首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Production of a 92-kDa gelatinase/type IV collagenase and tissue inhibitor of metalloproteinases (TIMP) was investigated with human sarcoma cell lines. Among the cytokines and growth factors examined, only human recombinant tumor necrosis factor alpha (TNF alpha) induced and stimulated the proteinase with concomitant increase in TIMP expression, but matrix metalloproteinase 2 (72-kDa gelatinase/type IV collagenase) expression was unchanged. These data suggest that gene expression of the two metalloproteinases is regulated in a different fashion and TNF alpha may be important to allow cancer cells to be more invasive and metastatic.  相似文献   

3.
Chronic lung disease due to interstitial fibrosis can be a consequence of acute lung injury and inflammation. The inflammatory response is mediated through the migration of inflammatory cells, actions of proinflammatory cytokines, and the secretion of matrix-degrading proteinases. After the initial inflammatory insult, successful healing of the lung may occur, or alternatively, dysregulated tissue repair can result in scarring and fibrosis. On the basis of recent insights into the mechanisms underlying acute lung injury and its long-term consequences, data suggest that proteinases, such as the matrix metalloproteinases (MMPs), may not only be involved in the breakdown and remodeling that occurs during the injury but may also cause the release of growth factors and cytokines known to influence growth and differentiation of target cells within the lung. Through the release of and activation of fibrosis-promoting cytokines and growth factors such as transforming growth factor-beta1, tumor necrosis factor-alpha, and insulin-like growth factors by MMPs, we propose that these metalloproteinases may be integral to the initiation and progression of pulmonary fibrosis.  相似文献   

4.
5.
6.
Mononuclear phagocytes have the capacity to directly participate in extracellular matrix turnover via secretion of neutral proteinases. We have studied the effects of in vivo and in vitro differentiation upon cellular content or secretion of a spectrum of neutral proteinases, along with a counter-regulatory metalloproteinase inhibitor (TIMP). We found 1) matrix-degradative serine proteinases (leukocyte elastase and cathepsin G) were lost during cellular maturation and/or differentiation; 2) the 92-kDa type IV/type V collagenase and TIMP were secreted earliest in mononuclear phagocyte differentiation, whereas stromelysin secretion was observed only by LPS-stimulated alveolar macrophages; 3) exposure of alveolar macrophages, but not monocytes, to phorbol esters and LPS resulted in markedly augmented secretion of all studied metalloproteinases and TIMP; 4) monocyte-derived macrophages partially (but not completely) mimicked the metalloproteinase secretory phenotype of alveolar macrophages; and 5) the secretory phenotype of alveolar macrophages for interstitial collagenase (but not TIMP) was largely lost during in vitro culture. These results underscore the complexity of the process of differentiation in human mononuclear phagocytes, and provide insights into the variable capacity of mononuclear phagocytes to degrade extracellular matrix components. Moreover, we anticipate that human mononuclear phagocytes at various stages of differentiation will provide a useful model system for study of the variable regulation of secretion of human matrix-degrading metalloproteinases.  相似文献   

7.
The role of various matrix metalloproteinases (MMP)—such as gelatinases, stromelysins, matrilysin, collagenase-3, and membrane-bound MMP (MB-MMP)—in tumor invasion and metastasis is discussed. Data suggesting significance for malignant growth of the expression level of these enzymes and also of their activators and inhibitors are presented. It is concluded that at different stages of tumor progression the activity of different MMPs is displayed, which is regulated by various growth factors and oncogenes. Different malignancies are characterized by changes in activities of specific MMPs. Data are presented which show significance of the ratio between the MMP activity and that of tissue inhibitors of metalloproteinases (TIMP) in tumor invasion and metastasis, especially in connection with a dual role of TIMP as both MMP inhibitors and activators.  相似文献   

8.
The atrophy of extracellular matrix is a common event during the aging of connective tissues. In this study, we tested the hypothesis that the altered ability of senescent cells to be modulated by serum growth factors correlated with a loss of regulation of collagenase synthesis. We examined the levels of immunoreactive procollagenase and collagenase inhibitor (the tissue inhibitor of metalloproteinases, TIMP) associated with young and senescent fibroblasts cultured in vitro. Young fibroblasts cultured in low (0.5%) concentrations of fetal bovine serum respond to increased (10%) serum by increasing levels of procollagenase and TIMP beginning 4.0 h after serum stimulation. In contrast, senescent fibroblasts constitutively produce relatively high levels of procollagenase even when cultured in low levels of serum and do not respond to serum stimulation by increasing procollagenase synthesis. In addition, senescent fibroblasts constitutively express a relatively small amount of TIMP which is not induced upon serum stimulation. This altered expression of collagenase and TIMP appears unique to the senescent phenotype and not merely a result of growth inhibition, since young cells growth arrested by density-dependent growth inhibition displayed a temporal pattern of procollagenase and TIMP expression upon serum stimulation similar to that of subconfluent young cultures. An assay of net collagenase activity revealed a greater than 20-fold elevation of activity in trypsin-activated extracts from senescent versus young fibroblasts when cultured in a low concentration of fetal bovine serum. These results demonstrate for the first time a direct correlation between alterations in the molecular pathways regulating connective tissue homeostasis and those of replicative senescence. The increased collagenolytic activity of senescent compared to young fibroblasts cultured in the presence of a low serum concentration suggests that aging fibroblasts may become increasingly fibroclastic causing many of the age-associated alterations in dermal collagen observed during aging in vivo.  相似文献   

9.
To define the capacity of glucocorticoids to regulate tissue damage associated with inflammation more clearly, we have studied the effects of dexamethasone on human alveolar macrophage secretion of both a variety of metalloproteinases and also the counter-regulatory tissue inhibitor of metalloproteinases (TIMP). We found that dexamethasone selectively and coordinately inhibited expression of the following human metalloproteinases: interstitial collagenase, stromelysin, and the 92-kDa type IV collagenase, as well as TIMP. Both basal and LPS-stimulated cells exhibited similar degrees of inhibition, with greater than 50% decrease in secretion of all enzymes and TIMP observed at dexamethasone concentrations of greater than or equal to 10(-8) M in serum-containing medium. The effects of dexamethasone were mediated at a pretranslational level. In summary, our results indicate that glucocorticoids suppress the matrix-degrading phenotype that is characteristic of mature human mononuclear phagocytes, and block the effects of the most potent known signal for upregulation of metalloproteinase secretion. Similar actions in vivo would serve to limit tissue damage associated with the inflammatory response.  相似文献   

10.
Regulation of ovarian cancer growth is poorly understood. In this study, the effects of EGF, TGF alpha and TGF beta 1 on two ovarian cancer cell lines (OVCAR-3 and CAOV-3) were investigated. The results showed that EGF/TGF alpha stimulated cell growth and DNA synthesis in OVCAR-3 cells, but inhibited cell proliferation and DNA synthesis in CAOV-3 cells. TGF beta 1 invariably inhibited cell proliferation and DNA synthesis in both cell lines. These effects on growth factors are dose dependent. The interaction of TGF beta 1 and EGF/TGF alpha was antagonistic in OVCAR-3 cells. In contrast, EGF/TGF alpha and TGF beta 1 had an additive inhibitory effect on CAOV-3 cells. Our results demonstrated that mature and functional EGF receptors are present in both cell lines and that they are capable of ligand binding, internalization, processing and ligand-enhanced autophosphorylation. Both high- and low-affinity binding are present in these cell lines, with CAOV-3 cells having about 2-3-fold higher total receptors than OVCAR-3 cells. These results together with those from our previous studies show that these cells express TGF alpha, TGF beta 1 and EGF receptors and that cell growth may be modulated by these growth factors in an autocrine and paracrine manner. This report presents evidence supporting the important roles of growth factors in ovarian cancer growth and provides a foundation for further study into the mechanism of growth regulation by growth factors in these cell lines.  相似文献   

11.
We have investigated the actions of transforming growth factor (TGF) type alpha on epidermal growth factor (EGF) receptor mRNA expression in MDA-468 human mammary carcinoma cells in serum-free media. We found that exposure of MDA-468 cells to TGF alpha results in elevated levels of EGF receptor mRNA. This increase in mRNA accumulation showed time and dose dependence. Addition of TGF beta 1 enhanced the accumulation of EGF receptor mRNA induced by TGF alpha in a time- and dose-dependent manner. We also found that triiodothyronine at physiological concentrations exerts synergistic control on the action of TGF alpha alone, or in association with TGF beta 1, on EGF receptor mRNA expression. Similarly, retinoic acid treatment also enhanced in a time- and dose-dependent manner the TGF alpha-dependent response of EGF receptor mRNA and acted synergistically with TGF beta 1. The results described here suggest that optimum regulation of EGF receptor gene expression by TGF alpha is a complex process involving synergistic interactions with heterologous growth factors and hormones.  相似文献   

12.
A classic model of tubulogenesis utilizes Madin-Darby canine kidney (MDCK) cells. MDCK cells form monoclonal cysts in three-dimensional collagen and tubulate in response to hepatocyte growth factor, which activates multiple signaling pathways, including the mitogen-activated protein kinase (MAPK) pathway. It was shown previously that MAPK activation is necessary and sufficient to induce the first stage of tubulogenesis, the partial epithelial to mesenchymal transition (p-EMT), whereas matrix metalloproteinases (MMPs) are necessary for the second redifferentiation stage. To identify specific MMP genes, their regulators, tissue inhibitors of matrix metalloproteinases (TIMPs), and the molecular pathways by which they are activated, we used two distinct MAPK inhibitors and a technique we have termed subtraction pathway microarray analysis. Of the 19 MMPs and 3 TIMPs present on the Canine Genome 2.0 Array, MMP13 and TIMP1 were up-regulated 198- and 169-fold, respectively, via the MAPK pathway. This was confirmed by two-dimensional and three-dimensional real time PCR, as well as in MDCK cells inducible for the MAPK gene Raf. Knockdown of MMP13 using short hairpin RNA prevented progression past the initial phase of p-EMT. Knockdown of TIMP1 prevented normal cystogenesis, although the initial phase of p-EMT did occasionally occur. The MMP13 knockdown phenotype is likely because of decreased collagenase activity, whereas the TIMP1 knockdown phenotype appears due to increased apoptosis. These data suggest a model, which may also be important for development of other branched organs, whereby the MAPK pathway controls both MDCK p-EMT and redifferentiation, in part by activating MMP13 and TIMP1.  相似文献   

13.
A Gebhardt  J C Bell    J G Foulkes 《The EMBO journal》1986,5(9):2191-2195
Cells transformed by the v-abl-oncogene produce large amounts of the tumour growth factor alpha TGF. alpha TGF is homologous to the epidermal growth factor (EGF) and stimulates cell growth via the EGF receptor pathway. To separate metabolic events in the v-abl-transformed cells mediated by alpha TGF as opposed to the v-abl-encoded protein-tyrosine kinase, we have employed the Swiss 3T3 variant cell line NR6 which lacks a functional EGF receptor. v-abl was found to transform efficiently NR6 cells in vitro. These transformed NR6 cells displayed a variety of in vitro properties which were indistinguishable from transformed wild-type fibroblast lines. However, in contrast to the wild-type lines, v-abl-transformed NR6 cells failed to form tumours when injected into athymic nude mice. These results imply an important function for alpha TGF and the EGF receptor in the establishment of the v-abl-induced fibrosarcomas.  相似文献   

14.
The effect of growth factors on the cytochrome P-450 (CYPIA1) gene expression was studied in primary mouse hepatocytes. Of the three growth factors used, i.e. epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha) and insulin, only EGF or TGF alpha completely blocked CYPIA1 expression in the presence of the CYPIA1 inducer 3-methylcholanthrene (3-MC). This repression was not linked to cell cycle progression of the hepatocyte because insulin was active to induce 'early immediate genes' and DNA replication as well as EGF/TGF alpha but failed to suppress CYPIA1 expression. A specific EGF/TGF alpha receptor-mediated function may repress CYPIA1 gene expression and contribute to the acquisition of a xenobiotic drug resistance phenotype.  相似文献   

15.
Transforming growth factors and control of neoplastic cell growth   总被引:18,自引:0,他引:18  
Transforming growth factors (TGFs) are peptides that affect the growth and phenotype of cultured cells and bring about in nonmalignant fibroblastic cells phenotypic properties that resemble those of malignant cells. Two types of TGFs have been well characterized. One of these, TGF alpha, is related to epidermal growth factor (EGF) and binds to the EGF receptor, whereas the other, TGF beta, is not structurally or functionally related to TGF alpha or EGF and mediates its effects via distinct receptors. TGF beta is produced by a variety of normal and malignant cells. Depending upon the assay system employed, TGF beta has both growth-inhibitory and growth-stimulating properties. Many of the mitogenic effects of TGF beta are probably an indirect result of the activation of certain growth factor genes in the target cell. The ubiquitous nature of the TGF beta receptor and the production of TGF beta in a latent form by most cultured cells suggests that the differing cellular responses to TGF beta are regulated either by events involved in the activation of the factor or by postreceptor mechanisms. The combined effects of TGF beta with other growth factors or inhibitors evidently play a central role in the control of normal and malignant cellular growth as well as in cell differentiation and morphogenesis. Since transforming growth factor as a concept has partially proven misleading and insufficient, there is a need to find a new nomenclature for these regulators of cellular growth and differentiation.  相似文献   

16.
Epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha) compete with each other for binding to the EGF receptor. These two growth factors have similar actions, but there are distinguishable differences in their biological activities. It has never been clear how this one receptor can mediate different responses. A monoclonal antibody to the EGF receptor (13A9) has been identified which has only small effects on the binding of EGF to the EGF receptor, but which has very large effects on the binding of TGF alpha to the EGF receptor; 5 micrograms/mL antibody has been shown to totally block 0.87 microM TGF alpha from binding to purified EGF receptor and to lower both the high- and low-affinity binding constants of TGF alpha binding to EGF receptor on A431 cells by about 10-fold. The 13A9 antibody causes a 2.5-fold stimulation of the tyrosine kinase activity of partially purified EGF receptor, compared to a 4.0-fold stimulation of the tyrosine kinase activity by EGF under the same conditions. The data suggest either that the antibody stabilizes a conformation of the EGF receptor which is not favorable for TGF alpha binding or that it blocks a part of the surface of the receptor which is necessary for TGF alpha binding but not EGF binding.  相似文献   

17.
A cDNA encoding transforming growth factor type alpha (TGF alpha) was fused to the 5' end of a gene encoding a modified form of Pseudomonas exotoxin A (PE), which is devoid of the cell recognition domain (domain Ia). The chimeric molecule, termed TGF alpha-PE40, was expressed in Escherichia coli and isolated from the periplasm or inclusion bodies depending on the construction expressed. TGF alpha-PE40 was found to be extremely cytotoxic to cells displaying epidermal growth factor (EGF) receptors. Comparison with a similar molecule in which TGF alpha was placed at the carboxyl end of PE40 demonstrated the importance of the position of the cell recognition element; TGF alpha-PE40 was found to be about 30-fold more cytotoxic to cells bearing EGF receptors than PE40-TGF alpha. In addition, TGF alpha-PE40 was shown to be extremely cytotoxic to a variety of cancer cell lines including liver, ovarian, and colon cancer cell lines, indicating high levels of EGF receptor expression in these cells.  相似文献   

18.
19.
The mammary gland develops its adult form by a process referred to as branching morphogenesis. Many factors have been reported to affect this process. We have used cultured primary mammary epithelial organoids and mammary epithelial cell lines in three-dimensional collagen gels to elucidate which growth factors, matrix metalloproteinases (MMPs) and mammary morphogens interact in branching morphogenesis. Branching stimulated by stromal fibroblasts, epidermal growth factor, fibroblast growth factor 7, fibroblast growth factor 2 and hepatocyte growth factor was strongly reduced by inhibitors of MMPs, indicating the requirement of MMPs for three-dimensional growth involved in morphogenesis. Recombinant stromelysin 1/MMP3 alone was sufficient to drive branching in the absence of growth factors in the organoids. Plasmin also stimulated branching; however, plasmin-dependent branching was abolished by both inhibitors of plasmin and MMPs, suggesting that plasmin activates MMPs. To differentiate between signals for proliferation and morphogenesis, we used a cloned mammary epithelial cell line that lacks epimorphin, an essential mammary morphogen. Both epimorphin and MMPs were required for morphogenesis, but neither was required for epithelial cell proliferation. These results provide direct evidence for a crucial role of MMPs in branching in mammary epithelium and suggest that, in addition to epimorphin, MMP activity is a minimum requirement for branching morphogenesis in the mammary gland.  相似文献   

20.
Acquisition of cell motility is often correlated with the malignant progression of a transformed cell. To investigate some of the mechanisms involved in the development of a migratory state, we transfected the NBTII rat carcinoma cell line, which forms stationary epithelial clusters in culture, with the gene encoding human transforming growth factor alpha (TGF alpha). Expression of TGF alpha in NBTII cells resulted in cells of motile and vimentin-positive phenotype with internalized desmosomal components, analogous to the treatment of cells with exogenous TGF alpha. The clones expressed a 5.2-kb TGF alpha message and synthesized an 18-kDa form of TGF alpha. Supernatants of TGF alpha-producing clones induced the internalization of desmosomal components, the production of vimentin, and increased motility in untransfected epithelial NBTII cells, indicating that the factor produced by the clones was in a biologically active form. TGF alpha-producing clones secreted significant levels of a 95-kDa gelatinolytic metal-loproteinase, virtually absent in untransfected cell supernatants. In contrast, levels of inhibitors of metalloproteinases and of a plasminogen activator were similar in untransfected and TGF alpha-transfected NBTII cells. These results suggest that expression of TGF alpha in an epithelial tumor cell results in the development of a motile, fibroblast-like phenotype with matrix-degrading potential, which could result in a more aggressive tumor in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号