首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmitter glutamate/aspartate synthesis is known to proceed along different metabolic pathways. In this light, the functional relevance of glutamate dehydrogenase in postnatally maturing glutamatergic/aspartatergic structures was studied by means of quantitative enzyme histochemistry. The basic requirements concerning the kinetics and calibration of the histochemical glutamate dehydrogenase reaction used were proved to be met in order to obtain valid quantitative data. The histochemically demonstrable activity of glutamate dehydrogenase (EC 1.4.1.3) in the hippocampal formation of the rat increased markedly during postnatal development. On day 30, the distribution pattern observed was similar to that in adult animals. While the enzyme activity rose within cell body layers from day 0 to day 30 by 240-285%, the increase in neuropil layers was found to be up to 830%. Maximum values were seen in the stratum lacunosum-moleculare of CA1 and CA3 and the stratum moleculare of the dentate fascia on day 30. Since the hippocampal neuropil is supposed to be copiously provided with glutamatergic (and aspartatergic?) structures which become functional in rats during the first weeks of postnatal life, the increase in enzyme activity is discussed to be primarily a consequence of maturing synaptic systems using glutamate and/or aspartate as transmitters.  相似文献   

2.
In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval.  相似文献   

3.
The stimulation of adult hippocampal neurogenesis by antidepressants has been associated with multiple molecular pathways, but the potential influence exerted by other brain areas has received much less attention. The basolateral complex of the amygdala (BLA), a region involved in anxiety and a site of action of antidepressants, has been implicated in both basal and stress-induced changes in neural plasticity in the dentate gyrus. We investigated here whether the BLA modulates the effects of the SSRI antidepressant fluoxetine on hippocampal cell proliferation and survival in relation to a behavioral index of depression-like behavior (forced swim test). We used a lesion approach targeting the BLA along with a chronic treatment with fluoxetine, and monitored basal anxiety levels given the important role of this behavioral trait in the progress of depression. Chronic fluoxetine treatment had a positive effect on hippocampal cell survival only when the BLA was lesioned. Anxiety was related to hippocampal cell survival in opposite ways in sham- and BLA-lesioned animals (i.e., negatively in sham- and positively in BLA-lesioned animals). Both BLA lesions and low anxiety were critical factors to enable a negative relationship between cell proliferation and depression-like behavior. Therefore, our study highlights a role for the amygdala on fluoxetine-stimulated cell survival and on the establishment of a link between cell proliferation and depression-like behavior. It also reveals an important modulatory role for anxiety on cell proliferation involving both BLA-dependent and –independent mechanisms. Our findings underscore the amygdala as a potential target to modulate antidepressants'' action in hippocampal neurogenesis and in their link to depression-like behaviors.  相似文献   

4.
The activity of the adenylate cyclase located in membranes prepared from hippocampus of adult rat can be stimulated by serotonin (5-HT) (Ka = 4 X 10(-7) M). The maximal effect is obtained with 10 microM 5-HT. Freezing of the tissue decreases the 5-HT stimulation; this stimulation is optimal in the presence of 82.5 mM Tris-maleate buffer (pH 7.4) and 50 microM GTP. The adenylate cyclase activity of membranes prepared from cortex, hypothalamus, and colliculi of adult rats is not significantly stimulated by 5-HT. Dopamine (DA) also stimulates adenylate cyclase located in hippocampal membranes; its effect can be blocked by haloperidol (10(-6) M), which fails to inhibit 5-HT stimulation. Moreover, p-chlorophenylalanine treatment for 2 weeks or selective lesion of 5-HT axons afferent to the hippocampus increases the Vmax of 5-HT stimulation, but fails to change that of DA stimulation. The 5-HT stimulation can be inhibited by metergoline, spiroperidol, and pizotyline (10(-6) M), but not by the same concentrations of mianserin, ketanserine, alprenolol, phenoxybenzamine, and mepyramine. The 5-HT stimulation of adenylate cyclase of hippocampal membranes can be mimicked by tryptamine, 5-methoxytryptamine, bufotenine, and to a lesser extent by LSD; N-methyltryptamine, N-methyltryptophan, and 5-hydroxytryptophan are inactive. Studies with kainic acid suggest that the 5-HT recognition site (5-HT1) linked to adenylate cyclase is located on the membrane of intrinsic hippocampal neurons.  相似文献   

5.
目的:探讨在抑郁大鼠模型中单次氯胺酮可产生快速持久地抗抑郁作用。方法:实验一:32只Wistar大鼠随机分为四组(n=8),药物干预前1 d大鼠强迫游泳15 min,药物干预当天,分别腹腔注射相同容积的生理盐水(S组)、5 mg/kg氯胺酮(K5组)、10 mg/kg氯胺酮(K10组)、15 mg/kg氯胺酮(K15组)。30 min后记录大鼠运动能力及不动时间。实验二:20只Wistar大鼠随机分为两组(n=10),所有大鼠均经历21天慢性不可预知应激试验。第22天大鼠分别腹腔注射相同容积生理盐水及10 mg/kg氯胺酮,于干预前、干预后1 h、2 h、6 h、1 d、4 d、7 d分别进行敞箱试验,并记录大鼠水平运动及垂直运动得分。结果:与S组相比,K5、K10及K15组大鼠运动能力无明显变化(P>0.05)且强迫游泳不动时间均显著减少(P<0.01);与干预前生理盐水组相比,生理盐水干预后1 h、2 h、6 h、1 d、4 d及7 d组大鼠敞箱试验水平运动及垂直运动均无明显差异(P>0.05);与干预前氯胺酮组相比,生理盐水干预后1 h、2 h、6 h、1 d、4 d及7 d组大鼠敞箱试验水平运动及垂直运动有明显差异(P<0.05)。结论:在抑郁症大鼠模型中氯胺酮可产生快速且持久的抗抑郁作用。  相似文献   

6.
A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis. The major input to the dentate gyrus is the perforant path axons (boutons) from the entorhinal cortex (layer II). Through voltage-sensitive dye imaging, we found that the excitatory neurotransmission of the perforant path synapse onto the GCs in the middle molecular layer of the mouse dentate gyrus (perforant path-GC synapse) is enhanced after chronic fluoxetine treatment (15 mg/kg/day, 14 days). Therefore, we further examined whether chronic fluoxetine treatment affects the morphology of the perforant path-GC synapse, using FIB/SEM (focused ion beam/scanning electron microscopy). A three-dimensional reconstruction of dendritic spines revealed the appearance of extremely large-sized spines after chronic fluoxetine treatment. The large-sized spines had a postsynaptic density with a large volume. However, chronic fluoxetine treatment did not affect spine density. The presynaptic boutons that were in contact with the large-sized spines were large in volume, and the volumes of the mitochondria and synaptic vesicles inside the boutons were correlated with the size of the boutons. Thus, the large-sized perforant path-GC synapse induced by chronic fluoxetine treatment contains synaptic components that correlate with the synapse size and that may be involved in enhanced glutamatergic neurotransmission.  相似文献   

7.
The aim of our study was to investigate the effect of different monoamine uptake blockers on the nicotine-evoked release of [3H]noradrenaline ([3H]NA) from rat hippocampal slices. We found that desipramine (DMI), nisoxetine, cocaine, citalopram, and nomifensine inhibit the nicotine-evoked release of [3H]NA with an IC50 of 0.36, 0.59, 0.81, 0.93, and 1.84 microM, respectively. These IC50 values showed no correlation with the inhibitory effect (Ki) of monoamine uptake blockers on the neuronal NA transporter (r = 0.17, slope = 0.02), indicating that the NA uptake system is not involved in the process. In whole-cell patch clamp experiments neither drug blocked Na+ currents at 1 microM in sympathetic neurons from rat superior cervical ganglia, and only DMI produced a pronounced inhibition (52% decrease) at 10 microM. Comparison of the effect of DMI and tetrodotoxin (TTX) on the electrical stimulation- and nicotine-evoked release of [3H]NA showed that DMI, in contrast to TTX, inhibits only the nicotine-induced response, indicating that the target of DMI is not the Na+ channel. Our data suggest that monoamine uptake blockers with different chemical structure and selectivity are able to inhibit the nicotinic acetylcholine receptors in the CNS. Because these compounds are widely used in the therapy of depressed patients, our findings may have great importance in the evaluation of their clinical effects.  相似文献   

8.
Cognitive control is the ability to coordinate multiple streams of information to prevent confusion and select appropriate behavioral responses, especially when presented with competing alternatives. Despite its theoretical and clinical significance, the neural mechanisms of cognitive control are poorly understood. Using a two-frame place avoidance task and partial hippocampal inactivation, we confirmed that intact hippocampal function is necessary for coordinating two streams of spatial information. Rats were placed on a continuously rotating arena and trained to organize their behavior according to two concurrently relevant spatial frames: one stationary, the other rotating. We then studied how information about locations in these two spatial frames is organized in the action potential discharge of ensembles of hippocampal cells. Both streams of information were represented in neuronal discharge—place cell activity was organized according to both spatial frames, but almost all cells preferentially represented locations in one of the two spatial frames. At any given time, most coactive cells tended to represent locations in the same spatial frame, reducing the risk of interference between the two information streams. An ensemble''s preference to represent locations in one or the other spatial frame alternated within a session, but at each moment, location in the more behaviorally relevant spatial frame was more likely to be represented. This discharge organized into transient groups of coactive neurons that fired together within 25 ms to represent locations in the same spatial frame. These findings show that dynamic grouping, the transient coactivation of neural subpopulations that represent the same stream of information, can coordinate representations of concurrent information streams and avoid confusion, demonstrating neural-ensemble correlates of cognitive control in hippocampus.  相似文献   

9.
《Cell reports》2020,30(7):2444-2459.e7
  1. Download : Download high-res image (168KB)
  2. Download : Download full-size image
  相似文献   

10.
Abstract: Activity of the pyruvate dehydrogenase complex (PDHC) was measured in seven brain regions of themale rat at various times during the postnatal period usingan arylamine acetyltransferase coupled assay. Three daysafter birth, PDHC activity was found to be < 15% ofadult values in all brain regions with the exception of hypothalamus and medulla-pons (30% of adult values ineach case). Activity of the enzyme complex in these latterregions attained adult levels by 21 days postnatally, some 5-15 days ahead of that found in cerebral cortex, striatum, hippocampus, and cerebellum. Such differences in PDHC maturation reflect the greater degree of earlymaturity of the phylogenetically older brain structures. Cerebellar PDHC developed more slowly than in otherbrain regions to attain only 40% of adult levels by thetime of weaning. The pattern of maturation of cerebellarPDHC is paralleled by increased incorporation of glucoseinto cerebral amino acids and by the pattern of develop-ment of parallel fiber synaptogenesis. These findings sug-gest that PDHC may play a key role in the regional de-velopment of metabolic compartmentation and the asso-ciated maturation of cerebral function in the rat.  相似文献   

11.
Extracellular matrix molecules play important roles in neural developmental processes such as axon guidance and synaptogenesis. When development is complete, many of these molecules are down-regulated, however the molecules that remain highly expressed are often involved in modulation of synaptic function. SC1 is an example of an extracellular matrix protein whose expression remains high in the adult rat brain. Confocal microscopy revealed that SC1 demonstrates a punctate pattern in synaptic enriched regions of the cerebral cortex and cerebellum. Higher resolution analysis using electron microscopy indicated that SC1 localizes to synapses, particularly the postsynaptic terminal. SC1 was also detected in perisynaptic glial processes that envelop synapses. This work was supported by the National Science and Engineering Research Council of Canada.  相似文献   

12.
Several organosulfur compounds found in garlic extract promoted the survival of rat hippocampal neurons in vitro. From the analysis of structure-activity relationship, thioallyl group in these compounds is essential for the manifestation of neurotrophic activity. S-Allyl-L-cysteine (SAC), one of the organosulfur compounds having thioallyl group in garlic extract, also promoted the axonal branching of cultured neurons. These results suggest that thioallyl compounds make a unique group of neurotrophic factors.  相似文献   

13.
The astrocyte is a major glial cell type of the brain, and plays key roles in the formation, maturation, stabilization and elimination of synapses. Thus, changes in astrocyte condition and age can influence information processing at synapses. However, whether and how aging astrocytes affect synaptic function and maturation have not yet been thoroughly investigated. Here, we show the effects of prolonged culture on the ability of astrocytes to induce synapse formation and to modify synaptic transmission, using cultured autaptic neurons. By 9 weeks in culture, astrocytes derived from the mouse cerebral cortex demonstrated increases in β-galactosidase activity and glial fibrillary acidic protein (GFAP) expression, both of which are characteristic of aging and glial activation in vitro. Autaptic hippocampal neurons plated on these aging astrocytes showed a smaller amount of evoked release of the excitatory neurotransmitter glutamate, and a lower frequency of miniature release of glutamate, both of which were attributable to a reduction in the pool of readily releasable synaptic vesicles. Other features of synaptogenesis and synaptic transmission were retained, for example the ability to induce structural synapses, the presynaptic release probability, the fraction of functional presynaptic nerve terminals, and the ability to recruit functional AMPA and NMDA glutamate receptors to synapses. Thus the presence of aging astrocytes affects the efficiency of synaptic transmission. Given that the pool of readily releasable vesicles is also small at immature synapses, our results are consistent with astrocytic aging leading to retarded synapse maturation.  相似文献   

14.
本文采用电极阵列检测技术,在大鼠海马脑切片上诱导出稳定的癫痫样放电,分析、研究130 Hz的高频电刺激(high-frequency stimulation,HFS) CA3区时,海马切片在癫痫发作间期放电(inter-ictal discharges,IID)和发作期放电(ictal discharges,ID)的各项参数、癫痫样放电地起始位点、传播方向和传输速率以及各频段的功率谱密度.结果显示:高频电刺激可以有效地降低癫痫发作期的幅值、减少持续时间、增长潜伏时间、抑制癫痫样放电由IID向ID的转变等.提示高频电刺激抑制癫痫的作用机制是通过促进神经元之间的抑制性传输系统,并且抑制海马神经元之间的兴奋性连接,从而达到抑制效果.  相似文献   

15.
We have shown previously that the ADP- ribosylation factor (ARF)-6 GTPase localizes to the plasma membrane and intracellular endosomal compartments. Expression of ARF6 mutants perturbs endosomal trafficking and the morphology of the peripheral membrane system. However, another study on the distribution of ARF6 in subcellular fractions of Chinese hamster ovary (CHO) cells suggested that ARF6 did not localize to endosomes labeled after 10 min of horseradish peroxidase (HRP) uptake, but instead was uniquely localized to the plasma membrane, and that its reported endosomal localization may have been a result of overexpression. Here we demonstrate that at the lowest detectable levels of protein expression by cryoimmunogold electron microscopy, ARF6 localized predominantly to an intracellular compartment at the pericentriolar region of the cell. The ARF6-labeled vesicles were partially accessible to HRP only on prolonged exposure to the endocytic tracer but did not localize to early endocytic structures that labeled with HRP shortly after uptake. Furthermore, we have shown that the ARF6-containing intracellular compartment partially colocalized with transferrin receptors and cellubrevin and morphologically resembled the recycling endocytic compartment previously described in CHO cells. HRP labeling in cells expressing ARF6(Q67L), a GTP-bound mutant of ARF6, was restricted to small peripheral vesicles, whereas the mutant protein was enriched on plasma membrane invaginations. On the other hand, expression of ARF6(T27N), a mutant of ARF6 defective in GDP binding, resulted in an accumulation of perinuclear ARF6-positive vesicles that partially colocalized with HRP on prolonged exposure to the tracer. Taken together, our findings suggest that ARF activation is required for the targeted delivery of ARF6-positive, recycling endosomal vesicles to the plasma membrane.  相似文献   

16.
17.
卡巴胆碱对缺血再灌注大鼠小肠组织髓过氧化物酶的影响   总被引:5,自引:0,他引:5  
研究拟胆碱药卡巴胆碱对大鼠缺血再灌注损伤小肠组织髓过氧化物酶 (MPO)和丙二醛 (MDA)的影响及其与肠损伤相关指标变化的规律。Wistar大鼠被随机分为预防、治疗和对照三组。活杀后取小肠组织测MPO、MDA和肿瘤坏死因子 (TNF-α)含量。结果显示 ,治疗组及预防组MPO活性、MDA和TNF -α含量均明显低于对照组 ,治疗组与预防组之间差异不明显。提示卡巴胆碱可抑制致炎因子TNF -α的释放 ,减少中性粒细胞在肠组织的聚集 ,从而使小肠MPO活性降低  相似文献   

18.
Influence of Fluoxetine on Regional Serotonin Synthesis in the Rat Brain   总被引:2,自引:2,他引:2  
Abstract: The aim of the present study was to test the hypothesis that there should be a difference between the effects of an acute and an 8-day (chronic) administration of fluoxetine (10 mg/kg) on the rate of serotonin [5-hydroxytryptamine (5-HT)] synthesis. The 5-HT synthesis rate was measured in discrete regions of the rat brain using the α-[14C]methyl- l -tryptophan autoradiographic method. The results show that the acute and chronic fluoxetine treatments influence the 5-HT synthesis rate in different ways. A single dose of fluoxetine induced a significant increase in 5-HT synthesis in the visual, auditory, and parietal cortices, substantia nigra, hypothalamus, ventral thalamus, and dorsal hippocampus. In contrast, after a chronic treatment a decrease was observed in the substantia nigra, caudate, and nucleus accumbens, the auditory, parietal, sensorimotor, and frontal cortices, and ventral tegmental area. A significant decrease in the rate of 5-HT synthesis was observed in the dorsal raphe after both the single and chronic treatments. The results suggest that extracellular 5-HT has a delayed influence on the brain 5-HT synthesis rate in structures with serotonergic terminals. The findings from the acute study could be important for patients who have just started receiving fluoxetine treatment, as an increase in the 5-HT synthesis rate might occur in the acute phase of their treatment. In addition, the findings from the chronic treatment study might give us a better understanding of how the brain serotonergic system adapts during a prolonged exposure to extracellular 5-HT.  相似文献   

19.
大鼠烫伤早期(烫伤后30min),肝线粒体质子和电子传递速度均加快,线粒体能化态跨膜电位降低(均以琥珀酸为底物),线粒体膜脂流动性降低。皮下注射去甲肾上腺素后也有上述现象发生。推测急性应激通过儿茶酚胺类作用于肝细胞,导致线粒体内膜有序性增强所致。  相似文献   

20.
全身麻醉若操作不当可能造成致命的中枢神经系统损伤,因此其安全性受到广泛关注.为了揭示麻醉不断加深的过程中神经元活动的变化规律,本文研究了大鼠在乌拉坦(urethane)深度麻醉至脑死亡期间海马区神经元兴奋性和信号传导功能的变化.利用微电极阵列记录和电刺激技术,在海马CA1区胞体层分别记录Schaffer侧支上正向刺激和海马白质上反向刺激诱发的群峰电位(population spike,PS).以PS的幅值和潜伏期为指标,分析海马神经元活动的变化.结果表明,随着乌拉坦血药浓度的增加,PS幅值逐渐减小,潜伏期逐渐延长,意味着乌拉坦抑制了神经元的兴奋性以及轴突传导和突触传递.特别是这些变化存在明显的转折点(即突变),将整个衰减过程分成慢变和快变2个阶段.快变期的剧烈衰减迅速导致脑死亡.而且,引起突变的决定性因素可能是乌拉坦的血药浓度,而非麻醉时间的长短.但是,当乌拉坦注射速率较慢时,延长的慢变期仍然会使神经元功能的受损加重.这些研究结果为动物实验的麻醉操作和临床麻醉的安全应用提供了重要的信息.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号