首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tonic inhibition plays a crucial role in regulating neuronal excitability because it sets the threshold for action potential generation and integrates excitatory signals. Tonic currents are known to be largely mediated by extrasynaptic gamma-aminobutyric acid type A (GABA(A)) receptors that are persistently activated by submicromolar concentrations of ambient GABA. We recently reported that, in cultured hippocampal neurons, the clustering of synaptic GABA(A) receptors significantly affects synaptic transmission. In this work, we demonstrated that the clustering of extrasynaptic GABA(A) receptors modulated tonic inhibition. Depolymerization of the cytoskeleton with nocodazole promoted the disassembly of extrasynaptic clusters of delta and gamma(2) subunit-containing GABA(A) receptors. This effect was associated with a reduction in the amplitude of tonic currents and diminished shunting inhibition. Moreover, diffuse GABA(A) receptors were less sensitive to the GAT-1 inhibitor NO-711 and to flurazepam. Quantitative analysis of GABA-evoked currents after prolonged exposure to submicromolar concentrations of GABA and model simulations suggest that clustering affects the gating properties of extrasynaptic GABA(A) receptors. In particular, a larger occupancy of the singly and doubly bound desensitized states can account for the modulation of tonic inhibition recorded after nocodazole treatment. Moreover, comparison of tonic currents recorded during spontaneous activity and those elicited by exogenously applied low agonist concentrations allows estimation of the concentration of ambient GABA. In conclusion, receptor clustering appears to be an additional regulating factor for tonic inhibition.  相似文献   

2.
Brain microdialysis has become a frequently used method to study the extracellular concentrations of neurotransmitters in specific areas of the brain. For years, and this is still the case today, dialysate concentrations and hence extracellular concentrations of neurotransmitters have been interpreted as a direct index of the neuronal release of these specific neurotransmitter systems. Although this seems to be the case for neurotransmitters such as dopamine, serotonin and acetylcholine, the extracellular concentrations of glutamate and GABA do not provide a reliable index of their synaptic exocytotic release. However, many microdialysis studies show changes in extracellular concentrations of glutamate and GABA under specific pharmacological and behavioural stimuli that could be interpreted as a consequence of the activation of specific neurochemical circuits. Despite this, we still do not know the origin and physiological significance of these changes of glutamate and GABA in the extracellular space. Here we propose that the changes in dialysate concentrations of these two neurotransmitters found under specific treatments could be an expression of the activity of the neurone-astrocyte unit in specific circuits of the brain. It is further proposed that dialysate changes of glutamate and GABA could be used as an index of volume transmission mediated actions of these two neurotransmitters in the brain. This hypothesis is based firstly on the assumption that the activity of neurones is functionally linked to the activity of astrocytes, which can release glutamate and GABA to the extracellular space; secondly, on the existence of extrasynaptic glutamate and GABA receptors with functional properties different from those of GABA receptors located at the synapse; and thirdly, on the experimental evidence reporting specific electrophysiological and neurochemical effects of glutamate and GABA when their levels are increased in the extracellular space. According to this concept, glutamate and GABA, once released into the extracellular compartment, could diffuse and have long-lasting effects modulating glutamatergic and/or GABAergic neurone-astrocytic networks and their interactions with other neurotransmitter neurone networks in the same areas of the brain.  相似文献   

3.
Glial cells of the central nervous system express receptors for the main inhibitory and excitatory neurotransmitters, GABA and glutamate. The glial GABA and glutamate receptors share many properties with the neuronal GABAA and kainate/quisqualate receptors, but are molecularly and, in some aspects, pharmacologically distinct from their neuronal counterparts. The functional role of these receptors is as yet speculative: They have been proposed to control proliferation of astrocytes, serve to balance ion changes at GABAergic synapses, or they could enable the glial cell to detect neuronal synaptic activity.  相似文献   

4.
The behavioral and functional significance of the extrasynaptic inhibitory GABA(A) receptors in the brain is still poorly known. We used a transgenic mouse line expressing the GABA(A) receptor alpha6 subunit gene in the forebrain under the Thy-1.2 promoter (Thy1alpha6) mice ectopically expressing alpha6 subunits especially in the hippocampus to study how extrasynaptically enriched alphabeta(gamma2)-type receptors alter animal behavior and receptor responses. In these mice extrasynaptic alpha6beta receptors make up about 10% of the hippocampal GABA(A) receptors resulting in imbalance between synaptic and extrasynaptic inhibition. The synthetic GABA-site competitive agonist gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; 3 mg/kg) induced remarkable anxiolytic-like response in the light : dark exploration and elevated plus-maze tests in Thy1alpha6 mice, while being almost inactive in wild-type mice. The transgenic mice also lost quicker and for longer time their righting reflex after 25 mg/kg gaboxadol than wild-type mice. In hippocampal sections of Thy1alpha6 mice, the alpha6beta receptors could be visualized autoradiographically by interactions between gaboxadol and GABA via [(35)S]TBPS binding to the GABA(A) receptor ionophore. Gaboxadol inhibition of the binding could be partially prevented by GABA. Electrophysiology of recombinant GABA(A) receptors revealed that GABA was a partial agonist at alpha6beta3 and alpha6beta3delta receptors, but a full agonist at alpha6beta3gamma2 receptors when compared with gaboxadol. The results suggest strong behavioral effects via selective pharmacological activation of enriched extrasynaptic alphabeta GABA(A) receptors, and the mouse model represents an example of the functional consequences of altered balance between extrasynaptic and synaptic inhibition.  相似文献   

5.
Gamma-aminobutyric acid (GABA) activates synaptic GABA(A) receptors to generate inhibitory postsynaptic potentials. GABA also acts on extrasynaptic GABA(A) receptors, resulting in tonic inhibition. The physiological role of tonic inhibition, however, remains elusive. We explored the neurophysiological significance of tonic inhibition by testing whether selective activation of extrasynaptic GABA(A) receptors is sufficient to curb excitotoxicity. Tonic inhibition was selectively enhanced by increasing ambient GABA. In both acute hippocampal slices and cultured hippocampal neurons, boosting tonic inhibition alone is insufficient to withstand the hyper-excitability of hippocampal neurons induced by low-magnesium (Mg2+) baths. Furthermore, selective activation of extrasynaptic GABA(A) receptors resulted in no significant neuroprotective effects against glutamate or low-Mg2+-induced neuronal cell deaths. These data imply that under physiological conditions extrasynaptic GABA(A) receptors are optimally activated by ambient GABA and that a further increase in extracellular GABA concentration will not significantly enhance the effect of tonic inhibition on neuronal excitability.  相似文献   

6.
Jones SM  Palmer MJ 《PloS one》2011,6(9):e24892
GABAergic inhibition in the central nervous system (CNS) can occur via rapid, transient postsynaptic currents and via a tonic increase in membrane conductance, mediated by synaptic and extrasynaptic GABA(A) receptors (GABA(A)Rs) respectively. Retinal bipolar cells (BCs) exhibit a tonic current mediated by GABA(C)Rs in their axon terminal, in addition to synaptic GABA(A)R and GABA(C)R currents, which strongly regulate BC output. The tonic GABA(C)R current in BC terminals (BCTs) is not dependent on vesicular GABA release, but properties such as the alternative source of GABA and the identity of the GABA(C)Rs remain unknown. Following a recent report that tonic GABA release from cerebellar glial cells is mediated by Bestrophin 1 anion channels, we have investigated their role in non-vesicular GABA release in the retina. Using patch-clamp recordings from BCTs in goldfish retinal slices, we find that the tonic GABA(C)R current is not reduced by the anion channel inhibitors NPPB or flufenamic acid but is reduced by DIDS, which decreases the tonic current without directly affecting GABA(C)Rs. All three drugs also exhibit non-specific effects including inhibition of GABA transporters. GABA(C)R ρ subunits can form homomeric and heteromeric receptors that differ in their properties, but BC GABA(C)Rs are thought to be ρ1-ρ2 heteromers. To investigate whether GABA(C)Rs mediating tonic and synaptic currents may differ in their subunit composition, as is the case for GABA(A)Rs, we have examined the effects of two antagonists that show partial ρ subunit selectivity: picrotoxin and cyclothiazide. Tonic and synaptic GABA(C)R currents were differentially affected by both drugs, suggesting that a population of homomeric ρ1 receptors contributes to the tonic current. These results extend our understanding of the multiple forms of GABAergic inhibition that exist in the CNS and contribute to visual signal processing in the retina.  相似文献   

7.
Recent findings suggest that rapid activation of extrasynaptic receptors and transient depletion of extracellular Ca(2+) may represent an important component of glutamatergic synaptic transmission. These phenomena imply a previously unrecognized role for synaptic glial sheaths: to retard extracellular diffusion in the synaptic vicinity. The present study is an attempt to assess the extent and physiological implications of this retardation using a detailed compartmental model of the typical synaptic environment. The model allows reconstruction of a partial (asymmetric) glial sheath covered with transporter molecules, which gives a more realistic representation of the vicinity of central synapses. Simulations show to what extent, in conditions compatible with physiology, the occupancy of synaptic receptors and the depletion of Ca(2+) in the cleft increase with increased glial coverage. The impact of glial sheaths on synaptic transmission is shown to become greater with smaller synapses and with slower kinetics of perisynaptic ion transients. At a calyceal synapse, a profound temporal filtering of fast Ca(2+) influx is found, and similar phenomena are predicted to occur following simultaneous activation of multiple synapses in the neuropil. The results provide a quantitative guidance for interpretation of physiological experiments that address fast transients of neurotransmitters and small ions in the brain tissue.  相似文献   

8.
GABA(A) receptors (GABA(A)-Rs) are localized at both synaptic and extrasynaptic sites, mediating phasic and tonic inhibition, respectively. Previous studies suggest an important role of γ2 and δ subunits in synaptic versus extrasynaptic targeting of GABA(A)-Rs. Here, we demonstrate differential function of α2 and α6 subunits in guiding the localization of GABA(A)-Rs. To study the targeting of specific subtypes of GABA(A)-Rs, we used a molecularly engineered GABAergic synapse model to precisely control the GABA(A)-R subunit composition. We found that in neuron-HEK cell heterosynapses, GABAergic events mediated by α2β3γ2 receptors were very fast (rise time ~2 ms), whereas events mediated by α6β3δ receptors were very slow (rise time ~20 ms). Such an order of magnitude difference in rise time could not be attributed to the minute differences in receptor kinetics. Interestingly, synaptic events mediated by α6β3 or α6β3γ2 receptors were significantly slower than those mediated by α2β3 or α2β3γ2 receptors, suggesting a differential role of α subunit in receptor targeting. This was confirmed by differential targeting of the same δ-γ2 chimeric subunits to synaptic or extrasynaptic sites, depending on whether it was co-assembled with the α2 or α6 subunit. In addition, insertion of a gephyrin-binding site into the intracellular domain of α6 and δ subunits brought α6β3δ receptors closer to synaptic sites. Therefore, the α subunits, together with the γ2 and δ subunits, play a critical role in governing synaptic versus extrasynaptic targeting of GABA(A)-Rs, possibly through differential interactions with gephyrin.  相似文献   

9.
Communication between neuronal and glial cells is thought to be very important for many brain functions. Acting via release of gliotransmitters, astrocytes can modulate synaptic strength. The mechanisms underlying ATP release from astrocytes remain uncertain with exocytosis being the most intriguing and debated pathway. We have demonstrated that ATP and d-serine can be released from cortical astrocytes in situ by a SNARE-complex-dependent mechanism. Exocytosis of ATP from astrocytes can activate post-synaptic P2X receptors in the adjacent neurons, causing a downregulation of synaptic and extrasynaptic GABA receptors in cortical pyramidal neurons. We showed that release of gliotransmitters is important for the NMDA receptor-dependent synaptic plasticity in the neocortex. Firstly, induction of long-term potentiation (LTP) by five episodes of theta-burst stimulation (TBS) was impaired in the neocortex of dominant-negative (dn)-SNARE mice. The LTP was rescued in the dn-SNARE mice by application of exogenous non-hydrolysable ATP analogues. Secondly, we observed that weak sub-threshold stimulation (two TBS episodes) became able to induce LTP when astrocytes were additionally activated via CB-1 receptors. This facilitation was dependent on activity of ATP receptors and was abolished in the dn-SNARE mice. Our results strongly support the physiological relevance of glial exocytosis for glia–neuron communications and brain function.  相似文献   

10.
Neurotransmitter receptors are subject to microtubule-based transport between intracellular organelles and the neuronal plasma membrane. Receptors that arrive at plasma membrane compartments diffuse laterally within the plane of the cellular surface. To achieve immobilization at their sites of action, cytoplasmic receptor residues bind to submembrane proteins, which are coupled to the underlying cytoskeleton by multiprotein scaffolds. GABA(A)Rs (gamma-aminobutyric type A receptors) and GlyRs (glycine receptors) are the major inhibitory receptors in the central nervous system. At inhibitory postsynaptic sites, all GlyRs and the majority of GABA(A)Rs directly or indirectly couple to gephyrin, a multimeric PSD (postsynaptic density) component. In addition to cluster formations at axo-dendritic contacts, individual GABA(A)R subtypes also anchor and concentrate at extrasynaptic positions, either through association with gephyrin or direct interaction with the ERM (ezrin/radixin/moesin) family protein radixin. In addition to their role in diffusion trapping of surface receptors, scaffold components also undergo rapid exchange to/from and between postsynaptic specializations, leading to a dynamic equilibrium of receptor-scaffold complexes. Moreover, scaffold components serve as adaptor proteins that mediate specificity in intracellular transport complexes. In the present review, we discuss the dynamic delivery, stabilization and removal of inhibitory receptors at synaptic sites.  相似文献   

11.
Inhibitory neurotransmission is primarily governed by γ-aminobutyric acid (GABA) type A receptors (GABAARs). GABAARs are heteropentameric ligand-gated channels formed by the combination of 19 possible subunits. GABAAR subunits are subject to multiple types of regulation, impacting the localization, properties, and function of assembled receptors. GABAARs mediate both phasic (synaptic) and tonic (extrasynaptic) inhibition. While the regulatory mechanisms governing synaptic receptors have begun to be defined, little is known about the regulation of extrasynaptic receptors. We examine the contributions of GABAARs to the pathogenesis of neurodevelopmental disorders, schizophrenia, depression, epilepsy, and stroke, with particular focus on extrasynaptic GABAARs. We suggest that extrasynaptic GABAARs are attractive targets for the treatment of these disorders, and that research should be focused on delineating the mechanisms that regulate extrasynaptic GABAARs, promoting new therapeutic approaches.  相似文献   

12.
The proper functioning of the adult mammalian brain relies on the orchestrated regulation of neural activity by a diverse population of GABA (gamma-aminobutyric acid)-releasing neurons. Until recently, our appreciation of GABA-mediated inhibition focused predominantly on the GABA(A) (GABA type A) receptors located at synaptic contacts, which are activated in a transient or 'phasic' manner by GABA that is released from synaptic vesicles. However, there is growing evidence that low concentrations of ambient GABA can persistently activate certain subtypes of GABA(A) receptor, which are often remote from synapses, to generate a 'tonic' conductance. In this review, we consider the distinct roles of synaptic and extrasynaptic GABA receptor subtypes in the control of neuronal excitability.  相似文献   

13.
Glial cells and volume transmission in the CNS   总被引:8,自引:0,他引:8  
Although synaptic transmission is an important means of communication between neurons, neurons themselves and neurons and glia also communicate by extrasynaptic "volume" transmission, which is mediated by diffusion in the extracellular space (ECS). The ECS of the central nervous system (CNS) is the microenvironment of neurons and glial cells. The composition and size of ECS change dynamically during neuronal activity as well as during pathological states. Following their release, a number of neuroactive substances, including ions, mediators, metabolites and neurotransmitters, diffuse via the ECS to targets distant from their release sites. Glial cells affect the composition and volume of the ECS and therefore also extracellular diffusion, particularly during development, aging and pathological states such as ischemia, injury, X-irradiation, gliosis, demyelination and often in grafted tissue. Recent studies also indicate that diffusion in the ECS is affected by ECS volume inhomogeneities, which are the result of a more compacted space in certain regions, e.g. in the vicinity of oligodendrocytes. Besides glial cells, the extracellular matrix also changes ECS geometry and forms diffusion barriers, which may also result in diffusion anisotropy. Glial cells therefore play an important role in extrasynaptic transmission, for example in functions such as vigilance, sleep, depression, chronic pain, LTP, LTD, memory formation and other plastic changes in the CNS. In turn, ECS diffusion parameters affect neuron-glia communication, ionic homeostasis and movement and/or accumulation of neuroactive substances in the brain.  相似文献   

14.
GABA (gamma-aminobutyric acid) type A receptors (GABA(A)Rs) mediate most fast synaptic inhibition in the mammalian brain, controlling activity at both the network and the cellular levels. The diverse functions of GABA in the CNS are matched not just by the heterogeneity of GABA(A)Rs, but also by the complex trafficking mechanisms and protein-protein interactions that generate and maintain an appropriate receptor cell-surface localization. In this Review, we discuss recent progress in our understanding of the dynamic regulation of GABA(A)R composition, trafficking to and from the neuronal surface, and lateral movement of receptors between synaptic and extrasynaptic locations. Finally, we highlight a number of neurological disorders, including epilepsy and schizophrenia, in which alterations in GABA(A)R trafficking occur.  相似文献   

15.
突触上的N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)受体与学习记忆以及细胞的存活有着密切关系,而定位于突触外的NMDA受体则参与了细胞死亡通路的激活.本文主要从突触NMDA受体的结构和功能出发,阐述突触上与突触外NMDA受体分布的原因,阐明其介导不同信号通路的具体分子机制及其在阿尔茨海默病(Alzheimer's disease,AD)中扮演的角色.最后,以突触外的NMDA受体为靶点,对AD疾病的治疗提出合理的展望,以期推动对该疾病的研究和治疗.  相似文献   

16.
N-methyl d-aspartate receptors (NMDARs) exist in different forms owing to multiple combinations of subunits that can assemble into a functional receptor. In addition, they are located not only at synapses but also at extrasynaptic sites. There has been intense speculation over the past decade about whether specific NMDAR subtypes and/or locations are responsible for inducing synaptic plasticity and excitotoxicity. Here, we review the latest findings on the organization, subunit composition and endogenous control of NMDARs at extrasynaptic sites and consider their putative functions. Because astrocytes are capable of controlling NMDARs through the release of gliotransmitters, we also discuss the role of the glial environment in regulating the activity of these receptors.  相似文献   

17.
GABAA receptors mediate the majority of fast synaptic inhibition in the brain. The accumulation of these ligand-gated ion channels at synaptic sites is a prerequisite for neuronal inhibition, but the molecular mechanisms underlying this phenomenon remain obscure. To further understand these processes, we have examined the cellular origins of synaptic GABAA receptors. To do so, we have created fluorescent GABAA receptors that are capable of binding -bungarotoxin (Bgt), facilitating the visualization of receptor endocytosis, exocytosis and delivery to synaptic sites. Imaging with Bgt in hippocampal neurons revealed that GABAA receptor endocytosis occurred exclusively at extrasynaptic sites, consistent with the preferential colocalization of extrasynaptic receptors with the AP2 adaptin. Receptor insertion into the plasma membrane was also predominantly extrasynaptic, and pulse-chase analysis revealed that these newly inserted receptors were then able to access directly synaptic sites. Therefore, our results demonstrate that synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts. Moreover, they illustrate a dynamic mechanism for neurons to modulate GABAA receptor number at inhibitory synapses by controlling the stability of extrasynaptic receptors.  相似文献   

18.
Fast neurotransmission in the brain is typically mediated by local actions of transmitters at ionotropic receptors within synaptic contacts. Recent studies now reveal that, in addition to point-to-point signaling, amino-acid transmitters mediate diffuse signaling at extrasynaptic metabotropic receptors.  相似文献   

19.
The control of synaptic inhibition is crucial for normal brain function. More than 20 years ago, glycine and gamma-aminobutyric acid (GABA) were shown to be the two major inhibitory neurotransmitters. They can be released independently from different terminals or co-released from the same terminal to activate postsynaptic glycine and GABA(A) receptors. The anchoring protein gephyrin is involved in the postsynaptic accumulation of both glycine and GABA(A) receptors. In lower brain regions, both receptors can be concentrated in synapses, whereas in higher brain regions, glycine receptors are mostly excluded from postsynaptic sites. The activation of glycine and/or GABA(A) receptors determines the strength and precise timing of inhibition. Therefore, tight regulation of postsynaptic glycine versus GABA(A) receptor localization is crucial for optimizing synaptic inhibition in neurons. This review focuses on recent findings and discusses questions concerning the specificity of postsynaptic inhibitory neurotransmitter receptor accumulation during inhibitory synapse formation and development.  相似文献   

20.
Scanziani M 《Neuron》2000,25(3):673-681
In the hippocampus, interneurons provide synaptic inhibition via the transmitter GABA, which can activate GABA(A) and GABA(B) receptors (GABA(A)Rs and GABA(B)Rs). Generally, however, GABA released by a single interneuron activates only GABA(A)Rs on its targets, despite the abundance of GABA(B)RS. Here, I show that during hippocampal rhythmic activity, simultaneous release of GABA from several interneurons activates postsynaptic GABA(B)Rs and that block of GABA(B)Rs increases oscillation frequency. Furthermore, if GABA uptake is inhibited, even GABA released by a single interneuron is enough to activate GABA(B)Rs. This occurs also on cells not directly contacted by that interneuron, indicating that GABA has to overcome uptake and exit the synaptic cleft to reach GABA(B)RS. Thus, activation of extrasynaptic GABA(B)Rs by pooling of GABA is an important mechanism regulating hippocampal network activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号