首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fully symbiotic or nitrate treated (3 d, 4·0 mol m–3)soybean (Glycine max [L.] Merr.) cv. Bragg and a nitrate tolerantsupernodulating soybean mutant nts 1007 were exposed to 13Cenriched CO2 for a period of 10 h. During this period and forthe subsequent 24 h, continuous measurements of 13CO2 and 12CO2evolution of their root systems were undertaken. Three harvestsduring the experiment allowed determinations of the distributionof recently fixed carbon in different plant organs. These measurementsindicated higher dependence of N2 fixation in nts 1007 on recentlyfixed carbon (RFC) by showing elevated RFC concentrations innodules as well as their augmented respiration. Root respirationof both genotypes was generally more reliant on stored carbon. Nitrate induced in all measured parameters a clear responsein the mutant analogous to the wild type, but quantitative differencesremained throughout. Nodule respiratory activity, the relativespecific activity (RSA), and the utilization of RFC were substantiallyreduced, but remained higher in nts 1007 than in Bragg, whilethe demand of roots for RFC increased in Bragg more than inthe supernodulator. The elevated carbon requirement of the nodulecomplement of the mutant and a high dependence on recently fixedcarbon could be attributed to higher nodule growth and maintenancecosts of the supernodulating genotype and were not associatedwith augmented nitrogen fixation activity. This less efficientutilization of carbon and the associated almost parasitic characterof the nodule complement of nts 1007 is considered to be thecause of reduced growth of the mutant. No evidence was foundfor a physiologically based nitrate tolerance in terms of nitrogenfixation. Key words: Glycine max, nitrate, N2fixation, respiration, carbon partitioning, steady-state labelling  相似文献   

2.
Growth and symbiotic performance of soybean (Glycine max (L.)Merrill) cv. Bragg and three of its induced nodulation mutants(nod49, non-nodulating; ntsl 116, intermediate supernodulator;nts1007, extreme supernodulator) were compared throughout developmentunder different nitrogen regimes (0, 2, 5 and 10 mol nitratem–3). Nitrogen fixation was assessed using 15N-isotopedilution and xylem sap analysis for ureide content. Both techniquesconfirmed a complete lack of N2 fixation activity in nod49.Plant reliance on nitrogen fixation by the other genotypes wasdependent on the nitrate regime and the developmental stage.The ntsl007 and ntsl 116 mutants fixed more nitrogen than theparent cultivar in the presence of 10 mol m–3 nitratein the nutrient solution, but higher input of symbioticallyderived nitrogen was still insufficient to offset the amountof nitrogen removed in the harvested seed. However, the mutantsutilized less nitrate for growth than Bragg. Comparison of estimatesof N2 fixation derived from the 15N-dilution technique withthose based on relative ureide content of xylem sap indicatedthat the latter offered a simple and reliable procedure forevaluating the symbiotic performance of supernodulating plants. Key words: 15N-isotope dilution, supernodulation, ureides  相似文献   

3.
A comparison between two hydroponically-grown soybean genotypes(Glycine max [L.] Merr.) cv. Bragg and the supernodulating mutantnts 1007 was made in terms of dry matter accumulation, carbon,nitrogen, and mineral element distribution, 15N natural abundanceand the effect of short-term treatment with 4·0 mol m–3KNO3 on nitrogenase activity and respiration. Differences weremost pronounced in nodule dry weight and plant nitrogen content,both of which were recorded to be substantially elevated inthe mutant. Mineral element concentrations in different plantparts proved to be rather similar with the exception of Ca,found to be lower in leaves of the mutant, and Mn concentrationswhich were twice as high in roots of nts 1007. The values of15N natural abundance showed that both genotypes were equallydependent on nitrogen fixation when nitrate was absent. Theresults of the acetylene reduction assays indicated similarspecific nodule activity, while on a per plant basis nitrogenaseactivity of the mutant proved to be more than twice the amountof Bragg. This effect was also reflected in higher nodule respirationwhile root respiration remained below that of Bragg. Nitrate induced a substantial reduction in nitrogenase activitynot only in Bragg, but also in nts 1007. Nodule respiratoryactivity of Bragg was reduced by nitrate from 1·27 to0·34 mg C h–1 plant–1. In nts 1007 correspondingvalues were 2·70 to 1·52 mg C h–1 plant–1.Starch concentration in nodules was decreased in both genotypes,but nevertheless remained higher in nts 1007. Values for solublesugars in nodules even increased in the mutant in response tonitrate while the same treatment caused a reduction in Bragg.The data indicate that nitrogenase activities of Bragg and nts1007 are equally sensitive to short-term application of nitrate. Key words: Glycine max, C and N distribution, nitrate, root respiration, 15N natural abundance  相似文献   

4.
Ten of 11 supernodulating mutants of soybean [ Glycine max (L.) Merr.] cv. Bragg, in which nodulation was far in excess of that in the wild type, showed pronounced tolerance of nodulation to applied nitrate. Mutant nts (nitrate-tolerant symbiosis) 1116 had an intermediate nodulation response and also showed some inhibition by nitrate. Mutant 1029, a revertant of nts382 (an extreme supernodulator), showed a wild-type nodulation pattern and was equally sensitive to nitrate as cv. Bragg. Grafting experiments with cv. Bragg and nts382 indicated that both supernodulation and tolerance of nodulation to nitrate were dependent on shoot factors. Total leaf nitrate reductase (EC 1.6.6.1 and EC 1.6.6.2) activity of the supernodulating mutants was similar to that in cv. Bragg. We conclude from these results that the inhibitory effect of nitrate on nodule initiation and development in soybean depends on an interaction between nitrate and the autoregulation singal. In the supernodulating mutants, the autoregulation signal is either altered or absent and cosequently nodulation in these mutants is not sensitive to nitrate.  相似文献   

5.
Growth-chamber studies were conducted to evaluate nitrogen assimilationby three hypernodulated soybean [Glycine max (L.) Merr.] mutants(NOD1–3, NOD2–4, NOD3–7) and the Williamsparent. Seeds were inoculated at planting and transplanted atday 7 to nutrient solution with 1 mol m–3 urea (optimizesnodule formation) or 5 mol m–3 NO3 (inhibits noduleformation). At 25 d after planting, separate plants were exposedto 15NO2 or 15NO3 for 3 to 48 h to evaluate N2 fixationand NO3 assimilation. Plant growth was less for hypernodulatedmutants than for Williams with both NO3 and urea nutrition.The major portion of symbiotically fixed 15N was rapidly assimilated(30 min) into an ethanol-soluble fraction, but by 24 h aftertreatment the ethanolinsoluble fraction in each plant part wasmost strongly labelled. Distribution patterns of 15N among organswere very similar among lines for both N growth treatments aftera 24 h 15N2 fixation period; approximate distributions were40% in nodules, 12% in roots, 14% in stems, and 34% in leaves.With urea-grown plants the totalmg 15N fixed plant–1 24h–1 was 1·18 (Williams), 1·40 (N0D1-3),107 (NOD2-4), and 0·80 (NOD3-7). The 5 mol m-3 NO3- treatmentresulted in a 95 to 97% decrease in nodule mass and 15N2 fixationby Williams, while the three mutants retained 30 to 40% of thenodule mass and 17 to 19% of the 15N2 fixation of respectiveurea-grown controls. The hypernodulated mutants, which had restrictedroot growth, absorbed less 15NO3- than Williams, irrespectiveof prior N growthcondition. The 15N from 15NO3- was primarilyretained in the soluble fraction of all plant parts through24 h. The 15N incorporation studies confirmed that nodule developmentis less sensitive to external NO3- in mutant lines than in theWilliams parent, and provide evidence that subsequent metabolismand distribution within the plant was not different among lines.These results further confirm that the hypernodulated mutantsof Williams are similar in many respects to the hyper- or supernodulatedmutants in the Bragg background, and suggest that a common mutationalevent affectingautoregulatory control of nodulation has beentargeted. Key words: Glycine max (L.) Merr., soybean, N2fixation, nitrate assimilation, nodulation mutants, 15N isotope  相似文献   

6.
White clover (Trifolium repens L.) plants were grown from seedin perlite, inoculated with effective rhizobia and exposed tothe same ‘concentration x days’ of 15N-labellednitrate in four contrasting patterns of doses. Acetylene reductionwas measured at intervals using an open, continuous-flow sytem.Mean dry weight per nodule and rates of acetylene reductionfell rapidly (2–3 d) during periods of exposure to highnitrate concentrations (> 7 mM N) and rose again, equallyrapidly, when nitrate was withdrawn or substantially reduced.The fall in mean dry weight per nodule (50–66 per cent)was almost certainly too large to be accounted for by loss ofsoluble or storage carbohydrate only. No new nodules were formedduring periods of high nitrate availability. When nitrate wassupplied continuously at a moderate concentration (5.7 mM N)nodule numbers stabilised although existing nodules increasedin dry weight by almost four-fold over the 30 d measurementperiod. Treatment had no effect on the percentage nitrogen in planttissues although there were large differences in the proportionsderived from nitrate and N2-fixation. Plants exposed continuouslyor frequently to small doses of nitrate took up more nitrate,and hence relied less heavily on N2-fixation, than those exposedto larger doses less often. Increased reliance on nitrate broughtwith it increased total dry weight and shoot: root ratios. Possiblemechanisms involved in bringing about these differences in nitrogennutrition and growth are discussed. White clover, Trifolium repens, nitrate, N2-fixation, nodule, acetylene reduction, 15N  相似文献   

7.
Growth of two actinorhizal species was studied in relation tothe form of N supply in water culture. Non-nodulated bog myrtle(Myrica gale) and grey alder (Alnus incana) were grown withNH4+, NH4NO3 or NO3 (4 mol m–3 N). A nodulatedseries of bog myrtle was also cultivated in N-free medium. Relative growth rate (RGR), utilization rate of N, and shoot/rootratio were highest for the two species with the N completelysupplied as NH4+. In both species, nitrate was largely reducedin the roots and the presence of NO3 in combined-N supplyalways affected the RGR and N utilization rate negatively. BothN2 fixation and complete NO3 nutrition represented conditionsof relative N-deficiency resulting in relatively low tissue-Nconcentrations and a greater allocation of dry mass to the roots.The physiological N status of nodulated M. gale plants was comparativelygood, as indicated by a normal nodule weight ratio and a relativelyhigh N2-fixing rate per unit nodule mass. However, whole-plantN2-fixing capacity remained relatively low in comparison withacquisition rates of N in combined-N plants. The anion charge from the nitrate reduction was largely directlyexcreted as an OH efflux. H + /N ratios generally agreedwith the theory. In comparison with NH4+ nutrition, carboxylateconcentrations were higher in N2-fixing M. gale plants and theH + /N ratio in nodulated plants was less than unity below thevalue for ammonium plants as previously found for other actinorhizalspecies. Therefore, NH4+ should be an energetically more attractiveN source for actinorhizal plants than N2. The results agree with commonly accepted views on energeticsof N uptake and assimilation in higher plants and support theconcept of a basically similar physiological behaviour betweennon-legumes and legumes. Key words: Actinorhizal symbioses, ammonium, H+/OH efflux, nitrate, N2 fixation, NRA  相似文献   

8.
Summary The early events in the development of nodules induced byBradyrhizobium japonicum were studied in serial sections of a wild type (cv. Bragg), a supernodulating mutant (nts 382) and four non-nodulating mutants (nod49, nod139, nod772, andrj 1) of soybean (Glycine max [L.] Merrill). Cultivar Bragg responded to inoculation in a similar manner to that described previously for cv. Williams; centres of sub-epidermal cell divisions were observed both with and without associated infection threads and most infection events were blocked before the formation of a nodule meristem. The non-nodulating mutants (nod49, nod772, andrj 1) had, at most, a few centres of sub-epidermal cell divisions. In general, these were devoid of infection threads and did not develop beyond the very early stages of nodule ontogeny. Sub-epidermal cell divisions or infection threads were never observed on mutant nodl39. This mutant is not allelic to the other non-nodulating mutants and represents a defect in a separate complementation group or gene that is required for nodulation. The supernodulating mutant nts382, which is defective in autoregulation of nodulation, had a similar number of sub-epidermal cell divisions as the wild-type Bragg, but a much greater proportion of these developed to an advanced stage of nodule ontogeny. Mutant nts382, like Bragg, possessed other infection events that were arrested at an early stage of development. The results are discussed in the context of the progression of events in nodule formation and autoregulation of nodulation in soybean.Abbreviations nts nitrate tolerant symbiosis - RT root tip (i.e., position of the tap root tip at the time of inoculation) - SERH shortest emerging root hair (i.e., position of the shortest emerging root hair on the tap root at the time of inoculation) - SCD subepidermal cell divisions  相似文献   

9.
The respiratory effluxes of nodules and of roots of FiskebyV soyabean (Glycine max (L.) Merr.), grown in a controlled environment,were measured at intervals in air and 3% O2 from shortly afterthe onset of N2 fixation until plant senescence. The respiratoryburdens linked with nitrogenase plus ammonia metabolism, andnodule growth and maintenance, were calculated from gas exchangedata and related to the concurrent rates of N2 fixation. The specific respiration rates of nodules increased to a maximumof 21 mg CO2 g–1 h–1 at the time pods began development:the equivalent maximum for roots was c. 4.5 mg CO2 g–1h–1. Maximum nodule and root respiration rates per plantwere attained about 25 d later at the time N2 fixation peakedat 15 mg N d–1 plant–1. The relationship between nodule respiration and N2 fixationindicated an average respiratory cost of 13.2 mg CO2 mg–1N until the last few days of plant development Separation ofnodule respiration into the two components: nitrogenase (+ NH3metabolism) respiration and nodule growth and maintenance respiration,indicated that the latter efflux accounted for c. 20% of nodulerespiration while N2 fixation was increasing and new noduletissue was being formed. When nodule growth ceased and N2 fixationdeclined, this component of respiration also declined. The respiratorycost of nitrogenase activity plus the associated metabolismof NH3 varied between 11 mg CO2 mg–1 N during vegetativeand early reproductive growth, to 12.5 mg CO2 mg–1 N duringthe later stages of pod development. Key words: N2 fixation, Respiration, Nodules, Nitrogenase  相似文献   

10.
Cotyledons of faba bean (Vicia faba L. cv. Fiord) were removedto determine whether an apparent delay in nodulation of thiscultivar could be attributed to an inhibitor from these organs.Cotyledons were left intact or excised from seedling plants14 and 18 d after sowing and plants grown with or without 2·5mm NO3. Seedling growth was depressed when cotyledons were removed onday 14 but not when removed on day 18. Removal of the cotyledonsat day 14 reduced nodule number and nodule weight in the absenceof NO3, but in the presence of NO2, nodule numberwas unaffected and only nodule weight was reduced. Cotyledonremoval at day 18 increased both nodule number and nodule weightwith +NO3 but not with –NO2. Acetylene reduction(AR) was markedly depressed by NO3. Cotyledon removalat day 14 decreased AR but removal at day 18 resulted in anincrease in AR. We suggest from these results that faba beancotyledons have an inhibitory effect on nodule activity andon nodulation and this interacts with NO3. This can beexplained through a ‘feed-back’ regulation of N2fixation by soluble N in the seedling. Vicia faba, faba bean, nodule number, nodulation, nodule activity, acetylene reduction, N2 fixation, cotyledon removal, nitrate  相似文献   

11.
The regulation and nitrate inhibition of nodule formation insoybean, Glycine max (L.) Merr., was further examined usingthe nodulation mutants of cv. Enrei. The non-nodulating mutantsEn115, Enl282, and En1314 produced extremely few markedly-curledroot hairs which were all devoid of infection threads, and invariablyfailed to initiate sub-epidermal cell divisions (SCDs) in theroot cortex. A considerable number of arrested SCDs was foundbefore nodule emergence in Enrei, but not in En6500 which hadsignificantly more SCDs that progressively increased at moreadvanced stages of nodule ontogeny. These observations indicatethat autoregulation acts by blocking the developmental stagebefore nodule emergence. In both Enrei and En65OO, the maturationof emerged nodules was restricted by a late-acting nodulationcontrol mechanism that is apparently unrelated to autoregulation.Reciprocal wedge-grafts of plants inoculated at sowing showedthat the control of the supernodulating phenotype resides inthe shoot, while the non-nodulating phenotype is strictly root-controlled.The nodulation phenotype of the current non-nodulating mutantsresults not from an alteration of the autoregulatory mechanism,but from mutation that exerts a root-localized effect that blocksSCDs which trigger the autoregulatory mechanism. Reciprocalgrafting experiments on Enrei and En6500 seedlings grown undervarious nitrate levels suggest that nitrate inhibition of nodulation,like autoregulation, is shoot-controlled. Since these two processesare invariably expressed together, they are probably causallyrelated, acting synergistically to regulate nodule formationin soybean. These results indicate that the regulation and nitrateinhibition of nodulation in the nodulation mutants of cv. Enreiare similar to those of cv. Bragg nodulation mutants. Key words: Autoregulation, nitrate-tolerant symbosis, non-nodulating mutants, soybean, supernodulating mutant  相似文献   

12.
Inhibition of Nodule Development in Soybean by Nitrate or Reduced Nitrogen   总被引:5,自引:1,他引:4  
Imsande, J. 1986. Inhibition of nodule development in soybeanby nitrate or reduced nitrogen.—J. exp. Bot. 37: 348–355. Nodulation of hydroponically grown soybean plants [Glycine max(L.) Merr.] is inhibited by continuous growth in the presenceof 4· mol m–3 KNO3 The presence of 4·0 molm–3 ‘starter nitrate’ for 3-6 d during noduledevelopment, however, subsequently stimulates nodule dry weightaccumulation and nitrogenase activity. These stimulations occureven though 4· mol m–3 nitrate temporarily delaysnodule development, i.e. the late steps of nodule developmentare reversibly inhibited by a short-term exposure to 4·0mol m–3 nitrate. On the other hand, treatment with 4·0mol m–3 nitrate in excess of 14 d significantly reducesnodule dry weight Thus, extended growth in the presence of 4·0mol m–3 KNO3 seems to block both early and late stepsof nodule development. Nodulation of hydroponically grown soybeansis also inhibited by continuous growth in the presence of 2·0mol m–3 (NH4)2SO4 This inhibition is not caused by acidityof the growth medium. On the other hand, nodule development6 d after inoculation with Rhizoblum japonicum is not delayedby a 7-d exposure to 2·0 mol m–3 (NH4)2SO4 butis partially inhibited by a prolonged exposure to (NH4)2SO4Because repression of nodulation by 4·0 mol m–3KNO3 is more severe than that by 2·0 mol m–3 (NH4)2SO4and because ammonium taken up by the soybean plant is not activelyoxidized to nitrate, it is suggested that there are at leasttwo mechanisms by which nitrate utilization represses noduleformation in soybean. Key words: Glycine max, nitrogen, nitrogen fixation, nodulation  相似文献   

13.
Established, nodulated white clover plants were transferredto eight tanks of a flowing culture apparatus with solutiontemperatures of 5, 11, 17, and 25 ?C (two tanks per temperature).Shoot temperature and light environment were common to all plants.After 7 d, (10 mmol m–3) was continuouslysupplied to one tank at each temperature while in the remainingfour tanks (one at each temperature) the plants were completelydependent on nodule N2-fixation. Plants were randomly selected at intervals during the following14 d period in order to measure root and nodule respirationand acetylene reduction activity (ARA) in a flow-through systemset at the adapted root temperature. Additional plants wereassayed for in vitro nitrate reductase activity in leaves, roots,and nodules. Apparent nitrogenase activity (ARA) and respiration associatedwith it were each markedly affected by temperature in two ways;(1) Activity per unit weight of nodule was reduced at lowertemperatures; (2) Development of the plant, and thus also nodulemass, was restricted at lower temperatures which, in turn, restrictedtotal nodule activity per plant. The presence of nitrate significantly reduced ARA of nodules,particularly at higher temperatures. However, significant discrepancieswere found when N2-fixation rates, estimated from the acetylenereduction assay, were compared with N2-fixation rates calculatedfrom curves fitted to N accumulation data (minus the rate of uptake in the case of nitrate-treated plants). Carbon use efficiency (CO2 respired per C2H4 produced) was notsignificantly affected by temperature or the presence of nitrate. Nitrate reductase activity (NRA) developed in all plant partsat the three highest temperatures, but not at 5 ?C. We calculatethat leaf NRA may account for 82, 75, and 68% of total nitratereduction at 11, 17, and 25 ?C respectively. Key words: Trifolium repens, white clover, N2 fixation, root temperature, acetylene reduction assay, nitrate, nitrate reductase  相似文献   

14.
Wild-type soybean (Glycine max [L] Merr. cv Bragg) and a nitrate-tolerant supernodulating mutant (nts382) were grown in split root systems to investigate the involvement of the autoregulation response and the effect of timing of inoculation on nodule suppression. In Bragg, nodulation of the root portion receiving the delayed inoculation was suppressed nearly 100% by a 7-day prior inoculation of the other root portion with Bradyrhizobium japonicum strain USDA 110. Significant suppression was also observed after a 24-hour delay in inoculation. Mutant nts382 in the presence of a low nitrate level (0.5 millimolar) showed little, if any, systemic suppression. Root fresh weights of individual root portions were similar for both wild type and nts382 mutant. When nts382 was grown in the absence of nitrate, a 7-day delay in inoculation resulted in only 30% suppression of nodulation and a significant difference in root fresh weight between the two sides, with the delayed inoculated side always being smaller. Nodulation tests on split roots of nts382, nts1116, and wild-type cultivars Bragg, Williams 82, and Clark demonstrated a difference in their systemic suppression ability. These observations indicate that (a) autoregulation deficiencies in mutant nts382 result in a reduction of systemic suppression of nodulation, (b) some suppression is detectable after 24 hours with a delayed inoculation, (c) the presence of low nitrate affects the degree of suppression and the root growth, and (d) soybean genotypes differ in their ability to express this systemic suppression.  相似文献   

15.
We compared the formation of nodules on the primary roots of a soybean cultivar (Glycine max (L.) Merr. cv. Bragg) and a supernodulating mutant derivative, nts382. Inoculation with Bradyrhizobium japonicum USDA 110 at different times after seed imbibition showed that the roots acquired full susceptibility to infection only between 3 and 4 days postgermination. When the plants were inoculated with serial dilutions of a bacterial suspension, the number of nodules formed in the initially susceptible region of the roots was linearly dependent on the logarithm of the inoculum dose until an optimum dose was reached. At least 10-fold-lower doses were required to induce half-maximal nodulation responses on nts382 than on the wild type. However, at optimal doses, about six times as many nodules formed in the initially susceptible region of the roots in nts382. Since there was no appreciable difference in the apparent rates of nodule emergence, the increased efficiency of nodule initiation in the supernodulating mutant could have resulted from a lower threshold of response to bacterial symbiotic signals. Two inoculations (24 h apart) of G. max cv. Bragg revealed that there was a host-mediated regulatory response that suppressed nodulation in younger portions of the primary roots, as reported previously for other soybean cultivar-Bradyrhizobium combinations. Similar experiments with nts382 revealed a comparable suppressive response, but this response was not as pronounced as it was in the wild type. This and other results suggest that there are additional control mechanisms for nodulation that are different from the systemic autoregulatory control of nodulation altered in supernodulating mutants.  相似文献   

16.
Treatments were applied to vary C and N availability in Alnusglutinosa L. and plant growth, nodule activity (including acetylenereduction) and amino acid composition of the xylem sap weremeasured. Removing the buds, a sink for N, caused a decreasein nodule activity. Flushing root systems daily with 100% O2destroyed nitrogenase activity and substantially decreased theamount of citrulline in the xylem sap. The amino acid compositionof xylem saps also altered according to the mode of N nutrition.In plants fed , xylem sap composition was similar to N2-fixing plants, however, when plants were fed, citrulline content increased. The assimilation and subsequent distribution of nitrate wasfollowed in an experiment in which labelled 15 was added to the base of plant pots. After 12 h7% of root N was from applied 15 and this increased to 75% at 7 d; substantial enrichment ofN from 15 also occurred in stems, buds and leaves. After 7 d, 3.5% of nodule N was from15, consistent with some N being supplied by recycling of shoot N. Xylem saps were alsocollected and after 12 h, glutamate and aspartate were enrichedwith 15N to 53% and 37% increasing after 7 d to 80% and 49%,respectively. Citrulline content of the xylem sap increasedfrom 3 to 9 µmol cm–3 following addition of 15 and at 7 d 80% of the N in the citrullinehad been derived from 15N. It is hypothesized that the growthand activity of A. glutinosa root nodules is sensitive to theN status of the plant and that the level of citrulline (or otheramino acids) returning to the nodules may feed back to regulatenodule growth and activity. Key words: Alnus glutinosa, citrulline, nitrate, feedback mechanism, N2-fixation.  相似文献   

17.
The distribution of nodules of soybean (Glycine max (L.) Merr.) cultivar Bragg and the supernodulating mutant derivative nts382 was examined on the primary root relative to the first emerging lateral root, and on laterals relative to the base of the roots of plants grown in sand-vermiculite. Mutant nts382 nodulates profusely even in the presence of nitrate and appears defective in a systemic autoregulatory response that regulates nodule number in soybean. Nodules were clustered on primary roots about the first 4 cm down from the first emerging lateral root in both genotypes. Nodulation profiles showed reduced nodulation in younger and older regions of the primary root. Similarly, nodules appeared clustered close to the base of the lateral roots. Decreasing inoculum dose shifted nodule emergence to younger regions of the primary root and to lateral roots emerging in younger portions of the primary root. Our results indicate that the supernodulating mutant is able to regulate nodule number in both primary and lateral roots in the particulate matrix.  相似文献   

18.
The growth of a supernodulating, nitrate-tolerant soybean [ Glycine max (L.) Merr.] mutant nts 382 (nitrate-tolerant symbiosis) was compared to that of its wild-type parent, cv. Bragg, over the first 50 days after sowing. Plants were grown either inoculated in the absence of an external nitrogen source or uninoculated in the presence of 5 m M KNO3. For both treatments, nts 382 growth up to 13 days after planting was faster than that of cv. Bragg. Thereafter, supernodulation of inoculated nts 382 occurred and growth of cv. Bragg was faster; shoot and root dry weight increments and leaf area were greater in cv. Bragg, but the N content of nts 382 was higher. Relative growth and net assimilation rates were lower in nts 382, which had faster shoot and root respiration rates. Shoot growth of uninoculated plants was similar for both mutant and wild-type but roots of nts 382 were slightly smaller than those of cv. Bragg. Total plant N content was similar in uninoculated cv. Bragg and nts 382 but the latter had a higher leaf N content. Early lateral root formation (prior to nodule emergence) was greater in nts 382 regardless of whether rhizobia or KJNO3 were present. We conclude that nts 382 has some inherent differences from its parent but that supernodulation significantly retards plant growth.  相似文献   

19.
The effects of withdrawing nitrogen (N) from the nutrient solutionof adult tomato plants growing in rockwool in a greenhouse wereinvestigated over a 6 week period during fruit production. Thetreatment reduced total plant growth after a lag period of about2 weeks. The commercial fruit yield after 6 weeks of N deprivationwas 7.7 kg m-2compared to 9.3 kg m-2in control plants. Duringthe experiment, growth of the -N plants was fuelled by N reservescontained in both the substrate (rockwool) and in plant organs.The nitrogen budget calculated for -N plants showed that onlya small amount of organic-N was readily available for internalcycling from organs such as stems. It served mainly to feedgrowing fruits which were the main sinks in the plant. The studyalso established that stores of nitrate-N were fully depletedbut it took 45 d for the -N plants to metabolize completelytheir nitrate reserves. This indicates that internal nitrateis not a readily-accessible store of labile N. An estimationof the critical N concentration (%Nc) in the aerial dry matterwas made from the data. Thus, for a crop yielding about 9.9tons DM ha-1, %Ncwas close to 2.5%. This result is discussedin light of existing models that describe the ontogenic declinein %Ncin dry biomass of C3plants. The study indicates that thecurrent regime of N fertilization practised in soilless culturesnot only leads to ineffective nitrogen use but also to largelosses of N to the environment; N concentrations should be decreasedin feeding recipes. The use of N-free nutrient solutions priorto the termination of plant culture may also be a means of limitingthe loss of eutrophying elements, such as nitrate, to the environment.Copyright 2001 Annals of Botany Company Lycopersicon esculentum, tomato, organ dry biomass, critical nitrogen concentration, compartment, rockwool, nitrate interruption, distribution, reserves  相似文献   

20.
The effects of nitrate on nitrogenase (EC 1.18.2.1) activity of soybean ( Glycine max [L.] Merr) cv. Bragg and its supernodulating mutant derivative, nts382, were compared. A short-term nitrate treatment was used to allow effects on nitrogenase activity to be studied in the absence of effects on nodule growth and a low inoculum dose, which prevented supernodulation of nts382, was employed to test for any interaction between supernodulation and the magnitude of the effect of nitrate on nitrogenase activity. At the usual inoculum dose, nitrogenase activity, per g nocule, of nts382 was lower than that of Bragg and was proportionally less affected by nitrate. Decreasing the inoculum dose increased nitrogenase activity of nts382 and also the proportional decline in response to nitrate. The decline in the ureide conentration in xylem exudate in response to nitrate was proportionally similar to the decline in nitrogenase activity per plant. However, although nitrogenase activity per plant of nts382 was several-fold less than that of Bragg, the ureide flux rate (ureide concentration x xylem sap exudation rate), was not different. At the usual inodulum dose, the ureide content of the nocules, stems plus petioles and leaves of nts382 was greater than that of Bragg. Decreasing the inoculum dose reduced the ureide content of the nodules of nts382 but not of Bragg. Ureide degradative capacity of the leaves was the same for Bragg and nts382. Low activities of 5-phosphoribosyl pyrophosphate amidotransferase (EC 2.4.2.14) and glutamine synthetase (EC 6.3.1.2) in the nodules reflected the low nitrogenase activity of nts382.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号