首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Rosendaal  J Adam 《Blood cells》1987,12(3):629-646
Femoral haemopoietic tissue was divided into cells released by flushing and cells released by grinding and washing flushed femora. The flushed femur contained 5 times more nucleated cells than the ground femur, 40 times more macrophage colony-forming cells and 6 times more developmentally late, day 8, and developmentally early, day 13, spleen colony-forming cells. However, the ground femur contained 2 times more developmentally early high proliferation potential colony-forming cells and 3 times more late ones. Haemopoietic regeneration of mice treated with fluorouracil was compared in samples obtained by flushing alone and grinding flushed femora. The number of nucleated cells recovered by flushing fell thirteen-fold by the sixth day after administration of the drug and the number recovered by grinding fell six-fold by the eighth day. Developmentally early high-proliferation-potential colony-forming cells which were recovered by grinding doubled their number in half the time taken by similar cells recovered by flushing. These observations are consistent with haemopoietic cells in different parts of the same bone performing different functions during regeneration. Large numbers of high-proliferation-potential colony-forming cells were not found in the circulation until 8 days after treatment with fluorouracil. Five days after mice had been treated with fluorouracil, when their blood forming systems were regenerating, early high-proliferation-potential colony-forming cells in one sample of marrow were derived from different founder cells than were late cells in the same sample. At the same time, early high-proliferation-potential colony-forming cells in the ground sample of a femur were derived from different founder cells than were cells at the same stage of development in the flushed sample of the femur. These observations are consistent with the view that haemopoietic regeneration after treatment with fluorouracil is due to the growth of few founder cells whose progeny have migrated little within 5 days of drug treatment.  相似文献   

2.
We found that mononuclear phagocytes formed a distinct number of clusters and colonies on the bottom of a culture dish 7 days later but granulocytes did not, when a large number of human spleen cells were cultured in liquid medium. In all gastric cancer bearers and patients with portal hypertension operated on, however, colony formation was restricted to spleen cells from patients with advanced gastric cancer and from a group of patients with portal hypertension. These spleen cells formed mononuclear phagocyte colonies without the help of exogeneous colony stimulating factor (CSF). We further demonstrated that the colony-forming cells were glass non-adherent and nylon wool adherent, and that spontaneous colony formation required cooperation between the colony-forming cells and colony-stimulating cells adherent to a plastic surface.  相似文献   

3.
It was shown that irradiation of mice with the dose of 4 Gy affected the immune and haemopoietic systems. Diucyphone injected on days 6-8 after irradiation favoured the production of antibodies in the spleen, increased the yield of exogenous splenic colonies and corrected differentiation of the haemopoietic stem cells. In the normal body, diucyphone decreased the colony-forming activity and did not change the haemopoietic stem cell differentiation.  相似文献   

4.
The formation of "early" (5-8 days) and "late" (12-14 days) colonies in spleen of lethally irradiated syngeneic or hybrid recipients after transplantation of bone marrow cells has been studied. The differentiation pattern did not depend on bone marrow cell donor's genotype and the donor-recipient combination. Erythroid to granulocyte colonies ratio (E/G) equals 2. Change of direction of bone marrow colony-forming units (CFU) differentiation has the same pattern at different stages of colony-formation. Under the influence of antigen-stimulated lymphocytes the granulopoiesis (E/G 0.3-0.5) dominanted. The thymectomy of adult animals leads to a predominant formation of erythroid colonies (E/G 3.5-5.1). When T-immunodeficiency is reversed with syngeneic lymphocytes, the differentiation of CFU is normalized at all stages of colony-formation. The process of differentiation of haemopoietic precursors, that form "early" and "late" colonies, is under T-lymphocyte control.  相似文献   

5.
The proportion of murine haemopoietic stem cells that settled in the spleen, after transplanting spleen cells into lethally-irradiated recipient mice, was found by comparing the number of spleen colonies obtained by transplanting a whole spleen with an estimate of the total number of colony-forming units (CFU) present in the intact spleen. the latter number was estimated assuming that endogenous spleen colonies were produced from surviving spleen-derived CFU which exhibited the same survival parameters as transplanted CFU.
Account was taken of the post-irradiation loss of CFU from the spleen in the endogenous assay, which was found to be a reasonably constant factor for doses higher than about 100 rad X-rays.
The total measured number of CFU/spleen from transplantation was less than the number calculated in the intact spleen by a factor, the primary f number, of 0.03 ± 0.02.  相似文献   

6.
When spleen cells of the adult mouse were tested for the formation of mononuclear phagocyte (macrophage) colonies by the liquid culture technique with an incubation period of 7–8 days, about 100 macrophage colonies were produced from 1 × 106 cells. The number of macrophage colonies appearing after 2 days of incubation was small, but thereafter increased progressively up to at least 8 days. In the later stages of incubation (after day 6) large colonies consisting of more than 100 cells appeared. Macrophage colonies in the early stages consisted almost solely of macrophages. On day 6 significant numbers of small round mononuclear cells with no detectable phagocytic activity were seen in the center of large colonies, and by day 8 marked crowding of these cells had occurred. The peripheral region of the large colonies consisted mainly of macrophages and the intermediate region of middle-sized round or slightly stretched cells with weak phagocytic activity. Approximately two-thirds of the colony-forming cells still remained after glass-adherent cells were removed from the spleen cells by passing over a glass-bead column. In cultures of glass-nonadherent cells macrophage colonies were not generated in the early stage. The number of colony-forming cells did not change significantly even after actively phagocytic cells were rigorously removed from the spleen cells. In addition, no macrophage colonies were generated in cultures of spleen cells treated with mitomycin C.  相似文献   

7.
The colony-forming ability of haematopoietic cells of W anaemic mice was examined on the macrophage layer formed in the peritoneal cavity of mice. Bone marrow cells of W anaemic mice formed a considerable number of colonies on the macrophage layer, notwithstanding they did not form any colonies in the spleen of the same recipients. As the colony-forming ability of the bone marrow cells was not reduced by the incubation with 3H-thymidine, most of the cells which formed colonies on the macrophage layer seemed to stay in G0 state. The interrelationship between the spleen colony-forming cells, the macrophage-layer colony-forming cells, and in vitro colony-forming cells was discussed.  相似文献   

8.
The progressive growth and development of spleen colonies was studied in heavily irradiated host mice in which erythropoiesis was modified by various procedures. Erythropoietic activity in non-polycythemic hosts bearing spleen colonies was not increased by injections of exogenous erythropoietin. Detectable levels of erythropoietin were found in the heavily irradiated host mice suggesting that the failure of exogenous erythropoietin to modify erythropoiesis was because the host mice were already maximally stimulated by the high endogenous erythropoietin levels. Spleen colonies do not become erythroid in polycythemic mice. The injection of exogenous erythropoietin into heavily irradiated polycythemic hosts did not decrease the total number of spleen colonies produced by a given bone marrow transplant, as would be expected if erythropoietin acted directly on the colony-forming cells. Comparison of growth curves for colony-forming cells in the spleens of polycythemic hosts either receiving or not receiving erythropoietin indicated that the overall doubling time of colony-forming cells during the first ten days after transplantation was not changed by the daily injection of erythropoietin. These experiments are consistent with the concept that erythropoietin is necessary for the development of erythroid colonies. Erythropoietin acts upon some progeny of the colony-forming cell rather than the colony-forming cell itself.  相似文献   

9.
The colony-forming ability of haematopoietic cells was examined on the macrophage layer formed in the peritoneal cavity of S1/S1d mice. The bone marrow cells of the congenic +/+ mice formed many macroscopic colonies on the macrophage layer of the S1/S1d mice although they did not form macroscopic colonies in the spleens of the same S1/S1d recipients. The size and the differentiation pattern of colonies on the macrophage layer of the S1/S1d mice were comparable to those of the colonies on the macrophage layer of the +/+ mice. There are two possible explanations for these results: (a) The microenvironmental defect of the S1/S1d mice has a more prominent effect on the development of spleen colonies than that of macrophage-layer colonies because 'Steel' locus may not be expressed significantly in the peritoneal macrophages or (b) because the cells that make colonies on the macrophage layer may be more differentiated cells than the multipotential stem cells that make colonies in the spleen.  相似文献   

10.
Mouse bone marrow cells in suspension were separated into a number of fractions on the basis of cell density by equilibrium density gradient centrifugation, or on the basis of cell size by velocity sedimentation. After each type of separation, the cells from the various fractions were assayed for their ability to form macroscopic spleen colonies in irradiated recipient mice, and for their ability to form colonies in a cell culture system. The results from either separation technique demonstrate that cells in some fractions formed more colonies in vivo than in the culture system, while cells in other fractions formed more colonies in culture than in the spleen. The results of control experiments indicate that this separation of the two types of colony-forming cells was not an artifact of the separation procedures. From these experiments it was concluded that the population of cells which form colonies in culture under the conditions used is not identical to the population of cells detected by the spleen colony assay.  相似文献   

11.
The cellular composition of individual hemopoietic spleen colonies has been studied using techniques which tested primarily for cell function rather than cell morphology. Erythroblastic cells were recognized by their capacity to incorporate radioiron, granulocytic cells by their content of peroxidase-positive material, and hemopoietic stem cells by their ability to form spleen colonies in irradiated hosts. It was found that, 14 days after the initiation of spleen colonies, the distribution of these cell types among individual colonies was very heterogeneous, but that most colonies contained detectable numbers of erythroblasts, granulocytes and colony-forming cells. An appreciable proportion of the cells in the colonies could not be identified as any of these three cell types. No strong correlations between numbers of erythroblasts, granulocytes and colony-forming cells in individual colonies were observed, though there was a tendency for colonies containing a high proportion of erythroblasts to contain a low proportion of granulocytes, and for colonies containing a high proportion of granulocytes to contain a higher proportion of colony-forming cells. An analysis of colonies which contained cells bearing radiation-induced chromosomal markers indicated that 83–98% of the dividing cells within 14-day spleen colonies were derived from single precursors.  相似文献   

12.
Using a single spleen colony transplantation technique and sex chromosome typing as a natural cytogenetic marker, most spleen colony-forming cells (CFC) in adult bone marrow or fetal livers of inbred LACA or C57 mice re-established hemopoiesis in lethally irradiated mice when the spleen colonies were sampled at 13 days after transplantation. However, most of the spleen colony-forming cells in the peripheral blood of normal mice possess little potential for proliferation and are less efficient in the re-establishment of hemopoiesis in lethally irradiated mice. The CFC population is heterogeneous in the mice. From the subsequent retransplantation of colonies from colony-forming cells in the peripheral blood, the simple assessment of spleen colony-forming units (CFU-s) content, based on the number of splenic colonies, does not reliably represent the content of hemopoietic stem cells.  相似文献   

13.
Abstract In the early periods (7–9 days) after haemopoietic cell injection, colonies produced by CFU-s and by their progeny are identified in the spleen, while at later periods (11 days after injection) only spleen nodules produced by CFU-s persist. the increase in the suicide values of CFU-s after sublethal (2 Gy) irradiation of mice is associated with a higher proliferation rate of precursors of transitory spleen colonies, but not of CFU-s, as measured by different suicide techniques. During the log-phase of cell growth in a lethally irradiated recipient, the injected CFU-s and CFU-tr proliferate at a higher rate. Active proliferation of CFU-s and CFU-tr has been demonstrated in long-term bone-marrow cultures by the hydroxyurea in-vitro suicide assay. CFU-tr may be the cause of artifactual effects during measurement of haemopoietic stem-cell cycling by CFU-s suicide methods.  相似文献   

14.
Abstract. Substantial support has been obtained for the stochastic model for stem cell differentiation first proposed by Till, McCulloch & Siminovitch (1964), over 20 years ago. By adding a cell maturation pathway, it is possible to predict (by computer simulation) the total number of cells and consequently the time at which individual colonies appear and disappear.
Only a few uncontroversial assumptions are required to predict that cells, uniform with respect to self-renewal, are capable of producing the high proportions of late disappearing and late appearing colonies observed experimentally in the spleens of irradiated mice that have been injected with normal haemopoietic cells. It is shown that differences in stem cell self-renewal only slightly influence the time of appearance of colonies; whereas changes in the kinetics of the maturing cells, by changing the size of colonies, has a marked effect on the time of appearance and disappearance of colonies and on the average doubling-time of colony-forming cells per colony (but not the doubling-time of individual colonies).
These results (1) seriously question the prevailing view that spleen colonies scored at 8 days measure a separate population (without the capacity for self-renewal), from those scored at 12 days; (2) argue against the existence of multiple sub-populations of stem cells with differing self-renewal and toxicity to cytotoxic agents; (3) help to identify those experiments for which it is obligatory to postulate heterogeneity, and (4) are consistent with self-renewal being regulated by a feedback control of stem cell differentiation, to which only proliferating stem cells can respond and where the stimulus for differentiation decreases at a time when the bone marrow is known to be depleted.  相似文献   

15.
The number and concentration of haemopoietic stem cells in the femoral bone marrow and spleen of Wistar rats of different ages were investigated. Stem cells were assayed by the spleen colony technique in irradiated rat recipients. The ability of the recipient spleen to harvest transplanted tissue as a macroscopic colony was found to be dependent on the recipient's age. Changes with senescence were observed also in the concentration and the size of the stem cell compartment both in the marrow and spleen. No differences were demonstrated in the seeding of transplanted colony-forming units into the spleen of recipients of 1 and 4 months of age. A rats-mice strain difference in the effect of senescence on the haemopoietic stem cells is discussed.  相似文献   

16.
Experiments were performed to investigate the presence of colony-forming units (CFU) in the mouse embryonic yolk sac during the developmental period in which the yolk sac is the sole hemopoietic organ. Injection of yolk sac cell suspensions from normal embryos into syngeneic, lethally irradiated adult recipients evoked a very low number of spleen colonies. However, prior cultivation of yolk sacs in vitro caused a dramatic increase in the spleen colony-forming capacity--as high as 84-fold--following 48 hours in culture. The yolk sac origin of the spleen colonies was confirmed by: (a) Chromosomal marker analysis; (b) dose-response analysis; (c) demonstrating that the above colonies were not of endogenous origin induced by the mere injection of grafted cells. We conclude that the yolk sac contains many precursors of colony-forming cells which though undetectable by immediate grafting apparently become activated in culture by an as yet unknown induction process.  相似文献   

17.
B-lymphocyte colonies are grown in semi-solid agar from mouse spleen or lymph node cells in the presence of mercaptoethanol with or without added sheep red cells. High levels of colony-forming cells were present in the spleen or normal mice and nu/nu (athymic) mice but colony-forming cells were rare in the thymus and not detected in activated T-lymphocyte populations. Colony-forming cells were theta-negative and most exhibited Fc receptors. Most colony-forming cells had the sedimentation velocity of small lymphocytes, were non-adherent and had a buoyant density similar to B-lymphocytes. Colony-forming cells were radiosensitive (Do60 rads) and sensitive to cortisone. Colony formation was potentiated by the addition of adherent spleen cells or peritoneal macrophages. It is concluded that most cells forming B-lymphocyte colonies are themselves characterisable as B-lymphocytes.  相似文献   

18.
The value and radiosensitivity of human haemopoietic stem pool may be assessed by the number of colonies of nondifferentiated cells (CFUnc) formed in situ during regeneration of the haemopoietic organ from the postirradiation aplasia. The time required for doubling the population, that constitutes nondifferentiated cell endocolonies, was reduced as the radiation dose increased.  相似文献   

19.
The colony-forming ability of haematopoietic cells was examined on the macrophage layer formed in the peritoneal cavity of S1/S1d mice. the bone marrow cells of the congenic +/+ mice formed many macroscopic colonies on the macrophage layer of the S1/S1d mice although they did not form macroscopic colonies in the spleens of the same S1/S1d recipients. the size and the differentiation pattern of colonies on the macrophage layer of the S1/S1d mice were comparable to those of the colonies on the macrophage layer of the +/+ mice. There are two possible explanations for these results: (a) the microenvironmental defect of the S1/S1d mice has a more prominent effect on the development of spleen colonies than that of macrophage-layer colonies because ‘Steel’ locus may not be expressed significantly in the peritoneal macrophages or (b) because the cells that make colonies on the macrophage layer may be more differentiated cells than the multipotential stem cells that make colonies in the spleen.  相似文献   

20.
Erythroid colony formation in agar cultures of CBA bone marrow cells was stimulated by the addition of pokeweed mitogen-stimulated spleen conditioned medium (SCM). Optimal colony numbers were obtained when cultures contained 20% fetal calf serum and concentrated spleen conditioned medium. By 7 days of incubation, large burst or unicentric erythroid colonies occurred at a maximum frequency of 40–50 per 105 bone marrow cells. In CBA mice the cells forming erythroid colonies were also present in the spleen, peripheral blood, and within individual spleen colonies. A marked strain variation was noted with CBA mice having the highest levels of erythroid colony-forming cells. In CBA mice erythroid colony-forming cells were mainly non-cycling (12.5% reduction in colony numbers after incubation with hydroxyurea or 3H-thymidine). Erythroid colony-forming cells sedimented with a peak of 4.5 mm/hr, compared with CFU-S, which sedimented at 4.25 mm/hr. The addition of erythropoietin (up to 4 units) to cultures containing SCM did not alter the number or degree of hemoglobinisation of erythroid colonies. Analysis of the total number of erythroid colony-forming cells and CFU-S in 90 individual spleen colonies gave a correlation coefficient of r = 0.93 for these two cell types. In addition to benzidine-positive erythroid cells, up to 40% of the colonies contained, in addition, varying proportions of neutrophils, macrophages, eosinophils, and megakaryocytes. Taken together with the close correlation between the numbers of CFU-S in different adult hemopoietic tissues, including individual spleen colonies, the data indicate that the erythroid colony-forming cells expressing multiple hemopoietic differentiation are members of the hemopoietic multipotential stem cell compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号