首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mitochondria contain two Na+/H+ antiporters, one of which transports K+ as well as Na+. The physiological role of this non-selective Na+/H+ (K+/H+) antiporter is to provide mitochondrial volume homeostasis. The properties of this carrier have been well documented in intact mitochondria, and it has been identified as an 82,000-dalton inner membrane protein. The present studies were designed to solubilize and reconstitute this antiporter in order to permit its isolation and molecular characterization. Proteins from mitoplasts made from rat liver mitochondria were extracted with Triton X-100 in the presence of cardiolipin and reconstituted into phospholipid vesicles. The reconstituted proteoliposomes exhibited electroneutral 86Rb+ transport which was reversibly inhibited by Mg2+ and quinine with K0.5 values of approximately 150 and 300 microM, respectively. Incubation of reconstituted vesicles with dicyclohexylcarbodiimide resulted in irreversible inhibition of 86Rb+ uptake into proteoliposomes. Incubation of vesicles with [14C]dicyclohexylcarbodiimide resulted in labeling of an 82,000-dalton protein. These properties, which are also characteristic of the native Na+/H+ (K+/H+) antiporter, lead us to conclude that this mitochondrial carrier has been reconstituted into proteoliposomes with its known native properties intact.  相似文献   

2.
In bovine cardiac sarcolemmal vesicles, an outward H+ gradient stimulated the initial rate of amiloride-sensitive uptake of 22Na+, 42K+, or 86Rb+. Release of H+ from the vesicles was stimulated by extravesicular Na+, K+, Rb+, or Li+ but not by choline or N-methylglucamine. Uptakes of Na+ and Rb+ were half-saturated at 3 mM Na+ and 3 mM Rb+, but the maximal velocity of Na+ uptake was 1.5 times that of Rb+ uptake. Na+ uptake was inhibited by extravesicular K+, Rb+, or Li+, and Rb+ uptake was inhibited by extravesicular Na+ or Li+. Amiloride-sensitive uptake of Na+ or Rb+ increased with increase in extravesicular pH and decrease in intravesicular pH. In the absence of pH gradient, there were stimulations of Na+ uptake by intravesicular Na+ and K+ and of Rb+ uptake by intravesicular Rb+ and Na+. Similarly, there were trans stimulations of Na+ and Rb+ efflux by extravesicular alkali cations. The data suggest the existence of a nonselective antiporter catalyzing either alkali cation/H+ exchange or alkali cation/alkali cation exchange. Since increasing Na+ caused complete inhibition of Rb+/H+ exchange, but saturating K+ caused partial inhibitions of Na+/H+ exchange and Na+/Na+ exchange, the presence of a Na(+)-selective antiporter is also indicated. Although both antiporters may be involved in pH homeostasis, a role of the nonselective antiporter may be in the control of Na+/K+ exchange across the cardiac sarcolemma.  相似文献   

3.
We describe purification of three different states of the 82-kDa K+/H+ antiporter from rat liver mitochondria. The denatured 82-kDa protein, identified by its selective labeling with [14C]dicyclohexylcarbodiimide (DCCD), was purified by preparative two-dimensional gel electrophoresis. This purified product was used to raise and immunopurify monospecific polyclonal antibodies. Western blot analysis showed that the [14C] DCCD-labeled 82-kDa protein is not a DCCD-crosslinked product. The native, [14C]DCCD-labeled, 82-kDa protein was purified by (NH4)2SO4 fractionation and column chromatography, using 14C labeling and gel electrophoresis to track the protein. The native, non-DCCD-labeled 82-kDa protein was purified by similar procedures, using immunopurified antibodies to track the protein. DCCD binding had no effect on chromatographic behavior of the antiporter protein. This protocol resulted in purification of the 82-kDa protein to apparent homogeneity. The purified, native 82-kDa protein was reconstituted into proteoliposomes and assayed for K+ transport with the new fluorescent probe, PBFI. K+ transport was electroneutral and was inhibited by DCCD, Mg2+, and timolol. The turnover number for K+ transport was about 1000 s-1, very similar to the value previously estimated in intact mitochondria.  相似文献   

4.
alpha-Thrombin, a potent mitogen for the hamster fibroblast cell line CCL 39, stimulates by approximately 3-fold 86Rb+ uptake in a mutant lacking the Na+/H+ antiport activity (PS 120). The major component of this stimulated 86Rb+ (K+) uptake is a bumetanide-sensitive flux (IC50 = 0.4 microM), which accounts for 50% of total K+ uptake in Go-arrested cells and is approximately 4-fold stimulated by maximal thrombin concentrations (EC50 = 5 X 10(-4) units/ml). This bumetanide-sensitive 86Rb+ uptake represents a Na+/K+/Cl- cotransport, as indicated by its dependence on extracellular Na+ and Cl- and by the existence in PS 120 cells of a bumetanide-sensitive K+-dependent 22Na+ uptake. The stimulation reaches its maximum within 2 min, is reduced at acidic intracellular pH values (half-maximal at pHi = 6.8), and can also be induced, to a lesser extent, by EGF and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate, the effects of which are nearly additive. In contrast, preincubation with 12-O-tetradecanoylphorbol 13-acetate results in inhibition of thrombin- and EGF-induced stimulations, suggesting that activated protein kinase C might exert a feedback inhibitory control. This study clearly demonstrates that the growth factor-induced activation of the Na+/K+/Cl- cotransport is separated from the activation of the Na+/H+ antiport. However, activation of this cotransporter does not seem to play a major role in the mitogenic signaling pathway since its complete inhibition with bumetanide reduces only by 25-30% reinitiation of DNA synthesis.  相似文献   

5.
Inhibition of K+/H+ antiport by N,N'-dicyclohexylcarbodiimide in Mg2+ depleted mitochondria follows first order kinetics, exhibiting a half-time of 13 min when mitochondria are incubated with 50 nmol/mg inhibitor at 0 degrees C. 14C radiolabeled N,N'-dicyclohexylcarbodiimide binds to the 82,000-dalton protein, and the second order rate constant for binding is found to be approximately the same as the second order rate constant for inhibition. These findings provide additional confirmation of the identification of this porter with the 82,000-dalton protein and permit us to estimate that rat liver mitochondria contain about 8 pmol/mg of K+/H+ antiporter with a turnover number of 700 s-1. The K+/H+ antiporter of rat liver mitochondria is protected from N,N'-dicyclohexylcarbodiimide inhibition and binding by quinine and by endogenous Mg2+. An 82,000-dalton, [14C]N,N'-dicyclohexylcarbodiimide-binding protein is also observed in rat liver submitochondrial particles, establishing this as an integral protein of the inner membrane. Submitochondrial particles, presumed to be inverted in membrane orientation, are protected from radiolabeling by external Mg2+, supporting the contention that the Mg2+ binding site is localized to the matrix side of the K+/H+ antiporter.  相似文献   

6.
Na+/H+ antiporters   总被引:41,自引:0,他引:41  
Na+/H+ antiports or exchange reactions have been found widely, if not ubiquitously, in prokaryotic and eukaryotic membranes. In any given experimental system, the multiplicity of ion conductance pathways and the absence of specific inhibitors complicate efforts to establish that the antiport observed actually results from the activity of a specific secondary porter which catalyzes coupled exchanged of the two ions. Nevertheless, a large body of evidence suggests that at least some prokaryotes possess a delta psi-dependent, mutable Na+/H+ antiporter which catalyzes Na+ extrusion in exchange for H+; in other bacterial species, the antiporter my function electroneutrally, at least at some external pH values. The bacterial Na+/H+ antiporter constitutes a critical limb of Na+ circulation, functioning to maintain a delta mu Na+ for use by Na+-coupled bioenergetic processes. The prokaryotic antiporter is also involved in pH homeostasis in the alkaline pH range. Studies of mutant strains that are deficient in Na+/H+ antiporter activity also indicate the existence of a relationship, e.g., a common subunit or regulatory factor, between the Na+/H+ antiporter and Na+/solute symporters in several bacterial species. In eukaryotes, an electroneutral, amiloride-sensitive Na+/H+ antiport has been found in a wide variety of cell and tissue types. Generally, the normal direction of the antiport appears to be that of Na+ uptake and H+ extrusion. The activity is thus implicated as part of a complex system for Na+ circulation, e.g., in transepithelial transport, and might have some role in acidification in the renal proximal tubule. In many experimental systems, the Na+/H+ antiport appears to influence intracellular pH. In addition to a role in general pH homeostasis, such Na+-dependent changes in intracellular pH could be part of the early events in a variety of differentiating and proliferative systems. Reconstitution and structural studies, as well as detailed analysis of gene loci and products which affect the antiport activity, are in their very early stages. These studies will be important in further clarification of the precise structural nature and role(s) of the Na+/H+ antiporters. In neither prokaryotes nor eukaryotes systems is there yet incontrovertible evidence that a specific protein carrier, that catalyzes Na+/H+ antiport, is actually responsible for any of the multitude of effects attributed to such antiporters. The Na+-H+ exchange might turn out to be side reactions of other porters or the additive effects of several conductance pathways; or, as appears most likely in at least some bacteria and in renal tissue, the antiporter may be a discrete, complex carr  相似文献   

7.
Gastric vesicles enriched in (H+,K+)-ATPase were prepared from hog fundic mucosa and studied for their ability to transport K+ using 86Rb+ as tracer. In the absence of ATP, the vesicles elicited a rapid uptake of 86Rb+ (t 1/2 = 45 +/- 9 s at 30 degrees C) which accounted for both transport and binding. Transport was osmotically sensitive and was the fastest phase. It was not limited by anion permeability (C1- was equivalent to SO2-4) but rather by availability of either H+ or K+ as intravesicular countercation suggesting a Rb+-K+ or a Rb+-H+ exchange. Selectivity was K+ greater than Rb+ greater than Cs+ much greater than Na+,Li+. The capacity of vesicles which catalyzed the fast transport of K+ was 83 +/- 4% of maximal vesicular capacity of the fraction. Addition of ATP decreased both rate and extent of 86Rb+ uptake (by 62 and 43%, respectively with 1 mM ATP) with an apparent Ki of 30 microM. Such an effect was not seen on 22Na+ transport. ATP inhibition of transport did not require the presence of Mg2+, and inhibition was also produced by ADP even in the presence of myokinase inhibitor. On the other hand, 86Rb+ uptake was as strongly inhibited by 200 microM vanadate in the presence of Mg2+. Efflux studies suggested that ATP inhibition was originally due to a decrease of vesicular influx with little or no modification of efflux. Since ATP, ADP, and vanadate are known modulators of the (H+,K+)-ATPase, we propose that, in the absence of ATP, (H+,K+)-ATPase passively exchanges K+ for K+ or H+ and that ATP, ADP, and vanadate regulate this exchange.  相似文献   

8.
It is well accepted that the mitochondrial K+/H+ antiporter is regulated by matrix Mg2+; however, this is not the only factor controlling its activity. The precise conditions used to deplete divalent cations have profound effects on the subsequent activity of the antiporter in a KOAc assay medium. Examination of the proton fluxes during both pretreatment and subsequent assay of K+/H+ antiport reveals that differences in K+/H+ antiport activity correlate very well with differences in matrix pH. Thus, inhibition of the K+/H+ antiporter following depletion of Mg2+ appears to result from inhibition by matrix protons. To test this hypothesis, we have examined the effect of modulating matrix pH in three different ways on the activity of the K+/H+ antiporter: 1) lowering the pH of the K+ pretreatment medium to 6.7 leads to inactivation of the K+/H+ antiporter; 2) adding NH4+ to the assay medium eliminates the lag in activity induced by depleting Mg2+ in a pretreatment medium containing NH4+; 3) permitting mitochondria to respire in a tetraethylammonium(+)-containing pretreatment medium activates the K+/H+ antiporter. Each one of these procedures leads to a change in matrix pH and an effect on K+/H+ antiport which appears to require regulation of the K+/H+ antiporter by matrix protons. This finding is not only physiologically significant but also provides a useful definition of conditions required for unmasking the K+/H+ antiporter in a reproducible manner.  相似文献   

9.
Na+/H+ antiporters play important physiological roles in most biological membranes. Although they were first discovered in mitochondria (Mitchell, P., and Moyle, J. (1969) Eur. J. Biochem. 9, 149-155), the mitochondrial Na+/H+ antiporter has not yet been reconstituted nor has the protein responsible for its activity been identified. We used detergents to extract proteins from beef heart mitochondria and reconstituted these proteins into lipid vesicles loaded with the fluorescent probe, sodium-binding benzofuran isophthalate. The vesicles exhibited spontaneous, electroneutral Na+ transport that was inhibited by Li+ and Mn2+ with appropriate kinetic constants. These protocols were then used to follow fractionation of the solubilized proteins with DEAE-cellulose columns. We obtained a fraction that catalyzed Na+/H+ antiport with Vmax values of 75-120 mumol/mg protein/min, 500-700 times faster than observed in intact mitochondria. Na+ transport was inhibited by Li+ with I50 values of 0.5-1.0 mM and by Mn2+ with I50 value of 0.5 mM. The Km for Na+ was 31 mM. These values correspond to those found in intact mitochondria, and we conclude that the solubilized mitochondrial Na+/H+ antiporter has been partially purified in a reconstitutively active state.  相似文献   

10.
K+/H+ antiport in heart mitochondria   总被引:2,自引:0,他引:2  
Heart mitochondria depleted of endogenous divalent cations by treatment with A23187 and EDTA swell in (a) K+ acetate or (b) K+ nitrate when an uncoupler is present. These mitochondria also exchange matrix 42K+ with external K+, Na+, or Li+ in a reaction that does not require respiration and is insensitive to uncouplers. Untreated control mitochondria do not swell in either medium nor do they show the passive cation exchange. Both the swelling and the exchange reactions are inhibited by Mg2+ and by quinine and other lipophilic amines. Swelling and exchange are both strongly activated at alkaline pH, and the exchange reaction is also increased markedly by hypotonic conditions. All of these properties correspond to those reported for a respiration-dependent extrusion of K+ from Mg2+-depleted mitochondria, a reaction attributed to a latent Mg2+- and H+-sensitive K+/H+ antiport. The swelling reactions are strongly inhibited by dicyclohexylcarbodiimide reacted under hypotonic conditions, but the exchange reaction is not sensitive to this reagent. Heart mitochondria depleted of Mg2+ show marked increases in their permeability to H+, to anions, and possibly to cations, and the permeability to each of these components is further increased at alkaline pH. This generalized increase in membrane permeability makes it likely that K+/H+ antiport is not the only pathway available for K+ movement in these mitochondria. It is concluded that the swelling, 42K+ exchange, and K+ extrusion data are all consistent with the presence of the putative K+/H+ antiport but that definitive evidence for the participation of such a component in these reactions is still lacking.  相似文献   

11.
12.
The fluorescence of internalized fluorescein isothiocyanate dextran has been used to monitor the intravesicular pH of submitochondrial particles (SMP). Respiring SMP maintain a steady-state delta pH (interior acid) that results from the inwardly directed H+ flux of respiration and an opposing passive H+ leak. Addition of K+, Na+, or Li+ to SMP results in a shift to a more alkaline interior pH (pHi) in both respiring and nonrespiring SMP. The K+-dependent change in pHi, like the K+/H+ antiport in intact mitochondria, is inhibited by quinine and by dicyclohexylcarbodiimide. The Na+-dependent reaction is only partially inhibited by these reagents. Both the Na+- and the K+-dependent pH changes are sensitive to amiloride derivatives. The Km for both Na+ and K+ is near 20 mM whereas that for Li+ is closer to 10 mM. The K+/H+ exchange reaction is only slightly inhibited by added Mg2+, but abolished when A23187 is added with Mg2+. The passive exchange is optimal at pHi 6.5 with either Na+ or K+, and cannot be detected above pHi of 7.2. Both the Na+/H+ and the K+/H+ exchange reactions are optimal at an external pH of 7.8 in respiring SMP (pHi 7.1). Valinomycin stimulates the K+-dependent pH change in nonrespiring SMP, as does nigericin. It is concluded that SMP show K+/H+ antiport activity with properties distinct from those of Na+/H+ antiport. However, the properties of the K+/H+ exchange do not correspond in all respects to those of the antiport in intact mitochondria. Donnan equilibria and parallel uniport pathways for H+ and cations appear to contribute to cation-dependent pH changes in SMP.  相似文献   

13.
In our routine screening of chemicals that would inhibit cardiac sarcolemmal Na+/H+ antiporter, we discovered that some of the opioids produced inhibition of cardiac sarcolemmal Na+/H+ antiporter in micromolar concentrations. Using U-50,488H, a selective kappa-opioid agonist, we characterized the nature of interaction between opioids and the Na+/H+ antiporter. The inhibitory effect of U-50,488H on Na+/H+ antiporter was immediate and reversible, and was not mediated through the interaction with the opioid receptors but due to the direct interaction of U-50,488H with the Na+/H+ antiporter. The kinetic data show that in the presence of U-50,488H the Km for Na+ was increased from 2.5 +/- 0.2 to 5.0 +/- 0.3 mM, while the Vmax (52.0 +/- 5.0 nmol.mg-1.min-1) remained the same. These results suggest that U-50,488H and Na+ compete for the same site on the antiporter. When testing the effect of U-50,488H on other transport systems of cardiac sarcolemma, we found that U-50,488H also inhibited Na+/Ca2+ antiporter and Na+/K+ pump but at much higher concentrations suggesting that U-50,488H shows some degree of selectivity for cardiac sarcolemmal Na+/H+ antiporter. When we compared the inhibitory potency of U-50,488H with amiloride and its analog, namely 5-(N,N-hexamethylene)amiloride, we found that U-50,488H (IC50 = 100 +/- 15 microM) was threefold more potent than amiloride (IC50 = 300 +/- 20 microM) but it was three-fold less potent than the amiloride analog (IC50 = 30 +/- 10 microM) in inhibiting cardiac sarcolemmal Na+/H+ antiporter. These results show that although U-50,488H is more potent than amiloride, the inhibitory characteristics of U-50,488H on cardiac sarcolemmal Na+/H+ antiporter are similar to amiloride.  相似文献   

14.
植物Na+/H+逆向转运蛋白研究进展   总被引:26,自引:2,他引:26  
盐胁迫主要由Na 引起,过高的Na 浓度引起的离子毒害,渗透胁迫和K /Na 比率的不平衡使植物新陈代谢异常,这是对大多数器官造成伤害的原因。植物抵御盐胁迫的主要方式是将细胞内过多的Na 从质膜向细胞外排放和将Na 在液泡中区隔化,这一过程是由Na /H 逆向转运蛋白完成的。本文概述了植物中Na /H 逆向转运蛋白的发现、特征、分子生物学方面的研究,以及Na /H 逆向转运蛋白在植物耐盐性中的重要作用。  相似文献   

15.
盐胁迫主要由Na+引起,过高的Na+浓度引起的离子毒害,渗透胁迫和K+/Na+比率的不平衡使植物新陈代谢异常,这是对大多数器官造成伤害的原因。植物抵御盐胁迫的主要方式是将细胞内过多的Na+从质膜向细胞外排放和将Na+在液泡中区隔化,这一过程是由Na+/H+ 逆向转运蛋白完成的。本文概述了植物中Na+/H+ 逆向转运蛋白的发现、特征、分子生物学方面的研究,以及Na+/H+ 逆向转运蛋白在植物耐盐性中的重要作用。  相似文献   

16.
This paper demonstrates and characterizes inactivation by N,N'-dicyclohexylcarbodiimide (DCCD) of Rb+ and Na+ occlusion in pig kidney (Na+,K+)-ATPase. Rb+ and Na+ occlusion dependent on oligomycin are measured with a manual assay. Parallel measurement of phosphorylation (by Pi plus ouabain) and Na+ or Rb+ occlusion lead to stoichiometries of 3 Na+ or 2 Rb+ per pump molecule. Inactivation of cation occlusion by DCCD shows the following features: (a) Rb+ and Na+ occlusion are inactivated with identical rates and (b) DCCD concentration dependence shows first-order kinetics and also proportionality to the ratio of DCCD to protein, (c) Rb+ and Na+ occlusion are equally protected from DCCD, by Rb+ ions with high affinity (or Na+ ions with lower affinity), (d) inactivation is only slightly pH-dependent between 6 and 8.5 but (e) is significantly accelerated by several hydrophobic amines while a water-soluble nucleophile, glycine ethyl ester has no effect, and (f) inactivation is exactly correlated with inactivation of (Na+,K+)-ATPase activity of ATP-dependent Na+/K+ exchange in reconstituted vesicles and with the magnitude of E1Na+----E2(Rb+) conformational transitions measured with fluorescence probes. The simplest hypothesis to explain the results is that DCCD modifies one (or a small number of) critical carboxyl residues in a non-aqueous cation binding domain and so blocks occlusion of 2 Rb+ or 3 Na+ ions. The results suggest further that Na+ and K+(Rb+) bind to the same sites and are transported sequentially on the same trans-membrane segments. A second effect of the DCCD treatment is a 4-8-fold shift of the conformational equilibrium E2(Rb+)----E1Rb+ toward E1Rb+. This is detected by (a) reduction in apparent Rb+ affinity for Rb+ occlusion or Rb+/Rb+ exchange in vesicles and (b) direct demonstration of an increased rate of E2(K+)----E1Na+ and decreased rate of E1Na+----E2(K+). This effect is not protected against by Rb+ ions and probably reflects modification of a second group of residues. Modification of (Na+,K+)-ATPase by carbodiimides is complex. Depending on the nature of the carbodiimide (water- or lipid-soluble), ratio of carbodiimide to protein, and perhaps source of the enzyme, inactivation might result either from modification of critical carboxyls, as suggested by this work, or from internal cross-linking as proposed by Pedemonte, C. H. and Kaplan, J. H. ((1986) J. Biol. Chem. 261, 3632-3639).  相似文献   

17.
Na+/H+ antiport was studied in alkaliphilic Bacillus sp. strain C-125, its alkali-sensitive mutant 38154, and a transformant (pALK2) with recovered alkaliphily. The transformed was able to maintain an intracellular pH (pHin) that was lower than that of external milieu and contained an electrogenic Na+/H+ antiporter driven only by delta psi (membrane potential, interior negative). The activity of this delta psi-dependent Na+/H+ antiporter was highly dependent on pHin, increasing with increasing pHin, and was found only in cells grown at alkaline pH. On the other hand, the alkali-sensitive mutant, which had lost the ability to grow above pH 9.5, lacked the delta psi-dependent Na+/H+ antiporter and showed defective regulation of pHin at the alkaline pH range. However, this mutant, like the parent strain, still required sodium ions for growth and for an amino acid transport system. Moreover, another Na+/H+ antiporter, driven by the imposed delta pH (pHin > extracellular pHout), was active in this mutant strain, showing that the previously reported delta pH-dependent antiport activity is probably separate from delta psi-dependent antiporter activity. The delta pH-dependent Na+/H+ antiporter was found in cells grown at either pH 7 or pH 9. This latter antiporter was reconstituted into liposomes by using a dilution method. When a transmembrane pH gradient was applied, downhill sodium efflux was accelerated, showing that the antiporter can be reconstituted into liposomes and still retain its activity.  相似文献   

18.
A mutant of Escherichia coli with defective Na+/H+ antiporter was isolated. The rationale for its isolation was that cells possessing defective Na+/H+ antiporter, which is essential for establishment of a Na+ gradient, could not grow with a carbon source that was taken up with Na+. The mutant had no appreciable Na+/H+ antiporter activity, but its K+/H+ antiporter and Ca2+/H+ antiporter activities were normal. Judging from the reversion frequency, the defect seems to be due to a single mutation. The mutant could not grow at alkaline pH. Therefore, the Na+/H+ antiporter, but not the K+/H+ antiporter or the Ca2+/H+ antiporter, seems to be responsible for pH regulation in alkaline medium. This mutant will be useful for cloning the Na+/H+ antiporter gene and for detection of Na+-substrate cotransport systems.  相似文献   

19.
Studies on K+ permeability of rat gastric microsomes   总被引:2,自引:0,他引:2  
A population of gastric membrane vesicles of high K+ permeability and of lower density than endoplasmic tubulovesicles containing (H+-K+)-ATPase was detected in gastric mucosal microsomes from the rat fasted overnight. The K+-transport activity as measured with 86RbCl uptake had a Km for Rb+ of 0.58 +/- 0.11 mM and a Vmax of 13.7 +/- 1.9 nmol/min X mg of protein. The 86Rb uptake was reduced by 40% upon substituting Cl- with SO2-4 and inhibited noncompetitively by ATP and vanadate with a Ki of 3 and 30 microM, respectively; vanadate also inhibited rat gastric (H+-K+)-ATPase but with a Ki of 0.03 microM. Carbachol or histamine stimulation decreased the population of the K+-permeable light membrane vesicles, at the same time increased K+-transport activity in the heavy, presumably apical membranes of gastric parietal cells, and enabled the heavy microsomes to accumulate H+ ions in the presence of ATP and KCl without valinomycin. The secretagogue-induced shift of K+ permeability was blocked by cimetidine, a H2-receptor antagonist. Four characteristics of the K+ permeability as measured with 86RbCl were common in the resting light and the carbachol-stimulated heavy microsomes; (a) Km for +Rb, (b) anion sensitivity (Cl- greater than SO2-4), (c) potency of various divalent cations (Hg2+, Cu2+, Cd2+, and Zn2+) to inhibit Rb+ uptake, and (d) inhibitory effect of ATP, although the nucleotide sensitivity was latent in the stimulated heavy microsomes. The Vmax for 86RbCl uptake was about 10 times greater in the resting light than the stimulated heavy microsomes. These observations led us to propose that secretagogue stimulation induces the insertion of not only the tubulovesicles containing (H+-K+)-ATPase, but also the light membrane vesicles containing KCl transporter into the heavy apical membranes of gastric parietal cells.  相似文献   

20.
The mitochondrial Na+/Ca2+ antiporter plays a key role in the physiological regulation of intramitochondrial Ca2+, which in turn attunes mitochondrial enzymes to the changing demands of the cell for ATP. We have now purified the Na+/Ca2+ antiporter from beef heart mitochondria by assaying detergent-solubilized chromatography fractions for reconstitutive activity. Na+ and Ca2+ transport were assayed using the fluorescent probes, sodium-binding benzofuran isophthalate and Fura-2, respectively. This approach enabled us to identify Na+/Ca2+ exchange activity with a 110-kDa inner membrane protein that catalyzed Na(+)-dependent Ca2+ transport and Ca(2+)-dependent Na+ transport. A new finding was that the Na+/Ca2+ antiporter also catalyzed Na+/Li+ exchange in the absence of Ca2+. All modes of transport were electroneutral and were inhibited by diltiazem and tetraphenylphosphonium cation. Monospecific polyclonal antibodies to the 110-kDa protein inhibited Na+/Ca2+ and Na+/Li+ exchange in the reconstituted system and recognized 110-kDa proteins in mitochondrial membranes isolated from rat heart, liver, and kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号