromyographically in tethered animals. Animals with hemisected mesothoracic ganglia were able to initiate and carry out free flight. Hemisection of the mesothoracic ganglion caused no significant changes in the pattern of flight muscle firing; both intra- and intersegmental coordination of flight muscle activity were retained (Figs. 3, 4). Additional transection of one meso-metathoracic connective altered the pattern of flight muscle firing but did not abolish rhythmic activity (Fig. 8). Deafferentation of the thoracic ganglia in animals with hemisected mesothoracic ganglia resulted in rhythmically coordinated motor activity (Fig. 5) which was indistinguishable from that shown by deafferented animals with all ganglia intact. Hemisection of the metathoracic ganglion resulted in an abnormal pattern of flight muscle firing. However, a basic rhythmicity of motor activity was still present (Fig. 6). The implications of these results for rhythm generation and motor coordination in the flight control system of the locust are discussed.  相似文献   

6.
The effect of octopamine on neuromuscular transmission was examined in developing and adult Manduca sexta. Intracellular recordings were made from the dorsal longitudinal muscle (DLM), superfused with solutions containing DL-octopamine or other amines. In untreated adult moths and pharate adults nearly ready to enclose (stage Day 19), stimulation of the motor nerve evokes a large excitatory junction potential (EJP), an active membrane response, and a twitch. In adults and Day 19 animals DL-octopamine (10(-7) to 10(-4)M) has no effect on the amplitude and rise-time of the electrical response in normal saline, but 10(-6) to 10(-4) M DL-octopamine increases the amplitude of the excitatory junction potential recorded in saline containing one-third the normal calcium concentration. Immature (Day 16) muscle, which normally produces only small EJPs following stimulation of its motor nerve, responds to 10(-6) to 10(-4) M DL-octopamine by an increase in the EJP above threshold for an active membrane response and a contraction. When the muscle has developed sufficiently to spike and contract in response to nerve stimulation in the absence of exogenous octopamine (Days 17 and 18), application of DL-octopamine increases the maximum rate at which the muscle contracts in response to each stimulus in a train (designated the maximum following frequency, MFF). The threshold dose for an effect on the MFF of Day 18 immature moths is less than 10(-10) M. At this stage 10(-8) M DL-octopamine increases the MFF four-fold. The effect on the MFF is dose-dependent over the range 10(-10) M to 10(-6) M. The biogenic amines DL-epinephrine, DL-norepinephrine, tyramine, DL-phenylethanolamine, 2-phenylethylamine, and dopamine, applied at concentrations of 10(-8) or 10(-4) M, do not change the MFF. Both DL-synephrine (10(-8) M) and serotonin (10(-7) M) mimic the action of 10(-10) M DL-octopamine on the MFF. The action of DL-octopamine (10(-7) M) is blocked by phentolamine (10(-4)M) but not by propranolol (10(-4)M). The octopamine content of hemolymph was determined with a radioenzymtic assay. The concentration of octopamine in the hemolymph increases 3.6-fold, from 5 X 10(-8) M on Day 18 (duration of adult development is 19 days) to 1.85 X 10(-7) M one day following eclosion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The biogenic amine, octopamine, modulates a variety of aspects of insect motor behavior, including direct action on the flight central pattern generator. A number of recent studies demonstrate that tyramine, the biological precursor of octopamine, also affects invertebrate locomotor behaviors, including insect flight. However, it is not clear whether the central pattern generating networks are directly affected by both amines, octopamine and tyramine. In this study, we tested whether tyramine affected the central pattern generator for flight in the moth, Manduca sexta. Fictive flight was induced in an isolated ventral nerve cord preparation by bath application of the octopamine agonist, chlordimeform, to test potential effects of tyramine on the flight central pattern generator by pharmacological manipulations. The results demonstrate that octopamine but not tyramine is sufficient to induce fictive flight in the isolated ventral nerve cord. During chlordimeform induced fictive flight, bath application of tyramine selectively increases synaptic drive to depressor motoneurons, increases the number of depressor spikes during each cycle and decreases the depressor phase. Conversely, blocking tyramine receptors selectively reduces depressor motoneuron activity, but does not affect cycle by cycle elevator motoneuron spiking. Therefore, octopamine and tyramine exert distinct effects on the flight central pattern generating network.  相似文献   

8.
Summary Although it is generally agreed that locusts can generate flight similar rhythmic motor activity in the absence of sensory feedback from the wings, recent studies indicate that functional deafferentation produces significant changes in the flight motor pattern (Hedwig and Pearson 1984). These findings have raised doubts on the adequacy of the central pattern generator concept for the locust flight system (Pearson 1985). In this paper, we re-investigate the effects of deafferentation on the capacity of adult migratory locusts to generate the flight motor pattern. For this purpose, the experimental animals were dissected to various degrees, ranging from head-ventral nerve cord, to isolated pterothoracic nerve cord, and finally single isolated ganglion preparations. Flight motor activity was released by either wind stimulation, the more traditional method, or by applying octopamine (Sombati and Hoyle 1984; Stevenson and Kutsch 1986). In all cases the released motor activity was analysed, giving details of latency, and phase relationships between specific synergistic and antagonistic motor units, and then compared with the flight motor pattern generated by intact tethered locusts.This analysis shows that deafferentation, although reducing the frequency, does not necessarily disrupt the basic flight motor pattern. By using octopamine we could show that even isolated thoracic nerve cord preparations can generate activity, which in all major aspects corresponds to this motor program. This could also be shown for the fully isolated metathoracic ganglion and we provide some evidence that the mesothoracic ganglion may be capable of a similar performance. In addition to releasing flight activity, octopamine was also found to enhance the responsiveness of deafferentated locusts to wind stimulation. This resulted in a considerable elevation of the frequency and prolongation of the flight motor activity to values comparable to the performance of intact tethered locusts.  相似文献   

9.
In the escape system of the cockroach, Periplaneta americana, a population of uniquely identifiable thoracic interneurons (type A or TIAs) receive information about wind via chemical synapses from a population of ventral giant interneurons (vGIs). The TIAs are involved in the integration of sensory information necessary for orienting the animal during escape. It is likely that there are times in an animal's life when it is advantageous to modify the effectiveness of synaptic transmission between the vGIs and the TIAs. Given the central position of the TIAs in the escape system, this would greatly alter associated motor outputs. We tested the ability of octopamine, serotonin, and dopamine to modulate synaptic transmission between vGIs and TIAs. Both octopamine and dopamine significantly increased the amplitude of vGI-evoked excitatory postsynaptic potentials (EPSPs) in TIAs at 10(-4)-10(-2) M, and 10(-3) M, respectively. On the other hand, serotonin significantly decreased the vGI-evoked EPSPs in TIAs at 10(-4)-10(-3) M. These results indicate that octopamine, serotonin, and dopamine are capable of modulating the efficacy of transmission of important neural connections within this circuit.  相似文献   

10.
Biogenic amines regulate important behaviours in nematodes and are associated with pharyngeal activity in plant-parasitic nematodes. A robust behavioural assay based upon nematode body movements was developed to expand the study of these and other neuroregulators in plant-parasitic nematodes. Dopamine, octopamine and serotonin each had significant but differing effects on the behaviour of soybean cyst nematode Heterodera glycines and root-knot nematode Meloidogyne incognita juveniles. Body movement frequency was increased twofold in H. glycines by 5 mM dopamine (P = 0.0001), but decreased by 50 mM dopamine in H. glycines (88%) and M. incognita (53%) (P < 0.0001). Movement frequency in both species was increased by 50-70% (P < 0.0001) by 50 mM octopamine, and 5 mM octopamine increased M. incognita movement frequency more than twofold (P < 0.0001). Movement frequency in each species was reduced by more than 90% by 5 mM serotonin (P < 0.0001). While amplitude of body movement in H. glycines was unaffected by any amine, it was significantly reduced in M. incognita by all amines (P < 0.0006). Stylet pulsing frequencies in either species were unaffected by dopamine or octopamine, but 5 mM serotonin stimulated pulsing in H. glycines by nearly 13-fold (P < 0.0001) and in M. incognita by more than 14-fold (P < 0.0001). The invertebrate neuropeptide FLRFamide (N-Phe-Leu-Arg-Phe) increased M. incognita body movement frequency 45% (P = 0.02) at 1 mM but did not affect stylet activity. Finally, H. glycines egg hatch was completely suppressed by 50 mM serotonin, and partially suppressed by 50 mM dopamine (75%; P < 0.0001) and 50 mM octopamine (55%; P < 0.0001).  相似文献   

11.
Anatomy of dorsal mesothoracic structures, such as muscles, sensory organs, and innervation, was studied in the silkworm, Bombyx mori L. (Lepidoptera : Bombycidae), and compared with the adult wing motor system. Musculature and nerve innervation were investigated by dissection and electron micrograph; and central projection of sensory fibers and morphology of somata and dendrites of motor neurons by cobalt back-filling, followed by silver intensification. There are 23 muscle bundles (DLM) and 2 stretch receptors (SR). The DLMs, SRs, and epidermis are innervated by a branch of the dorsal nerve trunk emerging from the mesothoracic ganglion (MSG). The branch bifurcates into a dorsal sensory branch of about 300 sensory fibers and a dorsal motor branch of 14 fibers. The sensory fibers project mainly to a longitudinal portion near the mid line in the ventral neuropil of MSG and the metathoracic ganglion. Several fibers extend into the prothoracic ganglion (PG) and a few into the subesophageal and 1st abdominal ganglia. At least 13 (probably 14) motor neurons send axons to DLMs: 9 (probably 10) in PG, and 4 in MSG. Their dendrites are located mostly on the dorsoipsilateral side of the neuropil, but several branches cross the mid line and give rise to many fine branches on the contralateral side. Comparison between the larval (present study) and adult motor system shows a significant similarity in the musculature, peripheral nerve pattern, and motor neurons with some peculiarities.  相似文献   

12.
Modulation of sensory responses recorded intracellularly in primary sensory afferents of a crustacean proprioceptor is described. The neuropeptide proctolin enhances the sensory response, whereas the bioamines octopamine and serotonin depress it. The lobster oval organ of the second maxilla, a simple stretch receptor lacking centrifugal control, provides a useful model for studies on nonsynaptic modulation at peripheral sensory loci. Its three large afferents, X, Y, and Z, were prepared for intracellular recording and tested under five experimental conditions: (1) when fully rested, (2) when adapted to maintained stretch and firing tonically, (3) when showing reduced responses after habituation to repetitive stimulation, (4) not stretched but depolarized with current injections, (5) after TTX blockade. The results, taken together, indicate that conductances contributing to the overall amplitude of the receptor potential are major targets for modulators. Thus proctolin increased receptor potential amplitudes with consequent augmentation of spiking, whereas serotonin and octopamine depressed the receptor potentials, often to subthreshold levels with loss of spiking. Octopamine was a less potent agent than serotonin and failed to act upon fibers under TTX blockade. Fibers Y and Z consistently showed sensitivity to the modulators tested. The largest fiber, X, typically was resistant to proctolin, octopamine, and serotonin. Threshold concentrations of 10(-10)-10(-11) M determined in vitro are well below the circulating levels for serotonin and octopamine found in vivo. Proctolin, however, is usually not detectable in the hemolymph, and it is suggested that a significant site of proctolin release may be the oval organ itself.  相似文献   

13.
The buccal ganglia of the snail, Helisoma trivolvis, contain an intrinsic system of dopamine-containing neurons (Trimble, Barker, and Bullard, 1983). Dopamine, when bath applied to the isolated buccal ganglia, activates patterned motor output in a dose-dependent fashion. Haloperidol blocks the activating effect of dopamine, but the similar activation evoked by serotonin is not blocked by haloperidol. We suggest that there are two separate mechanisms for activating patterned motor output from the buccal ganglia. One is serotonergic, emanating from identified cerebral ganglion cells (Granzow and Kater, 1977), while the other is dopaminergic, involving neurons intrinsic to the buccal ganglia.  相似文献   

14.
15.
Although crustaceans typically have a neurogenic heart, the primitive crustacean Triops longicaudatus has a myogenic heart with the heartbeat arising from the endogenous rhythmic activity of the myocardium. In the present investigation, the effects of six biogenic amines, epinephrine, norepinephrine, dopamine, octopamine, serotonin and histamine, on the myogenic heart of T. longicaudatus were examined. Epinephrine, norepinephrine, dopamine and octopamine accelerated the heartbeat, increasing both the frequency and amplitude of the action potential of the myocardium in a concentration dependent manner. The ability of epinephrine and norepinephrine to produce the acceleratory effects was more potent than that of dopamine and octopamine; the threshold concentrations of epinephrine and norepinephrine were approximately 10(-10) M and those of dopamine and octopamine approximately 10(-7) M. Serotonin weakly inhibited the heartbeat, decreasing both the frequency and amplitude of the myocardial action potential in a concentration dependent manner with a threshold concentration of approximately 10(-6) M. Histamine exhibited no effect on the heartbeat. The results provide the first evidence for direct effects of amines on the crustacean myocardium and suggest neurohormonal regulation of the myogenic heart in T. longicaudatus.  相似文献   

16.
Aggressive and escape behaviors were analysed in crickets (Orthoptera) treated with either reserpine, a nonspecific depleter of biogenic amines, or the synthesis inhibitors alpha-methyltryptophan (AMTP) and alpha-methyl-p-tyrosine (AMT) to specifically deplete serotonin, respectively dopamine and octopamine. Standard immunocytochemical techniques were used to verify depletion from central nervous tissue, and determine the effective dosages. Reserpinized crickets became exceedingly lethargic and had severely depressed escape responses. However, they were still able to express all the major elements of the escalating sequences of stereotype motor performances that typifies normal aggressive behavior in the cricket. AMT and AMTP treatment had opposing influences on escape behavior, being enhanced by serotonin depletion, but depressed by dopamine/octopamine depletion. AMTP-induced serotonin depletion had no influence on aggressive or submissive behaviors. AMT-treated crickets could normally only be brought to fight by coaxing. Though capable of expressing aggressive behavior per se, agonistic encounters between AMT-treated crickets were shorter, and rarely involved actual physical interactions. Hence, although amines seem to have similar actions on escape behavior in insects and crustaceans, the aminergic control of aggression seems to be fundamentally different in these arthropods groups. We conclude that amines are not in principle required for the initiation and operation of the motor circuits underlying aggression in the cricket. However, octopamine and/or dopamine seem necessary for establishing a level of excitability sufficient for aggressive behavior to become overt in response to appropriate natural releasing stimuli.  相似文献   

17.
Intracellular recordings were carried out on locust flight motoneurons after hemisection of individual thoracic ganglia. With the exception of minimal surgical manipulations, the animals were intact and able to perform tethered flight. Analysis of the synaptic drive recorded in the motoneurons during flight motor activity revealed the extent to which ganglion hemisection influenced the premotor rhythm generating network.
1.  Hemisection of the mesothoracic ganglion (Fig. 2) as well as hemisection of both the mesothoracic and the prothoracic ganglia (Fig. 3) had no significant effects on the pattern of synaptic input to the flight motoneurons. Thus the rhythm generating premotor network does not depend on commissural information transfer in the mesothoracic and the prothoracic ganglia. This conclusion was supported by experiments in which more extensive surgical isolations of thoracic ganglia were carried out (Fig. 5).
2.  Removal of input from wing receptors (deafferentation) in addition to hemisection of the mesothoracic ganglion (Fig. 4) resulted in rhythmic and coordinated oscillations of the motoneuron membrane potential which were indistinguishable from those observed in deafferented animals with all ganglia intact.
3.  Hemisection of the metathoracic ganglion had more pronounced effects on the patterns of synaptic drive to the flight motoneurons and their spike discharge. Rhythmic activity which was often subthreshold could, however, still be recorded following a metathoracic split (Fig. 6).
4.  No rhythmic synaptic input was observed after hemisection of both mesothoracic and metathoracic ganglia (Fig. 7).
  相似文献   

18.
Levels of the biogenic amines dopamine, serotonin, and octopamine were measured in different brain regions of adult worker honey bees as a function of age-related division of labor, using social manipulations to unlink age and behavioral state. In the antennal lobes, foragers had higher levels of all three amines than nurses, regardless of age. Differences were larger for octopamine than serotonin or dopamine. In the mushroom bodies, older bees had higher levels of all three amines than younger bees, regardless of behavioral state. These correlative results suggest that increases in octopamine in the antennal lobes may be particularly important in the control of age-related division of labor in honey bees. Accepted: 10 February 1999  相似文献   

19.
1. The escape behavior of the cockroach, Periplaneta americana, is known to be modulated under various behavioral conditions (Camhi and Volman 1978; Camhi and Nolen 1981; Camhi 1988). Some of these modulatory effects occur in the last abdominal ganglion (Daley and Delcomyn 1981a, b; Libersat et al. 1989) and others in the thoracic ganglia (Camhi 1988). Neuromodulator substances are known to underlie behavioral modulation in various animals. Therefore, we have sought to determine whether topical application of putative neuromodulators of the escape circuit enhance or depress this circuit, and whether these effects differ in the last abdominal vs. the thoracic ganglia. 2. Topical application of the biogenic amines serotonin and dopamine to the metathoracic ganglion modulates the escape circuitry within this ganglion; serotonin decreases and dopamine enhances the response of leg motoneurons to activation of interneurons in the abdominal nerve cord by electrical or wind stimulation. 3. The neuropil of the thoracic ganglia contains many catecholamine-histofluorescent processes bearing varicosities, providing a possible anatomical substrate for dopamine release sites. 4. Topical application of octopamine to the terminal abdominal ganglion enhances the response of abdominal interneurons to wind stimulation of the cerci. In contrast, serotonin and dopamine have no effect at this site. 5. It is proposed that release of these biogenic amines may contribute to the known modulation of the cockroach escape response.  相似文献   

20.
We recorded bursts of motor neuron activity from closer and opener mandibular nerves of isolated subesophageal ganglia (SOG) and compared them with the feeding motor pattern of intact Manduca larvae. Closer bursts recorded from isolated SOG lasted from 1 to 4s, interburst interval durations lasted from 2 to 49s, and within- and between-animal variability was great. In contrast, motor activity bursts (EMGs) measured from mandibular closer muscles of intact, feeding animals lasted 0.08 to 0.24s with interburst intervals of 0.26 to 0.57s. Variability both within and between animals was small. Bath application of 10(-4)M octopamine to the isolated SOG tended to increase frequency and reduce the duration of bursts, so that they became more like those recorded during feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号