首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim A major endeavour of community ecology is documenting non‐random patterns in the composition and body size of coexisting species, and inferring the processes, or assembly rules, that may have given rise to the observed patterns. Such assembly rules include species sorting resulting from interspecific competition, aggregation at patchily distributed resources, and co‐evolutionary dynamics. However, for any given taxon, relatively little is known about how these patterns and processes change through time and vary with habitat type, disturbance history, and spatial scale. Here, we tested for non‐random patterns of species co‐occurrence and body size in assemblages of ground‐foraging ants and asked whether those patterns varied with habitat type, disturbance history, and spatial scale. Location Burned and unburned forests and fens in the Siskiyou Mountains of southern Oregon and northern California, USA. Methods We describe ground‐foraging ant assemblages sampled over two years in two discrete habitat types, namely Darlingtonia fens and upland forests. Half of these sites had been subject to a large‐scale, discrete disturbance – a major fire – in the year prior to our first sample. We used null model analyses to compare observed species co‐occurrence patterns and body‐size distributions in these assemblages with randomly generated assemblages unstructured by competition both within (i.e. at a local spatial scale) and among (i.e. at a regional scale) sites. Results At local spatial scales, species co‐occurrence patterns and body‐size ratios did not differ from randomness. At regional scales, co‐occurrence patterns were random or aggregated, and there was evidence for constant body‐size ratios of forest ants. Although these patterns varied between habitats and years, they did not differ between burned and unburned sites. Main conclusions Our results suggest that the operation of assembly rules depends on spatial scale and habitat type, but that it was not affected by disturbance history from fire.  相似文献   

2.
1. Interspecific competition is a major structuring principle in ecological communities. Despite their prevalence, the outcome of competitive interactions is hard to predict, highly context-dependent, and multiple factors can modulate such interactions. 2. We tested predictions concerning how competitive interactions are modified by anthropogenic habitat disturbance in ground-foraging ant assemblages inhabiting fragmented Inter-Andean tropical dry forests in southwestern Colombia, and investigated ant assemblages recruiting to baits in 10 forest fragments exposed to varying level of human disturbance. 3. Specifically, we evaluated how different components of competitive interactions (patterns of species co-occurrence, resource partitioning, numerical dominance, and interspecific trade-offs between discovery and dominance competition) varied with level of habitat disturbance in a human-dominated ecosystem. 4. Multiple lines of evidence suggest that the role of competitive interactions in structuring ground-foraging ant communities at baits varied with respect to habitat disturbance. As disturbance increased, community structure was more likely to exhibit random co-occurrence patterns, higher levels of monopolization of food resources by dominant ants, and disproportionate dominance of a single species, the little fire ant (Wasmannia auropunctata). At a regional scale, we found evidence for a trade-off between dominance and discovery abilities of the 15 most common species at baits. 5. Together, these results suggest that human disturbance modifies the outcome of competitive interactions in ground-foraging ant assemblages and may promote dominant species that reduce diversity and coexistence in tropical ecosystems.  相似文献   

3.
Werner Ulrich 《Oikos》2004,107(3):603-609
The question whether species co-occurrence patterns are non-random has intrigued ecology for more than two decades. Recently Gotelli and McCabe used meta-analysis to show that natural assemblages indeed tend to have non-random species co-occurrence patterns and that these patterns are in line with the predictions of Diamond's assembly rule model. Here I show that neutral ecological drift models are able to generate patterns in line with Diamond's assembly rules and very similar to the empirical results in Gotelli and McCabe. Ecological drift shifted species co-occurrence patterns (measured by C-scores, checkerboard scores and species combination scores) of model species placed into a grid of the 25 cells (sites; metacommunity sizes 5 to 25 species with 100 individuals each) significantly from an initial random pattern towards a pattern predicted by the assembly rule model of Diamond. These findings imply that instead of asking whether natural communities are structured according to some assembly rules we should ask whether these non-random patterns are generated by species interactions or by stochastic drift processes.  相似文献   

4.
Inferring mechanisms of community assembly from co-occurrence patterns is difficult in systems where assembly processes occur at multiple spatial scales and among species with heterogeneous dispersal abilities. Here, we demonstrate that local scale analysis of co-occurrence patterns is inadequate to fully describe assembly mechanisms and instead utilize a metacommunity and core-satellite approach. We generated a co-occurrence and life-history data set for a community of twig-nesting ants on coffee plants across 36 sites within a tropical agroecosystem to test the following three hypotheses: (1) twig-nesting ant species compete for nest-sites, (2) they are structured as a metacommunity, and (3) core species show segregated patterns, while satellite species show random patterns of co-occurrence. Species were divided into four groups: core species that are well distributed regionally and dominant locally, regional dominants that are well distributed regionally but do not dominate locally, local dominants that are dominant locally but are not widely distributed, and satellites that are neither widely distributed nor dominant locally. Only the most abundant species in the community, Pseudomyrmex simplex, was classified as a core species. Regional dominants, local dominants, and satellite species show random patterns of co-occurrence. However, when P. simplex is included in the co-occurrence matrix, patterns become aggregated for all three species groupings. This suggests that P. simplex “assembles” the community by providing a core metapopulation that other species track. Analyzing co-occurrence patterns among candidate subsets of species, at multiple spatial scales, and linking them to species traits substantially improves the explanatory power of co-occurrence analyses in complex metacommunities.  相似文献   

5.
The distribution of body sizes of co-existing species at different scales reflects the scale-dependency of rules governing community assembly. Investigation of among-scale variation in community assembly is impeded by the methodological difficulties of establishing scale boundaries. Studying body size distribution in parasites allows us to avoid the problem of defining scale because parasite communities have clear boundaries and are represented by infracommunities (an assemblage harboured by an individual host), component communities (an assemblage harboured by a host population in a locality), and compound communities (an assemblage harboured by a host community in a locality). We studied body size distribution of fleas parasitic on small mammals in Western Siberia using null models. We asked whether body size ratios (i.e., size differences among coexisting species) in these communities demonstrate non-random segregated or aggregated patterns and whether these patterns differ between (a) host species, (b) host sexes and (c) infra-, component, and compound communities. No effect of host sex on the pattern of body size distribution was found at either scale, whereas an effect of host species was found in infracommunities only. We found a tendency of flea infracommunities toward segregation, whereas body size distributions in component and compound communities were consistently aggregated. We propose that the former could be caused by apparent competition (=?negative indirect interactions among fleas due to shared natural enemy, i.e. a host), whereas we the latter could be explained by host- and environment-associated filtering (=?factors restricting co-occurring species to a certain subset that share certain traits). We conclude that, counterintuitively, flea communities at the lowest hierarchical scale are mainly governed by evolutionary mechanisms, whereas communities at higher scale are assembled via ecological processes.  相似文献   

6.
Douglas W. Morris 《Oikos》2005,109(2):223-238
Ecologists continue to debate the roles of deterministic versus stochastic (or neutral) processes in the assembly of ecological communities. The debate often hinges on issues of temporal and spatial scale. Resolution of the competing views depends on a detailed understanding of variation in the structure of local communities through time and space. Analyses of twelve years of data on a diverse assemblage of 13 boreal small mammal species revealed both deterministic and stochastic patterns. Stochastic membership in the overall community created unique assemblages of species in both time and space. But the relative abundances of the two codominant species were much less variable, and suggest a significant role for strong interactions that create temporal and spatial autocorrelation in abundance. As species wax and wane in abundance, they are nevertheless subject to probabilistic rules on local assembly. At the scales I report on here, poorly understood large scale processes influence the presence and absence of the majority of (sparse) species in the assembly. But the overall pool of species nevertheless obeys local rules on their ultimate stochastic assembly into groups of interacting species.  相似文献   

7.
高梅香  李景科  石昊  张雪萍  朱纪元 《生态学报》2016,36(20):6591-6601
揭示群落物种共存格局是群落生态学研究的重点内容之一,零模型的应用极大的促进了群落物种共存格局及其调控机制的进展,然而针对地下生物群落共存格局动态特征的研究并不多见。在帽儿山森林生态站的人工红松林内,通过5次调查取样基于零模型模拟分析小尺度空间(20 m×20 m)步行虫群落物种共存格局的动态特征。结果表明:(1)共捕获步行虫20种,2278只个体,其中Carabus billergi maoershanensis为所有调查季节数量最具优势且分布最广泛的物种,步行虫群落结构具明显的时间变异性;(2)2013年6月步行虫群落为集群性共存格局,而2014年8、10月为竞争性共存格局,基于目前的零模型指标和法则难以准确揭示其他月份是集群性还是竞争性的共存格局,但所有季节的群落均表现为明显的非随机性共存格局,这些共存格局的发现并不完全支持Diamond的群落构建机制理论;(3)所有调查季节均发现很少的显著物种对,基于更严格的检验表明群落中集群性物种对多于隔离性物种对,那些表现为显著的非随机性共存关系的物种对往往是群落内数量较大且分布广泛的优势和常见物种。表明非随机性共存格局可能是帽儿山人工红松林小尺度空间步行虫群落的常见格局,这种非随机性格局具一定的短期动态稳定性,但不同季节这种非随机性共存格局类型表现不同,群落内这些较少的显著物种对可能对群落物种共存格局具有一定的贡献。  相似文献   

8.
Aim A fundamental question in community ecology is whether general assembly rules determine the structure of natural communities. Although many types of assembly rules have been described, including Diamond’s assembly rules, constant body‐size ratios, favoured states, and nestedness, few studies have tested multiple assembly rule models simultaneously. Therefore, little is known about the relative importance of potential underlying factors such as interspecific competition, inter‐guild competition, selective extinction and habitat nestedness in structuring community composition. Here, we test the above four assembly rule models and examine the causal basis for the observed patterns using bird data collected on islands of an inundated lake. Location Thousand Island Lake, China. Methods  We collected data on presence–absence matrices, body size and functional groups for bird assemblages on 42 islands from 2007 to 2009. To test the above four assembly rule models, we used null model analyses to compare observed species co‐occurrence patterns, body‐size distributions and functional group distributions with randomly generated assemblages. To ensure that the results were not biased by the inclusion of species with extremely different ecologies, we conducted separate analyses for the entire assemblage and for various subset matrices classified according to foraging guilds. Results The bird assemblages did not support predictions by several competitively structured assembly rule models, including Diamond’s assembly rules, constant body‐size ratios, and favoured states. In contrast, bird assemblages were highly significantly nested and were apparently shaped by extinction processes mediated through area effects and habitat nestedness. The nestedness of bird assemblages was not a result of passive sampling or selective colonization. These results were very consistent, regardless of whether the entire assemblage or the subset matrices were analysed. Main conclusions Our results suggest that bird assemblages were shaped by extinction processes mediated through area effects and habitat nestedness, rather than by interspecific or inter‐guild competition. From a conservation point of view, our results indicate that we should protect both the largest islands with the most species‐rich communities and habitat‐rich islands in order to maximize the number of species preserved.  相似文献   

9.
The spatial distributions of many tropical arboreal ant species are often arranged in a mosaic such that dominant species have mutually exclusive distributions among trees. These dominant species can also mediate the structure of the rest of the arboreal ant community. Little attention has been paid to how diet might shape the effects of dominant species on one another and the rest of the ant community. Here, we take advantage of new information on the diets of many tropical arboreal ant species to examine the intra- and inter-guild effects of dominant species on the spatial distribution of one another and the rest of the tropical arboreal ant community in a cocoa farm in Bahia, Brazil. Using null model analyses, we found that all ant species, regardless of dominance status or guild membership, co-occur much less than expected by chance. Surprisingly, the suite of five dominant species showed random co-occurrence patterns, suggesting that interspecific competition did not shape their distribution among cocoa trees. Across all species, there was no evidence that competition shaped co-occurrence patterns within guilds. Co-occurrence patterns of subordinant species were random on trees with dominant species, but highly nonrandom on trees without dominant species, suggesting that dominant species disassemble tropical arboreal ant communities. Taken together, our results highlight the often complex nature of interactions that structure species-rich tropical arboreal ant assemblages.  相似文献   

10.
Biogeographic effects of red fire ant invasion   总被引:7,自引:1,他引:6  
The red imported fire ant, Solenopsis invicta , was accidentally introduced to North America over 60 years ago and has spread throughout the southeastern United States. We document the biogeographic consequences of this invasion. We censused ground-foraging ant communities on a 2000 km transect from Florida through New York that passed through invaded and intact biotas. Native ant species density peaks at mid-latitudes in the eastern United States, and the location of this peak corresponds to the range limit of S. invicta . In uninvaded sites, ant species co-occur less often than expected by chance. In the presence of S. invicta , community structure converges to a random pattern. Our results suggest that the effects of S. invicta on native ant communities are pervasive: not only does the presence of S. invicta reduce species density at local scales, it alters the co-occurrence patterns of surviving species at a biogeographic scale.  相似文献   

11.
A long-standing question in community ecology is what determines the identity of species that coexist across local communities or metacommunity assembly. To shed light upon this question, we used a network approach to analyse the drivers of species co-occurrence patterns. In particular, we focus on the potential roles of body size and trophic status as determinants of metacommunity cohesion because of their link to resource use and dispersal ability. Small-sized individuals at low-trophic levels, and with limited dispersal potential, are expected to form highly linked subgroups, whereas large-size individuals at higher trophic positions, and with good dispersal potential, will foster the spatial coupling of subgroups and the cohesion of the whole metacommunity. By using modularity analysis, we identified six modules of species with similar responses to ecological conditions and high co-occurrence across local communities. Most species either co-occur with species from a single module or are connectors of the whole network. Among the latter are carnivorous species of intermediate body size, which by virtue of their high incidence provide connectivity to otherwise isolated communities playing the role of spatial couplers. Our study also demonstrates that the incorporation of network tools to the analysis of metacommunity ecology can help unveil the mechanisms underlying patterns and processes in metacommunity assembly.  相似文献   

12.
1. Competition by dominant species is thought to be key to structuring ant communities. However, recent findings suggest that the effect of dominant species on communities is less pronounced than previously assumed. 2. The aim of the present study was to identify the role of dominant ants in the organisation of Mediterranean communities, particularly the role of competition in invaded and uninvaded communities. The effects on ant assemblages of two dominant ants, the invasive Argentine ant and the native ant, Tapinoma nigerrimum Nylander, were assessed. 3. The abundances of both dominant ants were significantly correlated with a decrease in native ant richness at traps. However, only the invasive ant was associated with a reduction in diversity and abundance of other ant species at site scale. In the presence of T. nigerrimum, species co‐occurrence patterns were segregated or random. Community structure in both the dominant‐free and the Argentine ant sites showed random patterns of species co‐occurrence. 4. The present findings indicate that dominant ants regulate small‐scale diversity by competition. However, at the broader scale of the assemblage, T. nigerrimum may only affect species distribution, having no apparent effect on community composition. Moreover, we find no evidence that inter‐specific competition shapes species distribution in coastal Mediterranean communities free of dominant ants. 5. These results show that dominant species may affect ant assemblages but that the nature and the intensity of such effects are species and scale dependent. This confirms the hypothesis that competitive dominance may be only one of a range of factors that structure ant communities.  相似文献   

13.
Tropical forests shelter an unparalleled biological diversity. The relative influence of environmental selection (i.e., abiotic conditions, biotic interactions) and stochastic–distance‐dependent neutral processes (i.e., demography, dispersal) in shaping communities has been extensively studied for various organisms, but has rarely been explored across a large range of body sizes, in particular in soil environments. We built a detailed census of the whole soil biota in a 12‐ha tropical forest plot using soil DNA metabarcoding. We show that the distribution of 19 taxonomic groups (ranging from microbes to mesofauna) is primarily stochastic, suggesting that neutral processes are prominent drivers of the assembly of these communities at this scale. We also identify aluminium, topography and plant species identity as weak, yet significant drivers of soil richness and community composition of bacteria, protists and to a lesser extent fungi. Finally, we show that body size, which determines the scale at which an organism perceives its environment, predicted the community assembly across taxonomic groups, with soil mesofauna assemblages being more stochastic than microbial ones. These results suggest that the relative contribution of neutral processes and environmental selection to community assembly directly depends on body size. Body size is hence an important determinant of community assembly rules at the scale of the ecological community in tropical soils and should be accounted for in spatial models of tropical soil food webs.  相似文献   

14.
Rabosky DL  Reid J  Cowan MA  Foulkes J 《Oecologia》2007,154(3):561-570
Both local and regional processes may contribute to community diversity and structure at local scales. Although many studies have investigated patterns of local or regional community structure, few have addressed the extent to which local community structure influences patterns within regional species pools. Here we investigate the role of body size in community assembly at local and regional scales in Ctenotus lizards from arid Australia. Ctenotus has long been noted for its exceptional species diversity in the Australian arid-zone, and previous studies have attempted to elucidate the processes underlying species coexistence within communities of these lizards. However, no consensus has emerged on the role of interspecific competition in the assembly and maintenance of Ctenotus communities. We studied Ctenotus communities at several hundred sites in the arid interior of Australia to test the hypothesis that body sizes within local and regional Ctenotus assemblages should be overdispersed relative to null models of community assembly, and we explored the relationship between body size dispersion at local and regional scales. Results indicate a striking pattern of community-wide overdispersion of body size at local scales, as measured by the variance in size ratios among co-occurring species. However, we find no evidence for body size overdispersion within regional species pools, suggesting a lack of correspondence between processes influencing the distribution of species phenotypes at local and regional scales. We suggest that size ratio constancy in Ctenotus communities may have resulted from contemporary ecological interactions among species or ecological character displacement, and we discuss alternative explanations for the observed patterns. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
竞争能够塑造自然群落并由其给出可用备择模型检验的一般性聚集规则。关于多种动物集合的竞争结构证据至今还非常少见,我们给出了一个备择模型分析用于检验印度西部热带干旱森林中当地5种大型食草类动物(花鹿Axisaxis,印度大蓝羚Boselaphustragocamelus,水鹿Cervusunicolor,印度瞪羚Gazellabennetti,野猪Susscrofa)是否符合一般性集合规则。使用蒙特卡罗模拟分析了动物的生态位重叠和身体大小比率的类似性,结果表明当地这些种的集合不是竞争结构决定的,其内部阶元结构处于亚最适种丰富度。另外2种有蹄类(印度黑羚Antilopecervicapra,四角羚羊Tetracerusquadricornis)属于地域性种库的组成部分,但缺失于这种集合;身体大小组合在地域性物种集合中不是随机的,然而在当地集合中能够通过随机性机会获得。对于观察到的类型,我们认为由于灭绝留下的统计学空缺似乎最能解释现存集合。由于天敌(大型食肉类)能够减少猎物物种的种间竞争,使得这种无规则生态位配置具有成立的可能性。由于对四角羚羊(T.quadricornis)的生物学和保护现状知之甚少,未将该种包括在该聚集中。我认为对这类较少被人类了解的物种其保护问题被忽视了,今后获得这些稀少的地方特有物种的生态学资料是一项紧急课题.  相似文献   

16.
Evolutionary and ecological theory predicts that closely related and similar species should coexist infrequently because speciation is more likely to occur allopatrically than sympatrically, and because co‐occurring species with similar traits may compete for limited resources, leading to competitive exclusion or character displacement. Here we study the unusual coexistence of 10 similar congeneric species of Anelosimus spiders within a small forest fragment in Madagascar. We asked if these species radiated in sympatry or allopatry, and if there was evidence for local‐scale character displacement in body size and other species‐level traits. We sampled ~ 350 colonies (6346 individuals) along a 2800 m transect. We identified colonies using morphology and DNA barcoding, and tested the monophyly of local and regional species assemblages with time‐calibrated phylogenies. We used null model analysis and phylogenetic signal inference to test for patterns of segregation in body size, microhabitat, phenology, and seasonality of coexisting species. We found that all species belong to a Madagascan clade that radiated during the Pliocene, but that contemporary local assemblages are non‐monophyletic. This is consistent with allopatric speciation during periods of global cooling and expansion of grasslands, and subsequent species assembly as forest fragments re‐expanded and coalesced. We found no evidence for character displacement, except for overdispersion and even spacing in phenology: species were segregated by instars in a manner consistent with resource partitioning or maintenance of reproductive isolation. Overdispersion or even spacing in phenology may contribute to coexistence either through resource partitioning or mate recognition. However, there was no support for a scenario of resource partitioning and divergence of body size or other correlated morphological characters. These traits are better explained by evolutionary forces operating during speciation, rather than ecological forces operating during local community assembly.  相似文献   

17.
The study of gap dynamics and the effects of gaps on diversity has been at the center of tropical ecology for decades. While most studies have focused on the responses of plant species and communities to gap formation, in this study, we consider the effects of treefall gap disturbances on leaf litter ant assemblages in a Neotropical montane cloud forest. We sampled leaf litter ant assemblages and estimated a suite of abiotic parameters in 12 large (>80‐m2) treefall gaps across a chronosequence and in 12 paired adjacent intact forest sites in the Monteverde Cloud Forest Preserve in Costa Rica. No species were more common in gaps than in intact forests, and in fact, species that were common in gaps were also among the most common in forests. The Chao2 estimate of species richness, however, was higher in gap sites than in intact forest sites. In addition, ant assemblages in gap sites did not become more similar to those in adjacent intact sites as gaps aged. In contrast to other studies, our work demonstrates that ant assemblages in the Monteverde Cloud Forest Preserve are weakly affected by the formation of treefall gaps. Together, these results indicate that treefall gap dynamics probably play little role in promoting ant diversity at more regional scales, or coexistence among species at more local scales.  相似文献   

18.
We studied body size ratio in gamasid mites (Acari: Mesostigmata) parasitic on Palearctic small mammals at 3 hierarchical scales, namely infracommunities (an assemblage of mites harboured by an individual host), component communities (an assemblage of mites harboured by a host population), and compound communities (an assemblage of mites harboured by a host community). We used null models and asked a) whether body size distributions in these communities demonstrate non‐random patterns; b) whether these patterns indicate segregation or aggregation of body sizes of coexisting species; and c) whether patterns of body size distribution are scale‐dependent, that is, differ among infracommunities, component communities, and compound communities. In most mite assemblages, the observed pattern of body size distribution did not differ from that expected by chance. However, meta‐analyses demonstrated that component and compound communities of gamasid mites consistently demonstrated a tendency to reduced body size overlap, while we did not find any clear trend in mite body size distribution across infracommunities. We discuss reasons for scale‐dependence of body size distribution pattern in parasite communities and propose ecological and evolutionary mechanisms that allowed the reduced body size overlap in component and compound communities of ectoparasites to arise.  相似文献   

19.
Wittman SE  Gotelli NJ 《Oecologia》2011,166(1):207-219
Although interference competition is a conspicuous component of many animal communities, it is still uncertain whether the competitive ability of a species determines its relative abundance and patterns of association with other species. We used replicated arena tests to quantify behavioral dominance of eight common species of co-occurring ground-foraging ants in the Siskiyou Mountains of southern Oregon. We found that behavior recorded in laboratory assays was an accurate representation of a colony's ability to monopolize resources in the field. We used interaction frequencies from the behavioral tests to estimate transition probabilities in a simple Markov chain model to predict patterns of relative abundance in a metacommunity that is dominated by behavioral interactions. We also tested whether behavioral interactions between each pair of species could be used to predict patterns of species co-occurrence. We found that the Markov model did not accurately predict patterns of observed relative abundance on either the local or the regional scale. However, we did detect a significant negative correlation at the local scale in which behaviorally dominant species occupied relatively few baits. Pairwise behavioral data also did not predict species co-occurrence in any site. Although interference competition is a conspicuous process in ant communities, our results suggest that it may not contribute much to patterns of relative abundance and species co-occurrence in the system studied here. However, the negative correlation between behavioral dominance and bait occupancy at the local scale suggests that competition-colonization trade-offs may be important in resource acquisition and persistence of behaviorally subordinate species.  相似文献   

20.
On average, large-bodied species live at lower densities than small-bodied ones. Early studies suggested that population densities might scale so that the energy use of a population is independent of body size. However, recent work shows that, at the scale of local communities, this is rarely true and that the pattern varies among taxonomic or ecological subsets of those communities. Energetic considerations may only be relevant to the densities of more abundant species. In fact, within natural assemblages o f organisms, the underlying relationship is very variable; in subsets of those assemblages, ecological processes such as competition may structure abundance patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号