首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Temperatures were recorded at several body sites in emperor penguins (Aptenodytes forsteri) diving at an isolated dive hole in order to document temperature profiles during diving and to evaluate the role of hypothermia in this well-studied model of penguin diving physiology. Grand mean temperatures (+/-S.E.) in central body sites during dives were: stomach: 37.1+/-0.2 degrees C (n=101 dives in five birds), pectoral muscle: 37.8+/-0.1 degrees C (n=71 dives in three birds) and axillary/brachial veins: 37.9+/-0.1 degrees C (n=97 dives in three birds). Mean diving temperature and duration correlated negatively at only one site in one bird (femoral vein, r=-0.59, P<0.05; range <1 degrees C). In contrast, grand mean temperatures in the wing vein, foot vein and lumbar subcutaneous tissue during dives were 7.6+/-0.7 degrees C (n=157 dives in three birds), 20.2+/-1.2 degrees C (n=69 in three birds) and 35.2+/-0.2 degrees C (n=261 in six birds), respectively. Mean limb temperature during dives negatively correlated with diving duration in all six birds (r=-0.29 to -0.60, P<0.05). In two of six birds, mean diving subcutaneous temperature negatively correlated with diving duration (r=-0.49 and -0.78, P<0.05). Sub-feather temperatures decreased from 31 to 35 degrees C during rest periods to a grand mean of 15.0+/-0.7 degrees C during 68 dives of three birds; mean diving temperature and duration correlated negatively in one bird (r=-0.42, P<0.05). In general, pectoral, deep venous and even stomach temperatures during diving reflected previously measured vena caval temperatures of 37-39 degrees C more closely than the anterior abdominal temperatures (19-30 degrees C) recently recorded in diving emperors. Although prey ingestion can result in cooling in the stomach, these findings and the lack of negative correlations between internal temperatures and diving duration do not support a role for hypothermia-induced metabolic suppression of the abdominal organs as a mechanism of extension of aerobic dive time in emperor penguins diving at the isolated dive hole. Such high temperatures within the body and the observed decreases in limb, anterior abdomen, subcutaneous and sub-feather temperatures are consistent with preservation of core temperature and cooling of an outer body shell secondary to peripheral vasoconstriction, decreased insulation of the feather layer, and conductive/convective heat loss to the water environment during the diving of these emperor penguins.  相似文献   

2.
The energetic costs of swimming at the surface (swimming) and swimming underwater (diving) are compared in tufted ducks (Aythya fuligula) and three species of penguins, the gentoo (Pygoscelis papua), the king (Aptenodytes patagonicus), and the emperor (Aythya forsteri). Ducks swim on the surface and use their webbed feet as paddles, whereas penguins tend to swim just below the surface and use their flippers as hydrofoils, the latter being much more efficient. Penguins are more streamlined in shape. Thus, the amount of energy required to transport a given mass of bird a given distance (known as the cost of transport) is some two to three times greater in ducks than in penguins. Ducks are also very buoyant, and overcoming the force of buoyancy accounts for 60% and 85% of the cost of descent and remaining on the bottom, respectively, in these birds. The energy cost of a tufted duck diving to about 1.7 m is similar to that when it is swimming at its maximum sustainable speed at the surface (i.e., approximately 3.5 times the value when resting on water). Nonetheless, because of the relatively short duration of its dives, the tufted duck dives well within its calculated aerobic dive limit (cADL, usable O(2) stores per rate of O(2) usage when underwater). However, these three species of penguins have maximum dive durations ranging from 5 min to almost 16 min and maximum dive depths from 155 to 530 m. When these birds dive, they have to metabolise at no more than when resting in water in order for cADL to encompass the duration of most of their natural dives. In gentoo and king penguins, there is a fall in abdominal temperature during bouts of diving; this may reduce the oxygen requirements in the abdominal region, thus enabling dive duration to be extended further than would otherwise be the case.  相似文献   

3.
We examined the incidence of extreme diving in a 3-year overwintering study of emperor penguins Aptenodytes forsteri in East Antarctica. We defined extreme dives as very deep (> 400 m) and/or very long (> 12 min). Of 137364 dives recorded by 93 penguins 264 dives reached depths > 400 m and 48 lasted > 12 min. Most (65%) very long dives occurred in winter (May–August) while 83% of the very deep dives took place in spring (September–November). The two most extreme dives (564 m depth, 21.8 min duration) were separate dives and were performed by different individual penguins. Penguins diving extremely deeply may have done so as part of their foraging strategy whereas penguins diving for very long times may have been forced to do so by changes in the sea-ice conditions.  相似文献   

4.
The impact of relatively small externally attached time series recorders on some foraging parameters of seabirds was investigated during the austral summer of 1995 by monitoring the diving behaviour of 10 free-ranging king penguins (Aptenodytes patagonicus) over one foraging trip. Time-depth recorders were implanted in the abdominal cavities of the birds, and half of the animals also had dummy loggers attached on their backs. Although most of the diving behaviour was not significantly affected by the external loggers (P>0.05), the birds with externally attached loggers performed almost twice as many shallow dives, between 0 and 10 m depth, as the birds without external loggers. These shallow dives interrupted more frequently the deep-diving sequences in the case of birds with external loggers (percentage of deep dives followed by deep dives: 46% for birds with implants only vs. 26% for birds with an external attachment). Finally, the distribution pattern of the postdive durations plotted against the hour of the day was more heterogeneous for the birds with an external package. In addition, these penguins had extended surfacing times between two deep dives compared to birds without external attachments (P<0.0001). These results suggest the existence of an extra energy cost induced by externally attached loggers.  相似文献   

5.
Many diving seabirds and marine mammals have been found to regularly exceed their theoretical aerobic dive limit (TADL). No animals have been found to dive for durations that are consistently shorter than their TADL. We attached time-depth recorders to 7 blue whales and 15 fin whales (family Balaenopteridae). The diving behavior of both species was similar, and we distinguished between foraging and traveling dives. Foraging dives in both species were deeper, longer in duration and distinguished by a series of vertical excursions where lunge feeding presumably occurred. Foraging blue whales lunged 2.4 (+/-1.13) times per dive, with a maximum of six times and average vertical excursion of 30.2 (+/-10.04) m. Foraging fin whales lunged 1.7 (+/-0.88) times per dive, with a maximum of eight times and average vertical excursion of 21.2 (+/-4.35) m. The maximum rate of ascent of lunges was higher than the maximum rate of descent in both species, indicating that feeding lunges occurred on ascent. Foraging dives were deeper and longer than non-feeding dives in both species. On average, blue whales dived to 140.0 (+/-46.01) m and 7.8 (+/-1.89) min when foraging, and 67.6 (+/-51.46) m and 4.9 (+/-2.53) min when not foraging. Fin whales dived to 97.9 (+/-32.59) m and 6.3 (+/-1.53) min when foraging and to 59.3 (+/-29.67) m and 4.2 (+/-1.67) min when not foraging. The longest dives recorded for both species, 14.7 min for blue whales and 16.9 min for fin whales, were considerably shorter than the TADL of 31.2 and 28.6 min, respectively. An allometric comparison of seven families diving to an average depth of 80-150 m showed a significant relationship between body mass and dive duration once Balaenopteridae whales, with a mean dive duration of 6.8 min, were excluded from the analysis. Thus, the short dive durations of blue whales and fin whales cannot be explained by the shallow distribution of their prey. We propose instead that short duration diving in large whales results from either: (1) dispersal behavior of prey; or (2) a high energetic cost of foraging.  相似文献   

6.
J. P. Croxall    D. R. Briggs    A. Kato    Y. Naito    Y. Watanuki    T. D. Williams 《Journal of Zoology》1993,230(1):31-47
The pattern and characteristics of diving in two female macaroni penguins Eudyptes chrysolophus was studied, during the brooding period, using continuous-recording time-depth recorders, for a total of I8 days (15 consecutive days) during which the depth, duration and timing of 4876 dives were recorded. Diving in the first 11 days was exclusively diurnal, averaging 244 dives on trips lasting 12 hours. Near the end of the brooding period trips were longer and included diving at night. About half of all trips (except those involving continuous night-time diving) was spent in diving and dive rate averaged 14–25 dives per hour (42 per hour at night). The duration of day time dives varied between trips, and averaged 1.4–1.7 min, with a subsequent surface interval of 0.5–0.9 min. Dive duration was significantly directly related to depth, the latter accounting for 53% of the variation. The average depths of daytime dives were 20–35 m (maximum depth 11 5 m). Dives at night were shorter (average duration 0.9 min) and much shallower (maximum 11 m); depth accounted for only 6% of the variation in duration. Estimates of potential prey capture rates (3–5 krill per dive; one krill every 17–20 s) are made. Daily weight changes in chicks were directly related to number of dives, but not to foraging trip duration nor time spent diving. Of the other species at the same site which live by diving to catch krill, gentoo penguins forage exclusively diurnally, making longer. deeper dives; Antarctic fur seals, which dive to similar depths as macaroni penguins, do so mainly at night.  相似文献   

7.
The diving behaviour of four leatherback turtles (Dermochelys coriacea) was recorded for periods of 0.5-8.1 months during their postnesting movements in the Indian and Atlantic Oceans, when they covered 1569-18,994 km. Dive data were obtained using satellite-linked transmitters which also provided information on the dive depths and profiles of the turtles. Turtles mainly dove to depths < 200 m, with maximum dive durations under 30-40 min and exhibited diel variations in their diving activity for most part of the routes, with dives being usually longer at night. Diurnal dives were in general quite short, but cases of very deep (> 900 m) and prolonged (> 70 min) dives were however recorded only during daytime. The three turtles that were tracked for the longest time showed a marked change in behaviour during the tracking, decreasing their dive durations and ceasing to dive deeply. Moreover, diel variations disappeared, with nocturnal dives becoming short and numerous. This change in turtle diving activity appeared to be related to water temperature, suggesting an influence of seasonal prey availability on their diving behaviour. The turtle diving activity was independent on the shape of their routes, with no changes between linear movements in the core of main currents or looping segments in presence of oceanic eddies.  相似文献   

8.
Hypothesizing that emperor penguins (Aptenodytes forsteri) would have higher daily energy expenditures when foraging for their food than when being hand-fed and that the increased expenditure could represent their foraging cost, we measured field metabolic rates (FMR; using doubly labeled water) over 4-d periods when 10 penguins either foraged under sea ice or were not allowed to dive but were fed fish by hand. Surprisingly, penguins did not have higher rates of energy expenditure when they dove and captured their own food than when they did not forage but were given food. Analysis of time-activity and energy budgets indicated that FMR was about 1.7 x BMR (basal metabolic rate) during the 12 h d(-1) that penguins were lying on sea ice. During the remaining 12 h d(-1), which we termed their "foraging period" of the day, the birds were alert and active (standing, preening, walking, and either free diving or being hand-fed), and their FMR was about 4.1 x BMR. This is the lowest cost of foraging estimated to date among the eight penguin species studied. The calculated aerobic diving limit (ADL(C)), determined with the foraging period metabolic rate of 4.1 x BMR and known O(2) stores, was only 2.6 min, which is far less than the 6-min ADL previously measured with postdive lactate analyses in emperors diving under similar conditions. This indicates that calculating ADL(C) from an at-sea or foraging-period metabolic rate in penguins is not appropriate. The relatively low foraging cost for emperor penguins contributes to their relatively low total daily FMR (2.9 x BMR). The allometric relationship for FMR in eight penguin species, including the smallest and largest living representatives, is kJ d(-1)=1,185 kg(0.705).  相似文献   

9.
The early life stage of long-lived species is critical to the viability of population, but is poorly understood. Longitudinal studies are needed to test whether juveniles are less efficient foragers than adults as has been hypothesized. We measured changes in the diving behaviour of 17 one-year-old king penguins Aptenodytes patagonicus at Crozet Islands (subantartic archipelago) during their first months at sea, using miniaturized tags that transmitted diving activity in real time. We also equipped five non-breeder adults with the same tags for comparison. The data on foraging performance revealed two groups of juveniles. The first group made shallower and shorter dives that may be indicative of early mortality while the second group progressively increased their diving depths and durations, and survived the first months at sea. This surviving group of juveniles required the same recovery durations as adults, but typically performed shallower and shorter dives. There is thereby a relationship between improved diving behaviour and survival in young penguins. This long period of improving diving performance in the juvenile life stage is potentially a critical period for the survival of deep avian divers and may have implications for their ability to adapt to environmental change.  相似文献   

10.
Core temperature was determined in two king penguins living in the wild at Ile de la Possession, Crozel Archipelago, using implantable four-channel temperature loggers. Core temperatures derived from bird no. 1 (sensor placed under the sternum, in the vicinity of the liver and upper stomach) were closely correlated with diving activity (as determined by an external light recorder), and ranged from 38.3°C, (on land) to a minimum of 37.2°C during a dive. Core temperatures measured in bird no. 2 showed that temperatures near the heart were generally 1°C lower than those under the sternum or in the lower abdomen. Core temperatures declined continuously during dives (by 0.8, 1.2 and 2.7°C in the lower abdomen, under the sternum and near the heart, respectively) and showed precipitous drops to 35°C, probably associated with ingestion of food. Temperatures measured near the heart fluctuated over a period of 288 s, corresponding to the duration (from the literature) of the surface/dive cycle. The relevance of these findings with respect to diving physiology, blood perfusion of tissues, tissue metabolism and aerobic dive limits is discussed.  相似文献   

11.
Swim velocities at 15-sec intervals and maximum depth per dive were recorded by microprocessor units on two "mixed diver" adult female northern fur seals during summer foraging trips. These records allowed comparison of swim velocities of deep (>75 m) and shallow (<75 m) dives.
Deep dives averaged 120 m depth and 3 min duration; shallow dives averaged 30 m and 1.2 min. Mean swim velocities on deep dives were 1.8 and 1.5 m/sec for the two animals; mean swim velocities on shallow dives were 1.5 and 1.2 m/sec. The number of minutes per hour spent diving during the deep and shallow dive patterns were 11 and 27 min, respectively.
Swim velocity, and hence, relative metabolic rate, did not account for the differences in dive durations between deep and shallow dives. The long surface durations associated with deep dives, and estimates of metabolic rates for the observed swim velocities, suggest that deep dives involve significant anaerobic metabolism.  相似文献   

12.
We investigated the diving behaviour, the time allocation of the dive cycle and the behavioural aerobic dive limit (ADL) of platypuses (Ornithorhynchus anatinus) living at a sub-alpine Tasmanian lake. Individual platypuses were equipped with combined data logger-transmitter packages measuring dive depth. Mean dive duration was 31.3 s with 72% of all dives lasting between 18 and 40 s. Mean surface duration was 10.1 s. Mean dive depth was 1.28 m with a maximum of 8.77 m. Platypuses performed up to 1600 dives per foraging trip with a mean of 75 dives per hour. ADL was estimated by consideration of post-dive surface intervals vs. dive durations. Only 15% of all dives were found to exceed the estimated ADL of 40 s, indicating mainly aerobic diving in the species. Foraging platypuses followed a model of optimised recovery time, the optimal breathing theory. Total bottom duration or total foraging duration per day is proposed as a useful indicator of foraging efficiency and hence habitat quality in the species.  相似文献   

13.
The theoretical aerobic diving limit (tADL) specifies the duration of a dive after which oxygen reserves available for diving are depleted. The tADL has been calculated by dividing the available oxygen stores by the diving metabolic rate (DMR). Contrary to diving mammals, most diving birds examined to date exceed the tADL by a large margin. This discrepancy between observation and theory has engendered two alternative explanations suggesting that dive duration is extended either anaerobically or by depressing aerobic metabolism. Current formulations of tADL uncritically assume that DMR is independent of depth. However, diving birds differ from other vertebrate divers by having a larger respiratory system volume and by retaining air in their plumage while diving, thereby elevating buoyancy. Because air compresses with depth, diving power requirement decreases with depth. Following this principle, we modeled DMR to depth for Adelie and little penguins and reformulated the tADL accordingly. The model's results suggest that < approximately 5% of natural dives by Adelie penguins exceed the reformulated tADL(d), or maximal aerobic depth, and none in the more buoyant little penguin. These data suggest that, for both small and large species, deep diving birds rarely if ever exceed tADL(d).  相似文献   

14.
Diving behavior of 2 breeding Chinstrap penguins (Pygoscelis antarctica) was studied focusing first and primarily on dive bouts rather than dives themselves. Analysis of dive bout organization revealed (1) though there are differences between solitary dives and dive bouts in dive duration and dive depth, the first dives of dive bouts do not differ from solitary dives in the dive parameters, (2) mean dive duration during bout correlates positively to both mean dive depth during bout and mean surface interval during bout, while number of dives during bout negatively correlates to both cost (consumed energy) and duration of a dive cycle during bout. These findings suggest the following possibilities on foraging behavior of penguins: (1) their decision to repeat diving depends on the result of the first dive at a site, and the first dives of bouts would tend to be searching or evaluating dives though they would be also successful foraging dives, (2) they repeat diving at a foraging patch until foraging efficiency decrease to a threshold of diminishing returns.  相似文献   

15.
Huddling is the key energy-saving mechanism for emperor penguins to endure their 4-mo incubation fast during the Antarctic winter, but the underlying physiological mechanisms of this energy saving have remained elusive. The question is whether their deep body (core) temperature may drop in association with energy sparing, taking into account that successful egg incubation requires a temperature of about 36 degrees C and that ambient temperatures of up to 37.5 degrees C may be reached within tight huddles. Using data loggers implanted into five unrestrained breeding males, we present here the first data on body temperature changes throughout the breeding cycle of emperor penguins, with particular emphasis on huddling bouts. During the pairing period, core temperature decreased progressively from 37.5 +/- 0.4 degrees C to 36.5 +/- 0.3 degrees C, associated with a significant temperature drop of 0.5 +/- 0.3 degrees C during huddling. In case of egg loss, body temperature continued to decrease to 35.5 +/- 0.4 degrees C, with a further 0.9 degrees C decrease during huddling. By contrast, a constant core temperature of 36.9 +/- 0.2 degrees C was maintained during successful incubation, even during huddling, suggesting a trade-off between the demands for successful egg incubation and energy saving. However, such a limited drop in body temperature cannot explain the observed energy savings of breeding emperor penguins. Furthermore, we never observed any signs of hyperthermia in huddling birds that were exposed to ambient temperatures as high as above 35 degrees C. We suggest that the energy savings of huddling birds is due to a metabolic depression, the extent of which depends on a reduction of body surface areas exposed to cold.  相似文献   

16.
We developed an automated method using depth and one axis of body acceleration data recorded by animal-borne data loggers to identify activities of penguins over long-term deployments. Using this technique, we evaluated the activity time budget of emperor penguins (n = 10) both in water and on sea ice during foraging trips in chick-rearing season. During the foraging trips, emperor penguins alternated dive bouts (4.8±4.5 h) and rest periods on sea ice (2.5±2.3 h). After recorder deployment and release near the colony, the birds spent 17.9±8.4% of their time traveling until they reached the ice edge. Once at the ice edge, they stayed there more than 4 hours before the first dive. After the first dive, the mean proportions of time spent on the ice and in water were 30.8±7.4% and 69.2±7.4%, respectively. When in the water, they spent 67.9±3.1% of time making dives deeper than 5 m. Dive activity had no typical diurnal pattern for individual birds. While in the water between dives, the birds had short resting periods (1.2±1.7 min) and periods of swimming at depths shallower than 5 m (0.25±0.38 min). When the birds were on the ice, they primarily used time for resting (90.3±4.1% of time) and spent only 9.7±4.1% of time traveling. Thus, it appears that, during foraging trips at sea, emperor penguins traveled during dives >5 m depth, and that sea ice was primarily used for resting. Sea ice probably provides refuge from natural predators such as leopard seals. We also suggest that 24 hours of sunlight and the cycling of dive bouts with short rest periods on sea ice allow emperor penguins to dive continuously throughout the day during foraging trips to sea.  相似文献   

17.
We present data on diving pattern and performance (dive depth, duration, frequency and organization during the foraging trip) in gentoo penguins Pygoscelis papua , obtained using time-depth recorders ( n = 9 birds, 99 foraging trips). These data are used to estimate various parameters of foraging activity, e.g. foraging range, prey capture rates, and are compared in relation to breeding chronology. Foraging trip duration was 6 h and 10 h, and trip frequency 1.0/day and 0.96/day, during the brooding and creche periods, respectively. Birds spent on average 52%of each foraging trip diving. Dive depth and duration were highly bimodal: shallow dives (< 21 m) averaged 4 m and 0.23 min, and deep dives (> 30 m) 80 m and 2.5 min, respectively. Birds spent on average 71%and 25%of total diving time in deep and shallow dives, respectively. For deep dives, dive duration exceeded the subsequent surface interval, but shallow dives were followed by surface intervals 2–3 times dive duration. We suggest that most shallow dives are searching/exploratory dives and most deep dives are feeding dives. Deep dives showed clear diel patterns averaging 40 m at dawn and dusk and 80–90 m at midday. Estimated foraging ranges were 2.3 km and 4.1 km during the brood and creche period, respectively. Foraging trip duration increased by 4 h between the brood and creche periods but total time spent in deep dives (i.e. time spent feeding) was the same (3 h). Of 99 foraging trips, 56%consisted of only one dive bout and 44%of 2–4 bouts delimited by extended surface intervals > 10 min. We suggest that this pattern of diving activity reflects variation in spatial distribution of prey rather than the effect of physiological constraints on diving ability.  相似文献   

18.
J. Baldwin 《Hydrobiologia》1988,165(1):255-261
Energy metabolism in the pectoralis and supracoracoideus muscles of seven species of penguins was investigated by determining muscle fibre diameter, myoglobin content, pH buffering capacity and the distribution and properties of lactate dehydrogenase isoenzymes.The penguins can be arranged as follows in order of increasing anaerobic capabilities of the muscles: little < rockhopper and royal < gentoo < Adelie, emperor and king.As a good correlation exists between muscle biochemistry and known diving behaviour of emperor, king, gentoo and little penguins, predictions can be made about the behaviour of species for which only the biochemical data are available.  相似文献   

19.
Sea birds play a major role in marine food webs, and it is important to determine when and how much they feed at sea. A major advance has been made by using the drop in stomach temperature after ingestion of ectothermic prey. This method is less sensitive when birds eat small prey or when the stomach is full. Moreover, in diving birds, independently of food ingestion, there are fluctuations in the lower abdominal temperature during the dives. Using oesophageal temperature, we present here a new method for detecting the timing of prey ingestion in free-ranging sea birds, and, to our knowledge, report the first data obtained on king penguins (Aptenodytes patagonicus). In birds ashore, which were hand-fed 2-15 g pieces of fish, all meal ingestions were detected with a sensor in the upper oesophagus. Detection was poorer with sensors at increasing distances from the beak. At sea, slow temperature drops in the upper oesophagus and stomach characterized a diving effect per se. For the upper oesophagus only, abrupt temperature variations were superimposed, therefore indicating prey ingestions. We determined the depths at which these occurred. Combining the changes in oesophageal temperatures of marine predators with their diving pattern opens new perspectives for understanding their foraging strategy, and, after validation with concurrent applications of classical techniques of prey survey, for assessing the distribution of their prey.  相似文献   

20.
Harbour seals, Phoca vitulina, dive from birth, providing a means of mapping the development of the diving response, and so our objective was to investigate the postpartum development of diving bradycardia. The study was conducted May-July 2000 and 2001 in the St. Lawrence River Estuary (48 degrees 41'N, 68 degrees 01'W). Both depth and heart rate (HR) were remotely recorded during 86,931 dives (ages 2-42 d, n = 15) and only depth for an additional 20,300 dives (combined data covered newborn to 60 d, n = 20). The mean dive depth and mean dive durations were conservative during nursing (2.1 +/- 0.1 m and 0.57 +/- 0.01 min, range = 0-30.9 m and 0-5.9 min, respectively). The HR of neonatal pups during submersion was bimodal, but as days passed, the milder of the two diving HRs disappeared from their diving HR record. By 15 d of age, most of the dive time was spent at the lower diving bradycardia rate. Additionally, this study shows that pups are born with the ability to maintain the lower, more fully developed dive bradycardia during focused diving but do not do so during shorter routine dives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号