首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The fundic mucosa of resting and acid-secreting rabbit stomachs were freeze-fractured and replicated to compare the intramembranous particles on the parietal cell tubulovesicles (rest) and canaliculus (secretion). The particles were counted and their shadow diameters were measured using an image analysis program. The tubulovesicles bore 9,726 +/- 400 particles per microns2 (mean +/- SD), having a mean diameter of 8.4 nm (n = 2,571). The canaliculus bore 8,369 +/- 430 particles per microns2, having a mean diameter of 7.7 nm (n = 3,259). The data were reproducible: three fractures of tubulovesicles and canaliculus gave essentially the same distributions of particle diameters. By contrast, the frequency distributions of tubulovesicle and of canaliculus particle diameters were significantly different (P less than 0.0005). Neither the opposite curvatures of tubulovesicle and canaliculus microvillus fractures nor subpopulations of tubulovesicles with different particle diameters, were the cause of the difference, since there was only one population of tubulovesicles. We therefore postulate that the diameters of intramembranous particles of tubulovesicles and canaliculus are different and suggest, as a working hypothesis, that the difference could be due to a conformational change of the major intramembranous protein, the (H+,K+)-ATPase.  相似文献   

2.
Gastric mucosal homogenates from hog were fractionated by differential and density gradient centrifugation and free-flow electrophoresis. The two major membrane fractions (FI and FII) thus obtained are distinct both enzymically and in terms of transport reactivity. This heterogenicity extends to their antigenic activity. Purified antibodies which were raised against the K+-ATPase-containing H+ transport fraction FI were of two types: inhibitory and non-inhibitory. Inhibitory antibodies reduced the K+-ATPase activity by approximately 80% and the K+-p-nitro-phenylphosphatase activity by approximately 40% in a concentration-dependent manner, while the small Mg++-dependent component of the enzyme activity was unaffected. Antibodies inhibiting the K+-ATPase also inhibited H+ transport. These antibodies did not cross-react with the other major membrane fraction isolated by free- flow electrophoresis, FII, and gave a single band on rocket immunoelectrophoresis. Antibodies against this FII fraction also did not react with the K+-ATPase and were heterogeneous, giving at least four bands with rocket immunoelectrophoresis and inhibiting both the 5'- nucleotidase and Mg++-ATPase of this fraction. Immunofluorescent staining of tissue sections showed that the FI was derived from the parietal cell of gastric tissue and was localized to the supranuclear area of the cell. Staining of isolated rat gastric cell suspensions by FI antibodies confirmed the selectivity of the antibody and showed a polar, plasma membrane localization. FII antibodies also largely stained the parietal cells in tissue sections. In the 16 hog tissues tested, FI antibodies cross-reacted only with gastric fundus, thyroid and weakly with thymus. Immunoelectronmicroscopy showed that FI antibodies reacted strongly with the secretory membrane at the apical cell surface of the parietal cells and at the secretory canaliculi, weakly with the apical surface of the zymogen cell, and not with the basal-lateral surface of the cells. Thus, the protontranslocating ATPase is localized in the parietal cells and in the region postulated to be the site of acid secretion.  相似文献   

3.
Solubilization of active (H+ + K+)-ATPase from gastric membrane   总被引:2,自引:0,他引:2  
(H+ + K+)-ATPase-enriched membranes were prepared from hog gastric mucosa by sucrose gradient centrifugation. These membranes contained Mg2+-ATPase and p-nitrophenylphosphatase activities (68 +/- 9 mumol Pi and 2.9 +/- 0.6 mumol p-nitrophenol/mg protein per h) which were insensitive to ouabain and markedly stimulated by 20 mM KCl (respectively, 2.2- and 14.8-fold). Furthermore, the membranes autophosphorylated in the absence of K+ (up to 0.69 +/- 0.09 nmol Pi incorporated/mg protein) and dephosphorylated by 85% in the presence of this ion. Membrane proteins were extracted by 1-2% (w/v) n-octylglucoside into a soluble form, i.e., which did not sediment in a 100 000 X g X 1 h centrifugation. This soluble form precipitated upon further dilution in detergent-free buffer. Extracted ATPase represented 32% (soluble form) and 68% (precipitated) of native enzyme and it displayed the same characteristic properties in terms of K+-stimulated ATPase and p-nitrophenylphosphatase activities and K+-sensitive phosphorylation: Mg2+-ATPase (mumol Pi/mg protein per h) 32 +/- 9 (basal) and 86 +/- 20 (K+-stimulated); Mg2+-p-nitrophenylphosphatase (mumol p-nitrophenol/mg protein per h) 2.6 +/- 0.5 (basal) and 22.2 +/- 3.2 (K+-stimulated); Mg2+-phosphorylation (nmol Pi/mg protein) 0.214 +/- 0.041 (basal) and 0.057 +/- 0.004 (in the presence of K+). In glycerol gradient centrifugation, extracted enzyme equilibrated as a single peak corresponding to an apparent 390 000 molecular weight. These findings provide the first evidence for the solubilization of (H+ + K+)-ATPase in a still active structure.  相似文献   

4.
Gastric (H+ + K+)-ATPase was reconstituted into artificial phosphatidylcholine/cholesterol liposomes by means of a freeze-thaw-sonication technique. Upon addition of MgATP, active H+ transport was observed, with a maximal rate of 2.1 mumol X mg-1 X min-1, requiring the presence of 100 mM K+ at the intravesicular site. However, in the absence of ATP an H+-K+ exchange with a maximal rate of 0.12 mumol X mg-1 X min-1 was measured, which could be inhibited by the well-known ATPase inhibitors vanadate and omeprazole, giving the first evidence of a passive K+-H+ exchange function of gastric (H+ + K+)-ATPase. An Na+-H+ exchange activity was also measured, which was fully inhibited by 1 mM amiloride. Simultaneous reconstitution of Na+/H+ antiport and (H+ + K+)-ATPase could explain why reconstituted ATPase appeared less cation-specific than the native enzyme (Rabon, E.C., Gunther, R.B., Soumarmon, A., Bassilian, B., Lewin, M.J.M. and Sachs, G. (1985) J. Biol. Chem. 260, 10200-10212).  相似文献   

5.
(H+ + K+)-ATPase-enriched membranes from hog stomachs were tested for their capacity to autophosphorylate using [gamma-32P]ATP or [gamma-35S]ATP[S] as phosphate donors. The radioactive polypeptides were characterized by SDS-PAGE. In the presence of Mg2+ and 5 microM [gamma-32P]ATP, rapid and transient incorporation of 32P occurred at 0 degrees C. Radioactivity was essentially found in the major polypeptide of the material, the 95 kDa subunit of (H+ + K+)-ATPase. Under the same experimental conditions, thiophosphorylation was slower and reached a plateau within 1 h. Incorporation levels were higher with manganese than with magnesium. After one hour at 0 degrees C, and in the presence of 10 mM manganese and 5 microM ATP[S], 0.58 +/- 0.06 nmoles of thiophosphate were incorporated per mg of protein. Twenty seven percent of the thiophosphorylated amino acids were acylphosphates i.e. likely to be the ATPase thiophosphointermediate. The remaining thiophosphorylated amino acids (73%) were thought to be produced by protein kinases. This was supported by the autoradiographies of membrane SDS-PAGE which indicated that, in addition to the 95 kDa ATPase subunit, other polypeptides were thiophosphorylated especially at 108, 58, 47, 45 and 36-40 kDa. A previous study had provided strong evidence that chloride transport in gastric microsomes, is modulated by a protein kinase-dependent phosphorylation (Soumarmon, A., Abastado, M., Bonfils, S. and Lewin M.J.M. (1980) J. Biol. Chem. 255, 11682-11687). In the present work, we demonstrate that the peptidic inhibitor of cAMP-dependent protein kinases decreased thiophosphorylation of a 45 kDa polypeptide. We suggest that this polypeptide could be regarded as a candidate for the role of chloride transporter or chloride transport regulator.  相似文献   

6.
Membrane-bound (H+ + K+)-ATPase purified from hog gastric mucosa was exposed to limited papain digestion. Such treatment resulted in a rapid inhibition of the K+-stimulated adenosine triphosphatase and p-nitrophenyl phosphatase activities, with about 90% of these activities lost after 3 min incubation at 37 degrees C with 0.1 units of papain per mg of enzyme protein. Parallel to the inhibition of the enzyme activities, there was a production of a 77 kDa membrane-bound fragment containing the aspartyl phosphate residue of the phospho-intermediate. This fragment accounted for about 45% of the total enzyme protein after the 3 min papain treatment. The digestion barely affected the steady-state level of phosphorylation, allowed the aspartyl phosphate of the 77 kDa fragment to undergo the transition to the E2P form, and did not significantly alter the fraction of ADP-sensitive phosphoenzyme. The presence of KCl, however, depressed the steady-state level of phosphoenzyme formed from [gamma-32P]ATP considerably less than that of the control enzyme. With further exposure to papain the 77 kDa peptide became fragmented into a 28 kDa soluble peptide that retained the phosphorylating site. Binding of fluorescein 5'-isothiocyanate (FITC) to the native enzyme did not affect the sites of papain hydrolysis because the same peptide fragments were obtained. The FITC reaction site was also in the 28 kDa soluble peptide fragment.  相似文献   

7.
The catalytic cycle of gastric (H+ + K+)-ATPase   总被引:5,自引:0,他引:5  
  相似文献   

8.
The effect of trypsin on gastric (H+ + K+)-ATPase and K+-phosphatase was studied. Loss of both enzymic activities was biphasic, consisting of a fast and slow phase. Several peptides were produced from the original 105,000-dalton region of the sodium dodecyl sulfate electrophoretic separation, but only two, 87,000 and 47,000 daltons, were labeled following incubation with [gamma-33P]ATP. After a 30-min hydrolysis, 35% of the original peptide remained unaltered and appeared to be a glycoprotein. ATP and ADP abolished the second phase of tryptic inactivation of both activities and only two peptides, of 78,000 and 30,000 daltons, were found on the acrylamide gel in addition to the original 105,000-dalton region, neither of which was labeled by [gamma-33P]ATP. The protection was specific for these nucleotides, AMP, beta, gamma-methylene ATP, TTP, and pNPP being ineffective. Na+ and K+ at high concentrations reduced the rate of loss of activity but no change in the peptides produced was found. The level of phosphoenzyme was increased 2-fold by trypsin treatment, whereas the quantity of K+-sensitive phosphoenzyme remained relatively constant. Thus, the 105,000-dalton region is heterogeneous, consisting of a catalytic subunit (the active site is on a 47,000-dalton fragment), a glycoprotein, and another 105,000-dalton peptide. The action of trypsin is initially to prevent interconversion of a K+-insensitive to a K+-sensitive form of the phosphoenzyme, thus inhibiting hydrolysis.  相似文献   

9.
The ATP/ADP exchange is shown to be a partial reaction of the (H+ +K+)-ATPase by the absence of measurable nucleoside diphosphokinase activity and the insensitivity of the reaction to P1, P5-di(adenosine-5') pentaphosphate, a myokinase inhibitor. The exchange demonstrates an absolute requirement for Mg2+ and is optimal at an ADP/ATP ratio of 2. The high ATP concentration (K0.5=116 microM) required for maximal exchange is interpreted as evidence for the involvement of a low affinity form of nucleotide site. The ATP/ADP exchange is regarded as evidence for an ADP-sensitive form of the phosphoenzyme. In native enzyme, pre-steady state kinetics show that the formation of the phosphoenzyme is partially sensitive to ADP while modification of the enzyme by pretreatment with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the absence of Mg2+ results in a steady-state phosphoenzyme population, a component of which is ADP sensitive. The ATP/ADP exchange reaction can be either stimulated or inhibited by the presence of K+ as a function of pH and Mg2+.  相似文献   

10.
Modification of gastric (H+ + K+)-ATPase with pyridoxal 5'-phosphate   总被引:2,自引:0,他引:2  
Pig gastric membrane vesicles enriched in (H+ + K+)-ATPase were covalently modified with pyridoxal 5'-phosphate (PLP). The modification resulted in inhibition of K+-dependent ATP hydrolysis, formation of phosphoenzyme and ATP-driven H+-uptake catalyzed by (H+ + K+)-ATPase. ATP, ADP, and adenyl-5'-yl imidodiphosphate were protective ligands, whereas Mg2+ and K+ were not. Specific PLP-binding of about 4.5 nmol/mg membrane protein was necessary for complete inhibition of the enzyme activity, indicating that the stoichiometry of PLP-binding to the enzyme was about 1:1. Limited proteolysis of the enzyme modified with [3H]PLP by trypsin suggests that PLP specifically modifies the lysine residue located in the 16-kDa fragment of the enzyme cleaved by trypsin. These results suggested that PLP binds to a specific lysine residue in the nucleotide-binding site or a region in its vicinity and inhibits the substrate binding or phosphorylation step of (H+ + K+)-ATPase.  相似文献   

11.
cDNA cloning and sequence determination of pig gastric (H+ + K+)-ATPase   总被引:4,自引:0,他引:4  
Complementary DNA to pig gastric mRNA encoding (H+ + K+)-ATPase was cloned, and its amino acid sequence was deduced from the nucleotide sequence. The enzyme contained 1034 amino acid residues (Mr. 114,285) including the initiation methionine. The sequence of pig (H+ + K+)-ATPase was highly homologous with that of the corresponding enzyme from rat, but had high degree of synonymous codon changes. Potential sites of phosphorylation by cAMP-dependent protein kinase and N-linked glycosylation sites were identified. The amino terminal region contained a lysine-rich sequence similar to that of the alpha subunit of (Na+ + K+)-ATPase, although a cluster of glycine residues was inserted into the sequence of the (H+ + K+)-ATPase. As the pig enzyme is advantageous for biochemical studies, the information of the primary structure is useful for further detailed studies.  相似文献   

12.
The influence of H+ and K+ on the partial reactions and transport of gastric (H+ + K+)-ATPase was studied. Using transient kinetics, the effects and sidedness of effects of H+ and K+ on formation and breakdown of phosphoenzyme were determined in intact and lyophilized reconstituted vesicles in the absence and presence of gramicidin. Whereas increasing H+ concentrations on the ATP-binding face of the vesicles accelerates phosphorylation, increasing K+ concentrations inhibits phosphorylation. Increasing H+ on this side reduces K+ inhibition of the phosphorylation rate. At low ATP/K+ ratios, the phosphorylation step can become rate-limiting for steady state hydrolysis. Decreasing H+ accelerates dephosphorylation in the absence of K+. K+ on the internal or luminal face of the vesicles accelerates dephosphorylation, and this rate is reduced with increasing H+ concentrations. At low internal pH, K+-dependent dephosphorylation may become rate-limiting. H+ transport measurements using fluorescence quenching of acridine orange show that whereas internal K+ is required for H+ transport, external K+ inhibits the rate of formation of a pH gradient, and the inhibition is reduced by decreasing medium pH. The pH optimum for ATPase activity and transport correlated in the vesicles, and the K0.5 of K+ for transport correlated with data for intact parietal cells.  相似文献   

13.
This report describes the partial purification and the characteristics of (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) from an amphibian source. Toad kidney microsomes were solubilized with sodium deoxycholate and further purified by sodium dodecyl sulphate treatment and sucrose gradient centrifugation, according to the methods described by Lane et al. [(1973) J. Biol. Chem. 248, 7197--7200], J?rgensen [(1974) Biochim. Biophys. Acta 356, 36--52] and Hayashi et al. [(1977) Biochim. Biophys. Acta 482, 185--196]. (Na+ + K+)-ATPase preparations with specific activities up to 1000 mumol Pi/mg protein per h were obtained. Mg2+-ATPase only accounted for about 2% of the total ATPase activity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed three major protein bands with molecular weights of 116 000, 62 000 and 26 000. The 116 000 dalton protein was phosphorylated by [gamma-32P]ATP in the presence of sodium but not in the presence of potassium. The 62 000 dalton component stained for glycoproteins. The Km for ATP was 0.40 mM, for Na+ 12.29 mM and for K+ 1.14 mM. The Ki for ouabain was 35 micron. Temperature activation curves showed two activity peaks at 37 degrees C and at 50 degrees C. The break in the Arrhenius plot of activity versus temperature appeared at 15 degrees C.  相似文献   

14.
Ion transporters play a central role in gastric acid secretion. To determine whether some of these transporters are necessary for the normal ultrastructure of secretory membranes in gastric parietal cells, mice lacking transporters for H+, K+, Cl-, and Na+ were examined for alterations in volume density (Vd) of basolateral, apical, tubulovesicular and canalicular membranes, microvillar dimensions, membrane flexibility, and ultrastructure. In mice lacking Na+/H+ exchanger 1 (NHE1) or the Na+-K+-2Cl- cotransporter (NKCC1), the ultrastructure and Vd of secretory membranes and the secretory canalicular to tubulovesicular membrane ratio (SC/TV), a morphological correlate of secretory activity, were similar to those of wild-type mice. In mice lacking Na+/H+ exchanger 2 (NHE2) or gastric H+, K+ -ATPase alpha- or beta-subunits, the SC/TV ratio and Vd of secretory membranes were decreased, though canaliculi were often dilated. In H+, K+ -ATPase-deficient parietal cells, canalicular folds were decreased, normally abundant tubulovesicles were replaced with a few rigid round vesicles, and microvilli were sparse, stiff and short, in contrast to the long and flexible microvilli in wild-type cells. In addition, microvilli of the H+, K+ -ATPase-deficient parietal cells had centrally bundled F-actin filaments, unlike the microvilli of wild-type cells, in which actin filaments were peripherally positioned concentric to the plasmalemma. Data showed that the absence of H+, K+ -ATPase produced fundamental changes in parietal cell membrane ultrastructure, suggesting that the pump provides an essential link between the membranes and F-actin, critical to the gross architecture and suppleness of the secretory membranes.  相似文献   

15.
K+- and ATP-dependent H+-accumulation in rat heavy gastric membrane vesicles enriched with (H+-K+)-ATPase was markedly stimulated by amphiphiles like lysophosphatidylcholine and Zwittergent 3-14 at concentrations of 10(-5) M. Their stimulatory effect was dependent on K+-concentration in the medium and was abolished by SCH 28,080, a specific inhibitor of (H+-K+)-ATPase. Lysophosphatidylcholine at the optimal dose (3 X 10(-5) M) showed dual effects on K+-dependent membrane functions; it stimulated the rate of K+-uptake by nearly 60%, but partially inhibited SCH 28,080-sensitive and K+-dependent ATP-hydrolysis (about 20% reduction). These data indicate that H+-pumping through (H+-K+)-ATPase in the inside-out gastric membrane vesicles was facilitated by the stimulatory effect of lysophosphatidylcholine on membrane K+-transport in spite of its partial inhibition of ATP-hydrolysis. It appears that the rate limiting step for operation of the ATPase is the availability of K+ ions in the luminal side of the pump. We propose that ionic amphiphiles may modulate K+-transport in rat heavy gastric membranes through specific interactions with the putative K+-transporter.  相似文献   

16.
A photoaffinity label for the lumenal K+ site of the gastric (H+ + K+)-ATPase has been identified. Seven azido derivatives based upon the reversible K+ site inhibitor SCH 28080 were studied, one of which, m-ATIP (8-(3-azidophenylmethoxy)-1,2,3-trimethylimidazo[1,2-a] pyridinium iodide), was subsequently synthesized in radiolabeled form. In the absence of UV irradiation, m-ATIP inhibited K+ -stimulated ATPase activity in lyophilized gastric vesicles competitively with respect to K+, with a Ki value of 2.4 microM at pH 7.0. Irradiation of lyophilized gastric vesicles at pH 7.0 with [14C]m-ATIP in the presence of 0.2 mM ATP resulted in a time-dependent inactivation of ATPase activity that was associated with an incorporation of radioactivity into a 100-kDa polypeptide representing the catalytic subunit of the (H+ + K+)-ATPase. Both inactivation and incorporation were blocked in the presence of 10 mM KCl but not with 10 mM NaCl, consistent with interaction at the K+ site. The level of incorporation required to produce complete inhibition of ATPase activity was 1.9 +/- 0.2 times the number of catalytic phosphorylation sites in the same preparation. Tryptic digestion of gastric vesicle membranes, labeled with [14C]m-ATIP, failed to release the radioactivity from the membranes suggesting that the site of interaction was close to or within the membrane-spanning sections of this ion pump.  相似文献   

17.
Omeprazole was found to inhibit the K+-stimulated ATPase activity of the gastric (H+ + K+)-ATPase in parallel with the K+-stimulated p-nitrophenylphosphatase activity and the phosphoenzyme formation. The degree of inhibition of ATPase activity was directly correlated to the amount inhibitor bound to the enzyme preparation down to about 15% of the control enzyme activity. The acid-decomposed form of omeprazole, i.e. the inhibitory form, was found to react with and bind to sulfhydryl groups within the (H+ + K+)-ATPase preparation with close to a 1:1 stoichiometry. beta-Mercaptoethanol, when added beforehand and in a 10-fold excess of omeprazole, completely prevented binding of the inhibitor and its inhibition of the enzyme. In the presence of beta-mercaptoethanol two different reaction products could be detected in addition to omeprazole; the reduced form of omeprazole (H 168/22), and a product formed between beta-mercaptoethanol and a decomposition product, generated from omeprazole. Under those conditions neither inhibition nor binding was obtained, indicating that none of these three compounds was the inhibitor. Rather, the compound generated from omeprazole and reacting rapidly with either beta-mercaptoethanol or the -SH groups of the enzyme was the likely inhibitor compound. In order to reverse already established inhibition higher concentrations of beta-mercaptoethanol were needed than for protection indicating two different reaction pathways for protection and reversal by beta-mercaptoethanol. The reversal reaction was explained by a two-step reaction; in the first step the bound inhibitor was exchanged for a beta-mercaptoethanol molecule resulting in formation of compound H 168/22 and a mixed disulfide between the enzyme and beta-mercaptoethanol. In the second step, attack of another beta-mercaptoethanol molecule results in liberation of active enzyme and generation of the disulfide form of beta-mercaptoethanol. This hypothesis was substantiated by the fact that when 1 mM beta-mercaptoethanol was added to inhibited enzyme the radiolabel was partially displaced, without any change in the concentration of modified -SH groups.  相似文献   

18.
Arachidonic acid and unsaturated C18 fatty acids at concentrations near 10(-5) M markedly inhibited (H+ + K+)-ATPase in hog or rat gastric membranes. Arachidonic acid was a more potent inhibitor than unsaturated C18 fatty acids, but the involvement of the metabolites of arachidonic acid cascade was ruled out. Linolenic acid inhibited the formation of phosphoenzyme and the K+ -dependent p-nitrophenylphosphatase activity of the hog ATPase. Treatment with fatty acid-free bovine serum albumin abolished only the inhibitory effect of the fatty acid on the phosphatase activity without restoring the overall ATPase action. These data suggest the existence of at least two groups of hydrophobic binding sites in the gastric ATPase for unsaturated long-chain fatty acids which affect differentially the catalytic reactions of the ATPase. (H+ + K+)-ATPase in rat gastric membranes was found more susceptible to the fatty acid inhibition and also more unstable than the ATPase in hog gastric membranes. The presence of a millimolar level of lanthanum chloride or ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid stabilized the rat ATPase probably via the inhibition of Ca2+ -dependent phospholipases in the gastric membranes.  相似文献   

19.
We have previously shown that an active (H+ + K+)-ATPase can be extracted from gastric apical membranes using n-octylglucoside (Soumarmon, A., Grelac, F. and Lewin, M.J.M. (1983) Biochim. Biophys. Acta 732, 579-585). This extract contained an holomeric enzyme of 390-420 kDa and contained 68% of the K+-stimulated ATPase specific activity originally present. We demonstrate here that inactivation, induced during a more classically designed protocol, is associated with the appearance of smaller, polymorphic structures with molecular mass of 330-360 and 240-250 kDa estimated using molecular sieve chromatography and glycerol gradients. This suggests that (H+ + K+)-ATPase solubilization by n-octylglucoside is a complex process involving first extraction of the enzyme as an active polymer, with subsequent depolymerication and inactivation of this polymer. Depolymerization was specifically studied by treating the large holomeric n-octylglucoside-extracted (H+ + K+)-ATPase with increasing concentrations of either n-octylglucoside or cholate. Detergent-induced changes were characterized by centrifugation on glycerol gradients. Progressive displacement of ATPase activity into three different peaks at 32%, 26% and 20% glycerol was found with increasing detergent concentrations. n-Octylglucoside inhibited enzyme activities and was more deleterious for phosphatase than for ATPase activity. Moreover, it induced the dissociation of phosphatase and ATPase distribution profiles. At concentrations of 0.2 to 1.15%, cholate induced the displacement of the glycerol gradient profiles but no loss of activities and no dissociation of phosphatase and ATPase profiles. Higher concentrations of this detergent (2.5%) also inactivated the ATPase concomitantly with the appearance of a protein peak with no related activity at 16-18% glycerol. From this study we suggest that solubilization of gastric (H+ + K+)-ATPase can be achieved through the extraction of a polymer by n-octylglucoside and through subsequent depolymerization using cholate. We suggest that the different sizes correspond to monomers, dimers, trimers and perhaps tetramers. The monomers were apparently inactive under present test conditions.  相似文献   

20.
Gastric vesicles enriched in (H+,K+)-ATPase were prepared from hog fundic mucosa and studied for their ability to transport K+ using 86Rb+ as tracer. In the absence of ATP, the vesicles elicited a rapid uptake of 86Rb+ (t 1/2 = 45 +/- 9 s at 30 degrees C) which accounted for both transport and binding. Transport was osmotically sensitive and was the fastest phase. It was not limited by anion permeability (C1- was equivalent to SO2-4) but rather by availability of either H+ or K+ as intravesicular countercation suggesting a Rb+-K+ or a Rb+-H+ exchange. Selectivity was K+ greater than Rb+ greater than Cs+ much greater than Na+,Li+. The capacity of vesicles which catalyzed the fast transport of K+ was 83 +/- 4% of maximal vesicular capacity of the fraction. Addition of ATP decreased both rate and extent of 86Rb+ uptake (by 62 and 43%, respectively with 1 mM ATP) with an apparent Ki of 30 microM. Such an effect was not seen on 22Na+ transport. ATP inhibition of transport did not require the presence of Mg2+, and inhibition was also produced by ADP even in the presence of myokinase inhibitor. On the other hand, 86Rb+ uptake was as strongly inhibited by 200 microM vanadate in the presence of Mg2+. Efflux studies suggested that ATP inhibition was originally due to a decrease of vesicular influx with little or no modification of efflux. Since ATP, ADP, and vanadate are known modulators of the (H+,K+)-ATPase, we propose that, in the absence of ATP, (H+,K+)-ATPase passively exchanges K+ for K+ or H+ and that ATP, ADP, and vanadate regulate this exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号