首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sara Y  Virmani T  Deák F  Liu X  Kavalali ET 《Neuron》2005,45(4):563-573
Spontaneous synaptic vesicle fusion is a common property of all synapses. To trace the origin of spontaneously fused vesicles in hippocampal synapses, we tagged vesicles with fluorescent styryl dyes, antibodies against synaptotagmin-1, or horseradish peroxidase. We could show that synaptic vesicles recycle at rest, and after spontaneous exo-endocytosis, they populate a reluctantly releasable pool of limited size. Interestingly, vesicles in this spontaneously labeled pool were more likely to re-fuse spontaneously compared to vesicles labeled with activity. We found that blocking vesicle refilling at rest selectively depleted neurotransmitter from spontaneously fusing vesicles without significantly altering evoked transmission. Furthermore, in the absence of the vesicle SNARE protein synaptobrevin (VAMP), activity-dependent and spontaneously recycling vesicles could mix, suggesting a role for synaptobrevin in the separation of the two pools. Taken together these results suggest that spontaneously recycling vesicles and activity-dependent recycling vesicles originate from distinct pools with limited cross-talk with each other.  相似文献   

2.
In our research on mouse diaphragm muscles the dynamic of neurotransmitter secretion and synaptic vesicles recycling (exo-endocytosis cycle) at the long-term rhythmic stimulation (20Hz) are explored using an intracellular microelectrode registration and a fluorescent microscopy. It have been shown, thate change of end plant potentials (EPP) amplitude at the rhythmic training occurs in three phases: initial transient decrease, long amplitude stabilization (1-2 min)--the plateau and secondary slow decrease. After 3 minute stimulations the EPP amplitude recovery observed during several seconds. Loading the synaptic vesicle by fluorescent endocytic dye FM 1-43 had shown that the rhythmic stimulation results to gradual (during 5-6 mines) fluorescence decrease in NT, indicating the synaptic vesicle exocytosis. The quantum analysis of the electrophysiological data and their comparison to the fluorescent researches date has allowed to assume, that mouse motor nerve terminals are characterized by high rate of endocytosis and fast synaptic vesicle reuse (average recycling time about 50 sec) that can provide effective maintenance of synaptic transmission at long high-frequency activity. Sizes of ready releasable and recycling synaptic vesicle pools are quantitatively determined. It is assumed, that vesicle recycling occurs on a short fast way to inclusion in recycling pool. So, in the stimulation protocol that were used the synaptic vesicles from reserve pool remain unused. Thus in our conditions recycling pool vesicles cycle repeatedly without reserve pool release.  相似文献   

3.
Continuous neurotransmitter release is subjected to synaptic vesicle availability, which in turn depends on vesicle recycling and the traffic of vesicles between pools. We studied the role of Synaptotagmin-7 (Syt-7) in synaptic vesicle accessibility for release in hippocampal neurons in culture. Synaptic boutons from Syt-7 knockout (KO) mice displayed normal basal secretion with no alteration in the RRP size or the probability of release. However, stronger stimuli revealed an increase in the size of the reserve and resting vesicle pools in Syt-7 KO boutons compared with WT. These data suggest that Syt-7 plays a significant role in the vesicle pool homeostasis and, consequently, in the availability of vesicles for synaptic transmission during strong stimulation, probably, by facilitating advancing synaptic vesicles to the readily releasable pool.  相似文献   

4.
We use fluorescence correlation spectroscopy and fluorescence recovery after photobleaching to study vesicle dynamics inside the synapses of cultured hippocampal neurons labeled with the fluorescent vesicle marker FM 1-43. These studies show that when the cell is electrically at rest, only a small population of vesicles is mobile, taking seconds to traverse the synapse. Applying the phosphatase inhibitor okadaic acid causes vesicles to diffuse freely, moving 30 times faster than vesicles in control synapses. These results suggest that vesicles move sluggishly due to binding to elements of the synaptic cytomatrix and that this binding is altered by phosphorylation. Motivated by these results, a model is constructed consisting of diffusing vesicles that bind reversibly to the cytomatrix. This stick-and-diffuse model accounts for the fluorescence correlation spectroscopy and fluorescence recovery after photobleaching data, and also predicts the well-known exponential refilling of the readily releasable pool. Our measurements suggest that the movement of vesicles to the active zone is the rate-limiting step in this process.  相似文献   

5.
It has been hypothesized that in the mature nerve terminal, interactions between synapsin and actin regulate the clustering of synaptic vesicles and the availability of vesicles for release during synaptic activity. Here, we have used immunogold electron microscopy to examine the subcellular localization of actin and synapsin in the giant synapse in lamprey at different states of synaptic activity. In agreement with earlier observations, in synapses at rest, synapsin immunoreactivity was preferentially localized to a portion of the vesicle cluster distal to the active zone. During synaptic activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known function in clustering of vesicles in the reserve pool, synapsin migrates from the synaptic vesicle cluster and participates in the organization of the actin-rich cytomatrix in the endocytic zone during synaptic activity.  相似文献   

6.
Gaffield MA  Rizzoli SO  Betz WJ 《Neuron》2006,51(3):317-325
We used fluorescence recovery after photobleaching (FRAP) to measure the mobility of synaptic vesicles in frog motor nerve terminals. Vesicles belonging to the recycling pool or to the reserve pool were selectively labeled with FM1-43. In resting terminals, vesicles in the reserve pool were immobile, while vesicles in the recycling pool were mobile. Nerve stimulation increased the mobility of reserve pool vesicles. Treatment with latrunculin A, which destroyed actin filaments, had no significant effect on mobility, and reducing the temperature likewise had little effect, suggesting that recycling pool vesicles move by simple diffusion. Application of okadaic acid caused vesicle mobility in both pools to increase to the same level. We could model these and others' results quantitatively by taking into account the relative numbers of mobile and immobile vesicles in each pool, and vesicle packing density, which has a large effect on mobility.  相似文献   

7.
Rosenmund C  Sigler A  Augustin I  Reim K  Brose N  Rhee JS 《Neuron》2002,33(3):411-424
Presynaptic short-term plasticity is an important adaptive mechanism regulating synaptic transmitter release at varying action potential frequencies. However, the underlying molecular mechanisms are unknown. We examined genetically defined and functionally unique axonal subpopulations of synapses in excitatory hippocampal neurons that utilize either Munc13-1 or Munc13-2 as synaptic vesicle priming factor. In contrast to Munc13-1-dependent synapses, Munc13-2-driven synapses show pronounced and transient augmentation of synaptic amplitudes following high-frequency stimulation. This augmentation is caused by a Ca(2+)-dependent increase in release probability and releasable vesicle pool size, and requires phospholipase C activity. Thus, differential expression of Munc13 isoforms at individual synapses represents a general mechanism that controls short-term plasticity and contributes to the heterogeneity of synaptic information coding.  相似文献   

8.
At a wide range of synapses, synaptic vesicles reside in distinct pools that respond to different stimuli. The recycling pool supplies the vesicles required for release in response to modest stimulation, whereas the reserve pool is mobilized only by strong stimulation. Multiple pathways have been proposed for the recycling of synaptic vesicles after exocytosis, but the relationship of these pathways to the different synaptic vesicle pools has remained unclear. Synaptic vesicle proteins have also been assumed to undergo recycling as a unit. However, emerging data indicate that differences in the association with distinct endocytic adaptors such as the heterotetrameric adaptor AP3 influence the trafficking of individual synaptic vesicle proteins, affecting the composition of synaptic vesicles and hence their functional characteristics. These observations might begin to account for differences in the properties of different vesicle pools.  相似文献   

9.
Using electrophysiology and fluorescence microscopy with dye FM 1-43, a comparative study of peculiarities of neurotransmitter secretion, synaptic vesicle exo-endocytosis and recycling has been carried out in nerve terminals (NT) of the skin-sternal muscle of the frog Rana ridibunda and of the white mouse diaphragm muscle during a long-term high-frequency stimulation (20 imp/s). The obtained data have allowed identifying three synaptic vesicle pools and two recycling ways in the motor NT. In the frog NT, the long-term high-frequency stimulation induced consecutive expenditure of the pool ready to release, the mobilizational, and reserve vesicle pools. The exocytosis rate exceeded markedly the endocytosis rate; the slow synaptic vesicle recycling with replenishment of the reserve pool was predominant. In the mouse NT, only the vesicles of the ready to release and the mobilizational pools, which are replenished predominantly by fast recycling, were exocytosed. The exo- and endocytosis occurred practically in parallel, while vesicles of the reserve pool did not participate in the neurotransmitter secretion. It is suggested that evolution of the motor NT from the poikilothermal to homoiothermal animals went by the way of a decrease of the vesicle pool size, the more economic expenditure and the more effective reuse of synaptic vesicles owing to the high rates of endocytosis and recycling. These peculiarities can provide in NT of homoiothermal animals a long maintenance of neurotransmitter secretion at the steady and sufficiently high level to preserve reliability of synaptic transmission in the process of the high-frequency activity.  相似文献   

10.
Synapses are distributed heterogeneously in neural networks. The relationship between the spatial arrangement of synapses and an individual synapse's structural and functional features remains to be elucidated. Here, we examined the influence of the number of adjacent synapses on individual synaptic recycling pool sizes. When measuring the discharge of the styryl dye FM1-43 from electrically stimulated synapses in rat hippocampal tissue cultures, a strong positive correlation between the number of neighbouring synapses and recycling vesicle pool sizes was observed. Accordingly, vesicle-rich synapses were found to preferentially reside next to neighbours with large recycling pool sizes. Although these synapses with large recycling pool sizes were rare, they were densely arranged and thus exhibited a high amount of release per volume. To consolidate these findings, functional terminals were marked by live-cell antibody staining with anti-synaptotagmin-1-cypHer or overexpression of synaptopHluorin. Analysis of synapse distributions in these systems confirmed the results obtained with FM 1-43. Our findings support the idea that clustering of synapses with large recycling pool sizes is a distinct developmental feature of newly formed neural networks and may contribute to functional plasticity.  相似文献   

11.
Burrone J  Li Z  Murthy VN 《Nature protocols》2006,1(6):2970-2978
Genetically encoded fluorescent probes have become indispensable tools in the biological sciences. Studies of synaptic vesicle recycling have been facilitated by a group of GFP-derived probes called pHluorins. These probes exploit changes in pH that accompany exocytosis and recapture of synaptic vesicles. Here we describe how these synaptic tracers can be used in rodent hippocampal neurons to monitor the synaptic vesicle cycle in real time and to obtain mechanistic insights about it. Synapses can be observed in living samples using a wide-field fluorescence microscope and a cooled charge-coupled device camera. A simple specimen chamber allows electrical stimulation of synapses to evoke exocytosis in a precisely controlled manner. We present protocols to measure various parameters of the synaptic vesicle cycle. This technique can be easily adapted to study different classes of synapses from wild-type and mutant mice. Once cultured neurons expressing synaptopHluorin are available, the whole procedure should take about 2 h.  相似文献   

12.
Sustained neurotransmission is driven by a continuous supply of synaptic vesicles to the release sites and modulated by synaptic vesicle dynamics. However, synaptic vesicle dynamics in synapses remain elusive because of technical limitations. Recent advances in fluorescence imaging techniques have enabled the tracking of single synaptic vesicles in small central synapses in living neurons. Single vesicle tracking has uncovered a wealth of new information about synaptic vesicle dynamics both within and outside presynaptic terminals, showing that single vesicle tracking is an effective tool for studying synaptic vesicle dynamics. Particularly, single vesicle tracking with high spatiotemporal resolution has revealed the dependence of synaptic vesicle dynamics on the location, stages of recycling, and neuronal activity. This review summarizes the recent findings from single synaptic vesicle tracking in small central synapses and their implications in synaptic transmission and pathogenic mechanisms of neurodegenerative diseases.  相似文献   

13.
To maintain neurotransmission in central neurons, several mechanisms are employed to retrieve synaptically exocytosed membrane. The two major modes of synaptic vesicle (SV) retrieval are clathrin-mediated endocytosis and activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mode during intense stimulation, however the precise physiological conditions that trigger this mode are not resolved. To determine these parameters we manipulated rat hippocampal neurons using a wide spectrum of stimuli by varying both the pattern and duration of stimulation. Using live-cell fluorescence imaging and electron microscopy approaches, we established that stimulation frequency, rather than the stimulation load, was critical in the triggering of ADBE. Thus two hundred action potentials, when delivered at high frequency, were sufficient to induce near maximal bulk formation. Furthermore we observed a strong correlation between SV pool size and ability to perform ADBE. We also identified that inhibitory nerve terminals were more likely to utilize ADBE and had a larger SV recycling pool. Thus ADBE in hippocampal synaptic terminals is tightly coupled to stimulation frequency and is more likely to occur in terminals with large SV pools. These results implicate ADBE as a key modulator of both hippocampal neurotransmission and plasticity.  相似文献   

14.
Identifying the molecules that regulate both the recycling of synaptic vesicles and the SNARE components required for fusion is critical for elucidating the molecular mechanisms underlying synaptic plasticity. SNAP-29 was initially isolated as a syntaxin-binding and ubiquitously expressed protein. Previous studies have suggested that SNAP-29 inhibits SNARE complex disassembly, thereby reducing synaptic transmission in cultured superior cervical ganglion neurons in an activity-dependent manner. However, the role of SNAP-29 in regulating synaptic vesicle recycling and short-term plasticity in the central nervous system remains unclear. In the present study, we examined the effect of SNAP-29 on synaptic transmission in cultured hippocampal neurons by dual patch clamp whole-cell recording, FM dye imaging, and immunocytochemistry. Our results demonstrated that exogenous expression of SNAP-29 in presynaptic neurons significantly decreased the efficiency of synaptic transmission after repetitive firing within a few minutes under low and moderate frequency stimulations (0.1 and 1 Hz). In contrast, SNAP-29 did not affect the density of synapses and basal synaptic transmission. Whereas neurotransmitter release was unaffected during intensive stimulation, recovery after synaptic depression was impaired by SNAP-29. Furthermore, knockdown of SNAP-29 expression in neurons by small interfering RNA increased the efficiency of synaptic transmission during repetitive firing. These findings suggest that SNAP-29 acts as a negative modulator for neurotransmitter release, probably by slowing recycling of the SNARE-based fusion machinery and synaptic vesicle turnover.  相似文献   

15.
Synaptic adhesion molecules, which coordinately control structural and functional changes at both sides of synapses, are important for synaptogenesis and synaptic plasticity. Because they physically form homophilic or heterophilic adhesions across synaptic junctions, these molecules can initiate transsynaptic communication in both anterograde and retrograde directions. Using optical imaging approaches, we investigated whether an increase in postsynaptic N‐cadherin could correspondingly alter the function of connected presynaptic terminals. Postsynaptic expression of β‐catenin Y654F, a phosphorylation‐defective form with enhanced binding to N‐cadherin, is sufficient to increase postsynaptic surface levels of N‐cadherin and consequently promote presynaptic reorganizations. Such reorganizations include increases in the densities of the synaptic vesicle protein, Synaptotagmin 1 and the active zone scaffold protein, Bassoon, the number of active boutons and the size of the total recycling vesicle pool. In contrast, synaptic vesicle turnover is significantly impaired, preventing the exchange of synaptic vesicles with adjacent boutons. Together, N‐cadherin‐mediated retrograde signaling, governed by phosphoregulation of postsynaptic β‐catenin Y654, coordinately modulates presynaptic vesicle dynamics to enhance synaptic communication in mature neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 61–74, 2017  相似文献   

16.
The regulated release of neurotransmitters at synapses is mediated by the fusion of neurotransmitter-filled synaptic vesicles with the plasma membrane. Continuous synaptic activity relies on the constant recycling of synaptic vesicle proteins into newly formed synaptic vesicles. At least two different mechanisms are presumed to mediate synaptic vesicle biogenesis at the synapse as follows: direct retrieval of synaptic vesicle proteins and lipids from the plasma membrane, and indirect passage of synaptic vesicle proteins through an endosomal intermediate. We have identified a vesicle population with the characteristics of a primary endocytic vesicle responsible for the recycling of synaptic vesicle proteins through the indirect pathway. We find that synaptic vesicle proteins colocalize in this vesicle with a variety of proteins known to recycle from the plasma membrane through the endocytic pathway, including three different glucose transporters, GLUT1, GLUT3, and GLUT4, and the transferrin receptor. These vesicles differ from "classical" synaptic vesicles in their size and their generic protein content, indicating that they do not discriminate between synaptic vesicle-specific proteins and other recycling proteins. We propose that these vesicles deliver synaptic vesicle proteins that have escaped internalization by the direct pathway to endosomes, where they are sorted from other recycling proteins and packaged into synaptic vesicles.  相似文献   

17.
Regulation of synaptic transmission is a widespread means for dynamic alterations in nervous system function. In several cases, this regulation targets vesicular recycling in presynaptic terminals and may result in substantial changes in efficiency of synaptic transmission. Traditionally, experimental accessibility of the synaptic vesicle cycle in central neuronal synapses has been largely limited to the exocytotic side, which can be monitored with electrophysiological responses to neurotransmitter release. Recently, physiological measurements on the endocytotic portion of the cycle have been made possible by the introduction of styryl dyes such as FM1-43 as fluorescent markers for recycling synaptic vesicles. Here we demonstrate the existence of fast endocytosis in hippocampal nerve terminals and derive its kinetics from fluorescence measurements using dyes with varying rates of membrane departitioning. The rapid mode of vesicular retrieval was greatly speeded by exposure to staurosporine or elevated extracellular calcium. The effective time-constant for retrieval can be < 2 seconds under appropriate conditions. Thus, hippocampal synapses capitalize on efficient mechanisms for endocytosis and their vesicular retrieval is subject to modulatory control.  相似文献   

18.
We have labeled recycling synaptic vesicles at the somatic Bufo marinus neuromuscular junction with the styryl dye FM2-10 and provide direct evidence for refractoriness of exocytosis associated with a muscle activity-dependent form of long-term depression (LTD) at this synapse. FM2-10 dye unloading experiments demonstrated that the rate of vesicle exocytosis from the release ready pool (RRP) of vesicles was more than halved in the LTD (induced by 20 min of low frequency stimulation). Recovery from LTD, observed as a partial recovery of nerve-evoked muscle twitch amplitude, was accompanied by partial recovery of the refractoriness of RRP exocytosis. Unexpectedly, paired pulse plasticity, another routinely used indicator of presynaptic forms of synaptic plasticity, was unchanged in the LTD. We conclude that the LTD induces refractoriness of the neuromuscular vesicle release machinery downstream of presynaptic calcium entry.  相似文献   

19.
Littleton JT 《Neuron》2006,51(2):149-151
The question of how synapses maintain an active recycling pool of synaptic vesicles to support high-frequency synaptic transmission has been a perplexing and often controversial problem. In this issue of Neuron, Fernandez-Alfonso et al. present data indicating that at least two synaptic vesicle proteins, synaptotagmin 1 and VAMP-2, are present in a large pool on the synaptic and axonal plasma membrane and can interchange with recently exocytosed proteins. These findings suggest that a plasma membrane pool of synaptic vesicle proteins provides a reservoir that can facilitate rapid endocytosis.  相似文献   

20.
Phosphorylation of synapsin I by CaMKII has been reported to mobilize synaptic vesicles from the reserve pool. In the present study, the distributions of α-CaMKII and of synapsin I were compared in synaptic boutons of unstimulated and stimulated hippocampal neurons in culture by immunogold electron microscopy. CaMKII and synapsin I are located in separate domains in presynaptic terminals of unstimulated neurons. Label for α -CaMKII typically surrounds synaptic vesicle clusters and is absent from the inside of the cluster in control synapses. In contrast, intense labeling for synapsin I is found within the vesicle clusters. Following 2 minutes of depolarization in high K+, synaptic vesicles decluster and CaMKII label disperses and mingles with vesicles and synapsin I. These results indicate that, under resting conditions, CaMKII has limited access to the synapsin I in synaptic vesicle clusters. The peripheral distribution of CaMKII around vesicle clusters suggests that CaMKII-mediated declustering progresses from the periphery towards the center, with the depth of penetration into the synaptic vesicle cluster depending on the duration of CaMKII activation. Depolarization also promotes a significant increase in CaMKII immunolabel near the presynaptic active zone. Activity-induced redistribution of CaMKII leaves it in a position to facilitate phosphorylation of additional presynaptic proteins regulating neurotransmitter release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号