首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The eclipse period (the time period during which a newly replicated plasmid copy is not available for a new replication) of plasmid R1 in Escherichia coli was determined with the classic Meselson-Stahl density-shift experiment. A mini-plasmid with the wild-type R1 replicon and a mutant with a thermo-inducible runaway-replication phenotype were used in this work. The eclipses of the chromosome and of the wild-type plasmid were 0.6 and 0.2 generation times, respectively, at temperatures ranging from 30 degrees C to 42 degrees C. The mutant plasmid had a similar eclipse at temperatures up to 38 degrees C. At 42 degrees C, the plasmid copy number increased rapidly because of the absence of replication control and replication reached a rate of 350-400 plasmid replications per cell and cell generation. During uncontrolled replication, the eclipse was about 3 min compared with 10 min at controlled replication (the wild-type plasmid at 42 degrees C). Hence, the copy-number control system contributed significantly to the eclipse. The eclipse in the absence of copy-number control (3 min) presumably is caused by structural requirements: the covalently closed circular plasmid DNA has to regain the right degree of superhelicity needed for initiation of replication and it takes time to assemble the initiation factors.  相似文献   

2.
The stability of inheritance of plasmid R1drd-19 was tested. The copy number of the plasmid was determined in two different ways: As the ratio between covalently closed circular DNA and chromosomal DNA, and by quantitative determination of single-cell resistance to ampicillin. In the latter case, strains carrying the R1 ampicillin transposon Tn3 on prophage λ was used as standard. The values were transformed to copy number per cell by using the Cooper-Helmstetter model for chromosome replication as well as by determination of chromosomal DNA per cell by the diphenylamine method. The copy number was found to be five to six per cell (or about four per newborn cell). Nevertheless, plasmid R1drd-19 was found to be completely stably inherited. This stability was shown not to be due to retransfer of the plasmid by the R1 conjugation system, since transfer-negative derivatives of the plasmid were also completely stably inherited. Smaller derivatives of plasmid R1drd-19 were found to be lost at a frequency of about 1.5% per cell generation. The copy-number control was not affected in these miniplasmids, since their copy numbers were the same as that of the full size plasmid. Quantitatively, the instability of the miniplasmids was in accord with random partitioning. It is, therefore, suggested that the plasmid R1drd-19 carries genetic information for partitioning (par) of plasmid copies at cell division, and that the par mechanism is distinct from the copy number control (cop) system. Finally, the par gene maps on the resistance transfer part of the plasmid, but far away from the origin of replication and the so-called basic replicon; this is in accord with the approximate location of the repB gene (Yoshikawa, 1974, J. Bacteriol.,, 118, 1123–1131).  相似文献   

3.
Mini-F is a fragment of the F plasmid, consisting of 9,000 base pairs, which carries all of the genes and sites required for replicon maintenance and control. Its copy number is one to two per chromosome. This plasmid is joined to ColE1, whose copy number is 16 to 20. Under normal circumstances the composite plasmid replication exhibited ColE1 characteristics, maintaining a high copy number. However, when ColE1 replication was inhibited by deoxyribonucleic acid polymerase I inactivation, its replication exhibited mini-F characteristics, maintaining a low copy number. These observations are in complete agreement with those of Timmis et al. (Proc. Natl. Acad. Sci. U.S.A. 71:4556-4560, 1974), who examined the behavior of a recombinant plasmid formed between pSC101 and ColE1. The transition from high to low copy number allowed us to examine the control system acting in cells carrying plasmids exhibiting intermediate copy numbers. The initiation of the mini-F replication system as represented by deoxyribonucleic acid synthesis of the composite plasmid was completely blocked when there were multiple copies of mini-F in a cell. It was not restored until the copy number was lowered to one to two, after which replication was first detected. ppF, a mini-F replicon packaged in a phage λ head behaved similarly: its replication was completely shut off when the resident mini-F genome copy number was high and was inhibited partially when the resident mini-F genome copy number was low. These experiments clearly demonstrate that there is a switch-off mechanism acting on deoxyribonucleic acid synthesis (initiation) in a cell carrying mini-F, and its intensity is related to the plasmid copy number. This result supports the “inhibitor dilution model” proposed by Pritchard et al. (Symp. Soc. Gen. Microbiol. 19:263-297, 1969). The nature of the hypothetical inhibitor is discussed.  相似文献   

4.
A major limitation to improving small-molecule pharmaceutical production in streptomycetes is the inability of high-copy-number plasmids to tolerate large biosynthetic gene cluster inserts. A recent finding has overcome this barrier. In 2003, Hu et al. discovered a stable, high-copy-number, 81-kb plasmid that significantly elevated production of the polyketide precursor to the antibiotic erythromycin in a heterologous Streptomyces host (J. Ind. Microbiol. Biotechnol. 30:516-522, 2003). Here, we have identified mechanisms by which this SCP2*-derived plasmid achieves increased levels of metabolite production and examined how the 45-bp deletion mutation in the plasmid replication origin increased plasmid copy number. A plasmid intramycelial transfer gene, spd, and a partition gene, parAB, enhance metabolite production by increasing the stable inheritance of large plasmids containing biosynthetic genes. Additionally, high product titers required both activator (actII-ORF4) and biosynthetic genes (eryA) at high copy numbers. DNA gel shift experiments revealed that the 45-bp deletion abolished replication protein (RepI) binding to a plasmid site which, in part, supports an iteron model for plasmid replication and copy number control. Using the new information, we constructed a large high-copy-number plasmid capable of overproducing the polyketide 6-deoxyerythronolide B. However, this plasmid was unstable over multiple culture generations, suggesting that other SCP2* genes may be required for long-term, stable plasmid inheritance.  相似文献   

5.
The classical Meselson-Stahl density-shift method was used to study replication of pOU71, a runaway-replication derivative of plasmid R1 in Escherichia coli. The miniplasmid maintained the normal low copy number of R1 during steady growth at 30°C, but as growth temperatures were raised above 34°C, the copy number of the plasmid increased to higher levels, and at 42°C, it replicated without control in a runaway replication mode with lethal consequences for the host. The eclipse periods (minimum time between successive replication of the same DNA) of the plasmid shortened with rising copy numbers at increasing growth temperatures (Olsson et al., 2003). In this work, eclipse periods were measured during downshifts in copy number of pOU71 after it had replicated at 39 and 42°C, resulting in 7- and 50-fold higher than normal plasmid copy number per cell, respectively. Eclipse periods for plasmid replication, measured during copy number downshift, suggested that plasmid R1, normally selected randomly for replication, showed a bias such that a newly replicated DNA had a higher probability of replication compared to the bulk of the R1 population. However, even the unexpected nonrandom replication followed the copy number kinetics such that every generation, the plasmids underwent the normal inherited number of replication, n, independent of the actual number of plasmid copies in a newborn cell.  相似文献   

6.
Plasmid R1 replication was studied in shifts between two steady states of copy number. The copy number was varied in two ways. First, we utilized the fact that it decreases with increasing growth rate. To minimize the metabolic effects of changes in the growth rate, the downshifts were obtained by adding α-methylglucoside to cultures growing in glucose-minimal medium, and the upshifts were obtained by adding glucose to cultures growing in the presence of glucose plus α-methylglucoside. Second, we used a temperature-dependent copy mutant of plasmid R1 (pKN301). Plasmid pPK301 shows a threefold higher copy number at 40 than at 30°C. In both types of shift, plasmid replication immediately adjusted to the postshift differential rate. The copy number asymptotically adjusted to the new steady state. Hence, the system that controls plasmid R1 replication sets the frequency of replication without measuring the actual copy number. It has been suggested that plasmid R1 replication is under negative control by an R1-mediated repressor protein. Among the replication control models that involve negative control, the Pritchard inhibitor dilution model, the Sompayrac-Maaløe autorepressor model, and the plasmid λdv system all predict gene dose-independent copy number control.  相似文献   

7.
The isolation of conditional mutants with an altered copy number of the R plasmid R1drd-19 is described. Temperature-dependent as well as amber-suppressible mutants were found. These mutant plasmids have been named pKN301 and pKN303, respectively. Both types of mutations reside on the R plasmid. No difference in molecular weight could be detected by neutral sucrose gradient centrifugation for any of the mutant plasmids when compared with the wild-type plasmid. The number of copies of the plasmids was determined by measurement of the specific activity of the R plasmid-mediated β-lactamase and by measurement of covalently closed circular (CCC) DNA in alkaline sucrose gradients and dye-CsCl density gradients. Below 34 °C the temperature-dependent mutant, pKN301, had the same copy number as the wild type, while this was four times that of the wild type above 37 °C. The amber mutant pKN303 had a copy number indistinguishable from that of the wild-type plasmid in a strain containing a strong amber suppressor and a copy number about five times that of the wild-type plasmid in a strain lacking an amber suppressor. In a strain containing a temperature-sensitive amber suppressor, the amber mutant's copy number increased with the decrease in amber suppressor activity. Thus, the existence of the temperature-dependent and the amber-suppressible R-plasmid copy mutants indicates that the system that controls the replication of plasmid R1drd-19 contains an element with a negative function and that this element is a protein.  相似文献   

8.

Key message

Improving Agrobacterium -mediated transformation frequency and event quality by increasing binary plasmid copy number and appropriate strain selection is reported in an elite maize cultivar.

Abstract

Agrobacterium-mediated maize transformation is a well-established method for gene testing and for introducing useful traits in a commercial biotech product pipeline. To develop a highly efficient maize transformation system, we investigated the effect of two Agrobacterium tumefaciens strains and three different binary plasmid origins of replication (ORI) on transformation frequency, vector backbone insertion, single copy event frequency (percentage of events which are single copy for all transgenes), quality event frequency (percentage of single copy events with no vector backbone insertions among all events generated; QE) and usable event quality frequency (transformation frequency times QE frequency; UE) in an elite maize cultivar PHR03. Agrobacterium strain AGL0 gave a higher transformation frequency, but a reduced QE frequency than LBA4404 due to a higher number of vector backbone insertions. Higher binary plasmid copy number positively correlated with transformation frequency and usable event recovery. The above findings can be exploited to develop high-throughput transformation protocols, improve the quality of transgenic events in maize and other plants.
  相似文献   

9.
The selection and timing of plasmid replication was studied in exponentially growing cultures of Escherichia coli K-12 carrying the plasmid R1drd-19 and E. coli strains B/r A and B/r F carrying the plasmid F′lac. In all cases plasmid replication was studied by analysis of covalently closed circular (CCC) DNA. The turnover time of replicating plasmid DNA into CCC-DNA was found to be less than 4 min. Density shift experiments (from 15NH4+, D2O to 14NH4+, H2O) showed that plasmids R1drd-19 and F′lac are selected randomly for replication. This means that one of the plasmid copies in a cell is selected and replicated. There is no further plasmid replication in the cell until all plasmid copies, including the newly formed ones, have the same probability of being selected for replication. The early kinetics of the appearance of light plasmid DNA after the density shift showed that the time interval between successive replications of plasmids R1drd-19 and F′lac is τn, where τ is the generation time and n is the average number of plasmid replications per cell and cell cycle. In a second type of experiment, exponentially growing cells were separated into a series of size classes by low-speed centrifugation in sucrose step gradients. Replication of plasmids R1drd-19 and F′lac was equally frequent in all size classes. This result is in accordance with the results of the density shift experiment. It can therefore be concluded that replication of plasmids R1drd-19 and F′lac is evenly spread over the whole cell cycle, which means that one plasmid replication occurs every time the cell volume has increased by one initiation mass.  相似文献   

10.
For small-copy-number pUC-type plasmids, the inc1 and inc2 mutations, which deregulate replication, were previously found to increase the plasmid copy number 6- to 7-fold. Because plasmids can exert a growth burden, it was not clear if further amplification of copy number would occur due to inc mutations when the starting point for plasmid copy number was orders of magnitude higher. To investigate further the effects of the inc mutations and the possible limits of plasmid synthesis, the parent plasmid pNTC8485 was used as a starting point. It lacks an antibiotic resistance gene and has a copy number of ∼1,200 per chromosome. During early stationary-phase growth in LB broth at 37°C, inc2 mutants of pNTC8485 exhibited a copy number of ∼7,000 per chromosome. In minimal medium at late log growth, the copy number was found to be significantly increased, to approximately 15,000. In an attempt to further increase the plasmid titer (plasmid mass/culture volume), enzymatic hydrolysis of the selection agent, sucrose, at late log growth extended growth and tripled the total plasmid amount such that an approximately 80-fold gain in total plasmid was obtained compared to the value for typical pUC-type vectors. Finally, when grown in minimal medium, no detectable impact on the exponential growth rate or the fidelity of genomic or plasmid DNA replication was found in cells with deregulated plasmid replication. The use of inc mutations and the sucrose degradation method presents a simplified way for attaining high titers of plasmid DNA for various applications.  相似文献   

11.
The plasmid-encoded colistin resistance gene mcr-1 challenges the use of polymyxins and poses a threat to public health. Although IncI2-type plasmids are the most common vector for spreading the mcr-1 gene, the mechanisms by which these plasmids adapt to host bacteria and maintain resistance genes remain unclear. Herein, we investigated the regulatory mechanism for controlling the fitness cost of an IncI2 plasmid carrying mcr-1. A putative ProQ/FinO family protein encoded by the IncI2 plasmid, designated as PcnR (plasmid copy number repressor), balances the mcr-1 expression and bacteria fitness by repressing the plasmid copy number. It binds to the first stem-loop structure of the repR mRNA to repress RepA expression, which differs from any other previously reported plasmid replication control mechanism. Plasmid invasion experiments revealed that pcnR is essential for the persistence of the mcr-1-bearing IncI2 plasmid in the bacterial populations. Additionally, single-copy mcr-1 gene still exerted a fitness cost to host bacteria, and negatively affected the persistence of the IncI2 plasmid in competitive co-cultures. These findings demonstrate that maintaining mcr-1 plasmid at a single copy is essential for its persistence, and explain the significantly reduced prevalence of mcr-1 following the ban of colistin as a growth promoter in China.  相似文献   

12.
Plasmid replication in DNA Ts mutants of Bacillus subtilis.   总被引:11,自引:0,他引:11  
A G Shivakumar  D Dubnau 《Plasmid》1978,1(3):405-416
In an attempt to increase our understanding of plasmid replication in Bacillus subtilis we determined the effect of various dna Ts mutations [Gass, K. B., and Cozzarelli, N. R. (1973). J. Biol. Chem. 248, 7688–7700; Gross, J. D., Karamata, D., and Hempstead, P. G. (1968). Cold Spring Harbor Symp. Quant. Biol.33, 307–312; Karamata, D., and Gross, J. D. (1970). Mol. Gen. Genet.108, 277–287] on pUB110 replication. pUB110 is a kanamycin resistance plasmid originally isolated in Staphylococcus aureus and introduced into B. subtilis by transformation. At temperatures nonpermissive for chromosomal DNA synthesis dnaA13, dnaB19, dnaC6, dnaC30, dnaD23, dnaE20, and dnaI102 permit replication of the plasmid. In several cases this “amplification” continues until approximately equal amounts of plasmid and chromosomal DNA are present. dnaG34, dnaH151, dnaF133, mut-1, and polC26 affect both pUB110 and host DNA synthesis at nonpermissive temperatures. The last three mutations are known to affect the activity of DNA polymerase III (PolIII). When polC26 is incubated at a nonpermissive temperature, there is an accumulation of plasmid DNA with a density on EtBr-CsCl gradients intermediate between that of covalently closed circular (CCC) and open circular DNA. pUB110 can replicate in a strain which is deficient in DNA polymerase I (PolI). Finally, chloramphenicol (Cm) inhibits the replication of pUB110 as well as of chromosomal DNA.  相似文献   

13.
Enterococcus faecalis plasmid pAD1 is a 60-kb conjugative, low-copy-number plasmid that encodes a mating response to the peptide sex pheromone cAD1 and a cytolytic exotoxin that contributes to virulence. Although aspects of conjugation have been studied extensively, relatively little is known about the control of pAD1 maintenance. Previous work on pAD1 identified a 5-kb region of DNA sufficient to support replication, copy control, and stable inheritance (K. E. Weaver, D. B. Clewell, and F. An, J. Bacteriol. 175:1900-1909, 1993), and recently, the pAD1 replication initiator (RepA) and the origin of vegetative replication (oriV) were characterized (M. V. Francia, S. Fujimoto, P. Tille, K. E. Weaver, and D. B. Clewell, J. Bacteriol. 186:5003-5016, 2004). The present study focuses on the adjacent determinants repB and repC, as well as a group of 25 8-bp direct repeats (iterons with the consensus sequence TAGTARRR) located between the divergently transcribed repA and repB. Through mutagenesis and trans-complementation experiments, RepB (a 33-kDa protein, a member of the ParA superfamily of ATPases) and RepC (a protein of 14.4 kDa) were shown to be required for maximal stabilization. Both were active in trans. The iteron region was shown to act as the pAD1 centromere-like site. Purified RepC was shown by DNA mobility shift and DNase I footprinting analyses to interact in a sequence-specific manner with the iteron repeats upstream of the repBC locus. The binding of RepC to the iteron region was shown to be modified by RepB in the presence of ATP via a possible interaction with the RepC-iteron complex. RepB did not bind to the iteron region in the absence of RepC.  相似文献   

14.
T Chittenden  A Frey    A J Levine 《Journal of virology》1991,65(11):5944-5951
The replication of a simian virus 40 (SV40) origin-containing plasmid, pSLneo, stably transfected COS7 cells has been studied. pSLneo contains the SV40 origin of replication and encodes the positive selectable marker for G418 resistance. In transient replication assays, pSLneo replicates to a high copy number in COS7 cells. Uncontrolled SV40 plasmid replication has been reported to be lethal to such transfected cells. Thus, it was anticipated that extensive plasmid replication would preclude isolation of permanent cell lines containing pSLneo. However, significant number of G418-resistant colonies arose after transfection of COS7 cells with pSLneo. Cell lines established from these drug-resistant colonies contained between 100 and 1,000 extrachromosomal pSLneo copies per cell. Episomal plasmid DNA in pSLneo/COS7 lines was stably maintained after 2 months of continuous culture in selective medium. Bromodeoxyuridine labeling and density shift experiments demonstrated that replication of pSLneo closely paralleled that of cellular DNA. On average, plasmid DNA did not replicate more than once during a single cell generation period. Regulation of pSLneo replication appeared to be negatively controlled by a cis-acting mechanism. Endogenous copies of episomal pSLneo remained at a stable low copy number during the simultaneous, high-level replication of a newly transfected plasmid encoding SV40 large T antigen in the same cells. These results indicate that regulated replication of an SV40 origin plasmid can be acquired in a cell and does not require the presence of additional genetic elements. The molecular mechanism by which cells enforce this regulation on extrachromosomal SV40 plasmids remains to be defined.  相似文献   

15.
Nonrandom minichromosome replication in Escherichia coli K-12.   总被引:6,自引:5,他引:1       下载免费PDF全文
The intervals between rounds of chromosome and minichromosome replication were measured by density shift experiments and found to be similar. Thus the minichromosome, a lambda asnA oriC bacteriophage, mostly replicates once each division cycle rather than randomly, despite its high copy number. Slight differences between the chromosome and the oriC plasmid are explained.  相似文献   

16.
M. Jayaram  Y.-Y. Li  J.R. Broach 《Cell》1983,34(1):95-104
The yeast plasmid 2μ and certain hybrid plasmids constructed from it are maintained stably and at high copy number in yeast cells. By examining various mutant hybrid 2μ plasmids, we show that these properties require the integrity of four plasmid loci. Two of these, designated REPI and REP2, are active in trans and correspond to two open coding regions of 2μ. The other two loci are active only in cis and correspond to the origin of replication and to a region, designated REP3, located several hundred bp away from the origin and consisting of direct repeats of a 62 bp sequence. We propose that the REP loci constitute a copy control system that overrides normal cellular restriction on plasmid replication and amplifies the plasmid when copy number is low.  相似文献   

17.
18.
We have constructed two miniplasmids, derived from the resistance plasmid R100.1. In one of these plasmids 400 bp of R100.1 DNA have been replaced by DNA from the transposon Tn1000 (gamma-delta). This substitution removes the amino-terminal end of the repA2 coding sequence of R100.1 and results in an increased copy number of the plasmid carrying the substitution. The copy number of the substituted plasmid is reduced to normal levels in the presence of R100.1. The repA2 gene thus encodes a trans-acting repressor function involved in the control of plasmid replication.  相似文献   

19.
Serban Iordanescu 《Plasmid》1983,10(2):130-137
A chromosomal mutation leading to an important increase in the copy number of plasmid pT181 and its derivatives has been isolated from Staphylococcus aureus strain 8325. The amplification effect in the mutant strain SA1350 was found to be specific for plasmids of the Inc3 group, to which belongs pT181. There are some other differences in the behavior of Inc3 plasmids between SA1350 and 8325, including stable maintenance in SA1350 at high copy number of temperature-sensitive replication mutants at restrictive temperatures, and altered incompatibility properties. Derivatives of SA1350 carrying only Inc3 plasmid mutants with high copy numbers (Cop mutants) could not be obtained, suggesting a lethal runaway plasmid replication in this situation. SA1350 expressed also a temperature-sensitive phenotype. The relationship of this character to the plaC1 mutation determining the amplification of Inc3 plasmids has not yet been elucidated.  相似文献   

20.
Group Y incompatibility and copy control of P1 prophage   总被引:4,自引:0,他引:4  
We have identified a restriction fragment (EcoRI-5) of bacteriophage P1 that, when cloned in a λ prophage, expresses incompatibility characteristic of the unit copy P1 plasmid prophage. Lysogens of λ-P1 chimeras in which the P1 fragment is EcoRI-5 fail to maintain P1 or P7 plasmids. In order to study the nature of this incompatibility, we isolated P1 mutants that overcome it. These mutants exhibit an elevated copy number. We provide evidence that the increased copy number results from a defect in a repressor of replication that can be furnished in trans by a chromosomally integrated P1, but not by EcoRI-5 itself. We, therefore, suggest that the incompatibility exerted by EcoRI-5 is not attributable to the represser of replication involved in the above copy control defect. Instead, it could be attributed to the presence of a DNA site required for proper plasmid partition at cell division. The elevated copy number of the P1 mutants would then enable them to compete favorably with the single copy of the cloned EcoRI fragment for a cellular component of the partition apparatus. Thus, incompatibility could be overcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号