首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is evidence that immune-inflammatory and oxidative and nitrosative stress (O&NS) pathways play a role in the pathophysiology of myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). There is also evidence that these neuroimmune diseases are accompanied by hypothalamic-pituitary-adrenal (HPA) axis hypoactivity as indicated by lowered baseline glucocorticoid levels. This paper aims to review the bidirectional communications between immune-inflammatory and O&NS pathways and HPA axis hypoactivity in ME/CFS, considering two possibilities: (a) Activation of immune-inflammatory pathways is secondary to HPA axis hypofunction via attenuated negative feedback mechanisms, or (b) chronic activated immune-inflammatory and O&NS pathways play a causative role in HPA axis hypoactivity. Electronic databases, i.e., PUBMED, Scopus, and Google Scholar, were used as sources for this narrative review by using keywords CFS, ME, cortisol, ACTH, CRH, HPA axis, glucocorticoid receptor, cytokines, immune, immunity, inflammation, and O&NS. Findings show that activation of immune-inflammatory and O&NS pathways in ME/CFS are probably not secondary to HPA axis hypoactivity and that activation of these pathways may underpin HPA axis hypofunction in ME/CFS. Mechanistic explanations comprise increased levels of tumor necrosis factor-α, T regulatory responses with elevated levels of interleukin-10 and transforming growth factor-β, elevated levels of nitric oxide, and viral/bacterial-mediated mechanisms. HPA axis hypoactivity in ME/CFS is most likely a consequence and not a cause of a wide variety of activated immune-inflammatory and O&NS pathways in that illness.  相似文献   

2.
Mature dendritic cells (DCs) are crucial for the induction of adaptive immune responses and perturbed DC homeostasis can result in autoimmune disease. Either uncontrolled expansion or enhanced survival of DCs can result in a variety of autoimmune diseases in mouse models. In addition, increased maturation signals, through overexpression of surface Toll-like receptors (TLRs) or stimulation by type I interferon (IFN), has been associated with systemic autoimmunity. Whereas recent studies have focused on identifying factors required for initiating the maturation process, the possibility that resting DCs also express molecules that 'hold' them in an immature state has generally not been considered. Here we show that nuclear factor-κB1 (NF-κB1) is crucial for maintaining the resting state of DCs. Self-antigen-pulsed unstimulated DCs that do not express NF-κB1 were able to activate CD8(+) T lymphocytes and induce autoimmunity. We further show that NF-κB1 negatively regulates the spontaneous production of tumor necrosis factor-α (TNF-α), which is associated with increased granzyme B expression in cytotoxic T lymphocytes (CTLs). These findings provide a new perspective on functional DC maturation and a potential mechanism that may account for pathologic T cell activation.  相似文献   

3.

Background  

Human parvovirus B19 (B19) is known to induce apoptosis that has been associated with a variety of autoimmune disorders. Although we have previously reported that B19 non-structural protein (NS1) induces mitochondrial-dependent apoptosis in COS-7 cells, the precise mechanism of B19-NS1 in developing autoimmunity is still obscure.  相似文献   

4.
Rheumatoid arthritis is a chronic inflammatory disease primarily affecting the joints. The search for arthritogenic autoantigens that trigger autoimmune responses in rheumatoid arthritis has largely focused on cartilage- or joint-specific Ags. In this study, we show that immunization with the ubiquitously expressed glycolytic enzyme glucose-6-phosphate isomerase (G6PI) induces severe peripheral symmetric polyarthritis in normal mice. In genetically unaltered mice, T cells are indispensable for both the induction and the effector phase of G6PI-induced arthritis. Arthritis is cured by depletion of CD4(+) cells. In contrast, Abs and FcgammaR(+) effector cells are necessary but not sufficient for G6PI-induced arthritis in genetically unaltered mice. Thus, the complex pathogenesis of G6PI-induced arthritis in normal mice differs strongly from the spontaneously occurring arthritis in the transgenic K/B x N model where Abs against G6PI alone suffice to induce the disease. G6PI-induced arthritis demonstrates for the first time the induction of organ-specific disease by systemic autoimmunity in genetically unaltered mice. Both the induction and effector phase of arthritis induced by a systemic autoimmune response can be dissected and preventive and therapeutic strategies evaluated in this model.  相似文献   

5.
The Glutathione System: A New Drug Target in Neuroimmune Disorders   总被引:1,自引:0,他引:1  
Glutathione (GSH) has a crucial role in cellular signaling and antioxidant defenses either by reacting directly with reactive oxygen or nitrogen species or by acting as an essential cofactor for GSH S-transferases and glutathione peroxidases. GSH acting in concert with its dependent enzymes, known as the glutathione system, is responsible for the detoxification of reactive oxygen and nitrogen species (ROS/RNS) and electrophiles produced by xenobiotics. Adequate levels of GSH are essential for the optimal functioning of the immune system in general and T cell activation and differentiation in particular. GSH is a ubiquitous regulator of the cell cycle per se. GSH also has crucial functions in the brain as an antioxidant, neuromodulator, neurotransmitter, and enabler of neuron survival. Depletion of GSH leads to exacerbation of damage by oxidative and nitrosative stress; hypernitrosylation; increased levels of proinflammatory mediators and inflammatory potential; dysfunctions of intracellular signaling networks, e.g., p53, nuclear factor-κB, and Janus kinases; decreased cell proliferation and DNA synthesis; inactivation of complex I of the electron transport chain; activation of cytochrome c and the apoptotic machinery; blockade of the methionine cycle; and compromised epigenetic regulation of gene expression. As such, GSH depletion has marked consequences for the homeostatic control of the immune system, oxidative and nitrosative stress (O&NS) pathways, regulation of energy production, and mitochondrial survival as well. GSH depletion and concomitant increase in O&NS and mitochondrial dysfunctions play a role in the pathophysiology of diverse neuroimmune disorders, including depression, myalgic encephalomyelitis/chronic fatigue syndrome and Parkinson’s disease, suggesting that depleted GSH is an integral part of these diseases. Therapeutical interventions that aim to increase GSH concentrations in vivo include N-acetyl cysteine; Nrf-2 activation via hyperbaric oxygen therapy; dimethyl fumarate; phytochemicals, including curcumin, resveratrol, and cinnamon; and folate supplementation.  相似文献   

6.
Hapten-coupled splenic adherent cells or resident peritoneal cells from autoimmune B6.lpr mice that are over 5 mo of age fail to induce first-order inducer suppressor T cells (Ts1). However, the same population of hapten-coupled cells can induce both delayed-type hypersensitivity responses and third-order effector suppressor T cells (Ts3). Thus, splenic and peritoneal antigen-presenting cells from B6.lpr mice display a defined defect in the ability to induce certain suppressor T cell responses. The cellular defect in Ts1 induction is controlled by the lpr gene, since age-matched congenic B6 mice do not display this defect. The splenic adherent cell defect is temporarily correlated with the autoimmunity that develops in B6.lpr animals. The antigen-presenting defect in the B6.lpr splenic adherent population for Ts1 induction is reversible by culturing the cells in interferon-gamma. The results are discussed as an illustration of the relationship between experimental models of autoimmunity and defects in a suppressor T cell cascade.  相似文献   

7.
Studies of congenic MRL-Ipr/Ipr.xid mice   总被引:5,自引:0,他引:5  
Highly inbred MRL-Ipr/Ipr.xid congenic mice were bred and compared with their + littermates. The xid-bearing congenics developed lymphadenopathy consisting of dull Ly-1+ T cells and impairment of cellular proliferation and IL 2 production in response to the T cell mitogen Con A. Thus, the lpr gene was fully expressed. The xid gene, however, was also expressed as indicated by the failure to respond to immunization with TNP-Ficoll and flow cytometric analysis of splenic B cells. The xid gene was associated with a marked reduction in IgM anti-ssDNA and anti-nDNA of both classes, and serum Ig-bound gp 70. Kidney disease was markedly retarded as was death from the autoimmune process. These studies suggest that the T cell lymphoproliferation and dysfunction characteristic of MRL-Ipr/Ipr mice is not sufficient to induce accelerated autoimmunity; xid is able to markedly slow the process. The xid gene interferes with the development of a B cell subset necessary for maximum autoantibody production, anti-gp 70 production, and the resultant immune complex renal and cardiac disease. The present finding of protection against accelerated autoimmunity in MRL-Ipr/Ipr mice by xid, coupled with previous demonstrations of protection against autoimmunity in other autoimmune mouse strains, suggests that a common approach to the therapy of systemic lupus may be possible.  相似文献   

8.
9.
Human parvovirus B19 (B19V) from the erythrovirus genus is known to be a pathogenic virus in humans. Prevalence of B19V infection has been reported worldwide in all seasons, with a high incidence in the spring. B19V is responsible for erythema infectiosum (fifth disease) commonly seen in children. Its other clinical presentations include arthralgia, arthritis, transient aplastic crisis, chronic anemia, congenital anemia, and hydrops fetalis. In addition, B19V infection has been reported to trigger autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. However, the mechanisms of B19V participation in autoimmunity are not fully understood. B19V induced chronic disease and persistent infection suggests B19V can serve as a model for viral host interactions and the role of viruses in the pathogenesis of autoimmune diseases. Here we investigate the involvement of B19V in the breakdown of immune tolerance. Previously, we demonstrated that the non-structural protein 1 (NS 1) of B19V induces apoptosis in non-permissive cells lines and that this protein can cleave host DNA as well as form NS1-DNA adducts. Here we provide evidence that through programmed cell death, apoptotic bodies (ApoBods) are generated by B19V NS1 expression in a non-permissive cell line. Characterization of purified ApoBods identified potential self-antigens within them. In particular, signature self-antigens such as Smith, ApoH, DNA, histone H4 and phosphatidylserine associated with autoimmunity were present in these ApoBods. In addition, when purified ApoBods were introduced to differentiated macrophages, recognition, engulfment and uptake occurred. This suggests that B19V can produce a source of self-antigens for immune cell processing. The results support our hypothesis that B19V NS1-DNA adducts, and nucleosomal and lysosomal antigens present in ApoBods created in non-permissive cell lines, are a source of self-antigens.  相似文献   

10.
Microorganisms and autoimmunity: making the barren field fertile?   总被引:1,自引:0,他引:1  
Microorganisms induce strong immune responses, most of which are specific for their encoded antigens. However, microbial infections can also trigger responses against self antigens (autoimmunity), and it has been proposed that this phenomenon could underlie several chronic human diseases, such as type 1 diabetes and multiple sclerosis. Nevertheless, despite intensive efforts, it has proven difficult to identify any single microorganism as the cause of a human autoimmune disease, indicating that the 'one organism-one disease' paradigm that is central to Koch's postulates might not invariably apply to microbially induced autoimmune disease. Here, we review the mechanisms by which microorganisms might induce autoimmunity, and we outline a hypothesis that we call the fertile-field hypothesis to explain how a single autoimmune disease could be induced and exacerbated by many different microbial infections.  相似文献   

11.
Chronic administration of anti-CD4 mAb prevents autoimmune disease in NZB/NZW F1 (B/W) mice. This may be due either to CD4 cell depletion or to inhibition of CD4 cell function. To evaluate the relative importance of these mechanisms, we devised a system in which the consequences of cell depletion could be analyzed independent of the inhibitory effects of chronic mAb therapy. This was accomplished by performing adult thymectomy before mAb administration. Specifically, female B/W mice underwent thymectomy or sham thymectomy at age 6 wk, followed at age 3 mo by a short course of either anti-CD4 (2 mg/wk for 3 wk) or saline. Treatment with anti-CD4 depleted 90% of circulating CD4 cells, but a small subpopulation (10%) of CD4 cells was refractory to depletion. In non-thymectomized mice, the CD4 population gradually reconstituted after cessation of therapy. In contrast, in thymectomized mice, recovery of CD4 cells was prevented by the absence of the thymus. Despite the striking reduction in CD4 cells in thymectomized mice, severe autoimmune disease developed, with autoantibody levels, proteinuria, and mortality comparable with non-thymectomized, nondepleted controls. The unexpected development of lupus nephritis in thymectomized, CD4-depleted B/W mice suggested that the thymus might be required to achieve the benefits of therapy with anti-CD4. To exclude this possibility, we demonstrated that chronic therapy with anti-CD4 prevents autoimmunity in thymectomized B/W mice. These findings imply that: 1) substantial depletion of CD4 T cells is not sufficient to suppress autoimmunity; 2) suppression of autoimmunity requires sustained functional inhibition of CD4 T cells; and 3) a small subpopulation of CD4 cells that is refractory to depletion by anti-CD4 is sufficient to promote the full expression of murine lupus in B/W mice.  相似文献   

12.
The prerequisites of peripheral activation of self-specific CD4(+) T cells that determine the development of autoimmunity are incompletely understood. SJL mice immunized with myelin proteolipid protein (PLP) 139-151 developed experimental autoimmune encephalomyelitis (EAE) when pertussis toxin (PT) was injected at the time of immunization but not when injected 6 days later, indicating that PT-induced alterations of the peripheral immune response lead to the development of autoimmunity. Further analysis using IA(s)/PLP(139-151) tetramers revealed that PT did not change effector T cell activation or regulatory T cell numbers but enhanced IFN-gamma production by self-specific CD4(+) T cells. In addition, PT promoted the generation of CD4(+)CD62L(low) effector T cells in vivo. Upon adoptive transfer, these cells were more potent than CD4(+)CD62L(high) cells in inducing autoimmunity in recipient mice. The generation of this population was paralleled by higher expression of the costimulatory molecules CD80, CD86, and B7-DC, but not B7-RP, PD-1, and B7-H1 on CD11c(+)CD4(+) dendritic cells whereas CD11c(+)CD8alpha(+) dendritic cells were not altered. Collectively, these data demonstrate the induction of autoimmunity by specific in vivo expansion of CD4(+)CD62L(low) cells and indicate that CD4(+)CD62L(low) effector T cells and CD11c(+)CD4(+) dendritic cells may be attractive targets for immune interventions to treat autoimmune diseases.  相似文献   

13.
Nitric oxide (NO) has been shown to regulate T cell functions under physiological conditions, but overproduction of NO may contribute to T lymphocyte dysfunction. NO-dependent tissue injury has been implicated in a variety of rheumatic diseases, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Several studies reported increased endogenous NO synthesis in both SLE and RA, and recent evidence suggests that NO contributes to T cell dysfunction in both autoimmune diseases. The depletion of intracellular glutathione may be a key factor predisposing patients with SLE to mitochondrial dysfunction, characterized by mitochondrial hyperpolarization, ATP depletion and predisposition to death by necrosis. Thus, changes in glutathione metabolism may influence the effect of increased NO production in the pathogenesis of autoimmunity.  相似文献   

14.
BackgroundHuman exposure to mercury leads to a variety of pathologies involving numerous organ systems including the immune system. A paucity of epidemiological studies and suitable diagnostic criteria, however, has hampered collection of sufficient data to support a causative role for mercury in autoimmune diseases. Nevertheless, there is evidence that mercury exposure in humans is linked to markers of inflammation and autoimmunity. This is supported by experimental animal model studies, which convincingly demonstrate the biological plausibility of mercury as a factor in the pathogenesis of autoimmune disease.Scope of the reviewIn this review, we focus on ability of mercury to elicit inflammatory and autoimmune responses in both humans and experimental animal models.Major conclusionsAlthough subtle differences exist, the inflammatory and autoimmune responses elicited by mercury exposure in humans and experimental animal models show many similarities. Proinflammatory cytokine expression, lymphoproliferation, autoantibody production, and nephropathy are common outcomes. Animal studies have revealed significant strain dependent differences in inflammation and autoimmunity suggesting genetic regulation. This has been confirmed by the requirement for individual genes as well as genome wide association studies. Importantly, many of the genes required for mercury-induced inflammation and autoimmunity are also required for idiopathic systemic autoimmunity. A notable difference is that mercury-induced autoimmunity does not require type I IFN. This observation suggests that mercury-induced autoimmunity may arise by both common and specific pathways, thereby raising the possibility of devising criteria for environmentally associated autoimmunity.General significanceMercury exposure likely contributes to the pathogenesis of autoimmunity.  相似文献   

15.
Despite interest in malic enzyme(ME)s in insulin cells, mitochondrial malic enzyme (ME2) has only been studied with estimates of mRNA or with mRNA knockdown. Because an mRNA’s level does not necessarily reflect the level of its cognate enzyme, we designed a simple spectrophotometric enzyme assay to measure ME2 activity of insulin cells by utilizing the distinct kinetic properties of ME2. Mitochondrial ME2 uses either NAD or NADP as a cofactor, has a high Km for malate and is allosterically activated by fumarate and inhibited by ATP. Cytosolic ME (ME1) and the other mitochondrial ME (ME3) use only NADP as a cofactor and have lower Kms for malate. The assay easily showed for the first time that substantial ME2 activity is present in pancreatic islets of humans, rats and mice and INS-1 832/13 cells. ME2’s presence was confirmed with immunoblotting. There was no evidence that ME3 is present in these tissues.  相似文献   

16.
Activation of initiator and effector caspases, mitochondrial changes involving a reduction in its membrane potential and release of cytochrome c (cyt c) into the cytosol, are characteristic features of apoptosis. These changes are associated with cell acidification in some models of apoptosis. The hierarchical relationship between these events has, however, not been deciphered. We have shown that somatostatin (SST), acting via the Src homology 2 bearing tyrosine phosphatase SHP-1, exerts cytotoxic action in MCF-7 cells, and triggers cell acidification and apoptosis. We investigated the temporal sequence of apoptotic events linking caspase activation, acidification, and mitochondrial dysfunction in this system and report here that (i) SHP-1-mediated caspase-8 activation is required for SST-induced decrease in pH(i). (ii) Effector caspases are induced only when there is concomitant acidification. (iii) Decrease in pH(i) is necessary to induce reduction in mitochondrial membrane potential, cyt c release and caspase-9 activation and (iv) depletion of ATP ablates SST-induced cyt c release and caspase-9 activation, but not its ability to induce effector caspases and apoptosis. These data reveal that SHP-1-/caspase-8-mediated acidification occurs at a site other than the mitochondrion and that SST-induced apoptosis is not dependent on disruption of mitochondrial function and caspase-9 activation.  相似文献   

17.
Basement membrane proteins are targeted in organ-limited and systemic autoimmune nephritis, yet little is known about the origin or regulation of immunity to these complex extracellular matrices. We used mice transgenic for a nephrotropic systemic lupus erythematosus (SLE) Ig H chain to test the hypothesis that humoral immunity to basement membrane is actively regulated. The LamH-Cmu Ig H chain transgene combines with diverse L chains to produce nephrotropic Ig reactive with murine laminin alpha1. To determine the fate of transgene-bearing B cells in vivo, transgenic mice were outcrossed onto nonautoimmune B6 and SLE-prone MRL backgrounds and exposed to potent mitogen or Ag in adjuvant. In this work we demonstrate that transgenic autoantibodies are absent in serum from M6 and M29 lineage transgenic mice and transgenic B cells hypoproliferate and fail to increase Ig production upon exposure to endotoxin or when subjected to B cell receptor cross-linking. Administration of LPS or immunization with autologous or heterologous laminin, maneuvers that induce nonoverlapping endogenous anti-laminin IgG responses, fails to induce a transgenic anti-laminin response. The marked reduction in splenic B cell number suggests that selected LamH-Cmu H chain and endogenous L chain combinations generate autospecificities that lead to B cell deletion. It thus appears that SLE-like anti-laminin B cells have access to and engage a tolerizing self-Ag in vivo. Failure to induce autoimmunity by global perturbations in immune regulation introduced by the MRL autoimmune background and exposure to potent environmental challenge suggests that humoral immunity to nephritogenic basement membrane epitopes targeted in systemic autoimmunity is tightly regulated.  相似文献   

18.
Successful grafting of vascularized xenografts (Xgs) depends on the ability to reliably induce both T cell-independent and -dependent immune tolerance. After temporary NK cell depletion, B cell suppression, and pretransplant infusion of donor Ags, athymic rats simultaneously transplanted with hamster heart and thymus Xgs developed immunocompetent rat-derived T cells that tolerated the hamster Xgs but provoked multiple-organ autoimmunity. The autoimmune syndrome was probably due to an insufficient development of tolerance for some rat organs; for example, it led to thyroiditis in the recipient rat thyroid, but not in simultaneously transplanted donor hamster thyroid. Moreover, grafting a mixed hamster/rat thymic epithelial cell graft could prevent the autoimmune syndrome. These experiments indicate that host-type thymic epithelial cells may be essential for the establishment of complete self-tolerance and that mixed host/donor thymus grafts may induce T cell xenotolerance while maintaining self-tolerance in the recipient.  相似文献   

19.
Recently, differences in the levels of various chemokines and cytokines were reported in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) as compared with controls. Moreover, the analyte profile differed between chronic ME/CFS patients of long duration versus patients with disease of less than 3 years. In the current study, we measured the plasma levels of 34 cytokines, chemokines and growth factors in 100 chronic ME/CFS patients of long duration and in 79 gender and age-matched controls. We observed highly significant reductions in the concentration of circulating interleukin (IL)-16, IL-7, and Vascular Endothelial Growth Factor A (VEGF-A) in ME/CFS patients. All three biomarkers were significantly correlated in a multivariate cluster analysis. In addition, we identified significant reductions in the concentrations of fractalkine (CX3CL1) and monokine-induced-by-IFN-γ (MIG; CXCL9) along with increases in the concentrations of eotaxin 2 (CCL24) in ME/CFS patients. Our data recapitulates previous data from another USA ME/CFS cohort in which circulating levels of IL-7 were reduced. Also, a reduced level of VEGF-A was reported previously in sera of patients with Gulf War Illness as well as in cerebral spinal fluid samples from a different cohort of USA ME/CFS patients. To our knowledge, we are the first to test for levels of IL-16 in ME/CFS patients. In combination with previous data, our work suggests that the clustered reduction of IL-7, IL-16 and VEGF-A may have physiological relevance to ME/CFS disease. This profile is ME/CFS-specific since measurement of the same analytes present in chronic infectious and autoimmune liver diseases, where persistent fatigue is also a major symptom, failed to demonstrate the same changes. Further studies of other ME/CFS and overlapping disease cohorts are warranted in future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号