首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the alternative pathway of complement (APC) factor H is the primary control factor involved in discrimination between potential pathogens. The APC deposits C3b on possible Ags, and the interaction with factor H determines whether the initial C3b activates the APC. Factor H is composed of a linear array of 20 homologous short consensus repeats (SCR) domains with many functional sites. Three of these sites are involved in binding C3b and regulating complement activation; others bind to sialic acid and/or heparin and are responsible for host recognition. Using site-directed mutations we have examined the contributions of each of these sites to target discrimination and to functional activities of factor H. Decay acceleration by SCR1-4 of C3/C5 convertases bound to nonactivators was strongly dependent on SCR domains 11-15 and 16-20. Loss of these regions caused a 97% loss of activity, with SCR16-20 being the most critical (>90% loss). On APC activators the pattern of site usage was different and unique on each. On yeast, deletion of the 10 C-terminal domains (SCR11-20) had no effect on specific activity. On rabbit erythrocytes, this deletion caused loss of 75% of the specific activity. An examination of binding affinity to C3b on the four cell types demonstrated that factor H exhibits a unique pattern of SCR involvement on each cell. The results reveal a complex molecular mechanism of discrimination between microbes and host in this ancient innate defense system and help explain the different rates and intensities of APC activation on different biological particles.  相似文献   

2.
Hemolytic-uremic syndrome (HUS) is a microvasculature disorder leading to microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. Most cases of HUS are associated with epidemics of diarrhea caused by verocytotoxin-producing bacteria, but atypical cases of HUS not associated with diarrhea (aHUS) also occur. Early studies describing the association of aHUS with deficiencies of factor H suggested a role for this complement regulator in aHUS. Molecular evidence of factor H involvement in aHUS was first provided by Warwicker et al., who demonstrated that aHUS segregated with the chromosome 1q region containing the factor H gene (HF1) and who identified a mutation in HF1 in a case of familial aHUS with normal levels of factor H. We have performed the mutational screening of the HF1 gene in a novel series of 13 Spanish patients with aHUS who present normal complement profiles and whose plasma levels of factor H are, with one exception, within the normal range. These studies have resulted in the identification of five novel HF1 mutations in four of the patients. Allele HF1 Delta exon2, a genomic deletion of exon 2, produces a null HF1 allele and results in plasma levels of factor H that are 50% of normal. T956M, W1183L, L1189R, and V1197A are missense mutations that alter amino acid residues in the C-terminal portion of factor H, within a region--SCR16-SCR20--that is involved in the binding to solid-phase C3b and to negatively charged cellular structures. This remarkable clustering of mutations in HF1 suggests that a specific dysfunction in the protection of cellular surfaces by factor H is a major pathogenic condition underlying aHUS.  相似文献   

3.
The plasma protein factor H primarily controls the activation of the alternative pathway of complement. The C-terminal of factor H is known to be involved in protection of host cells from complement attack. In the present study, we show that domains 19-20 alone are capable of discriminating between host-like and complement-activating cells. Furthermore, although factor H possesses three binding sites for C3b, binding to cell-bound C3b can be almost completely inhibited by the single site located in domains 19-20. All of the regulatory activities of factor H are expressed by the N-terminal four domains, but these activities toward cell-bound C3b are inhibited by isolated recombinant domains 19-20 (rH 19-20). Direct competition with the N-terminal site is unlikely to explain this because regulation of fluid phase C3b is unaffected by domains 19-20. Finally, we show that addition of isolated rH 19-20 to normal human serum leads to aggressive complement-mediated lysis of normally nonactivating sheep erythrocytes and moderate lysis of human erythrocytes, which possess membrane-bound regulators of complement. Taken together, the results highlight the importance of the cell surface protective functions exhibited by factor H compared with other complement regulatory proteins. The results may also explain why atypical hemolytic uremic syndrome patients with mutations affecting domains 19-20 can maintain complement homeostasis in plasma while their complement system attacks erythrocytes, platelets, endothelial cells, and kidney tissue.  相似文献   

4.
Localization of the heparin-binding site on complement factor H.   总被引:9,自引:0,他引:9  
Factor H is a regulator of complement activation and, in this capacity, it prevents activation of the alternative pathway on host cells and tissues when it recognizes markers on these surfaces. This report describes the binding characteristics and location of the site on factor H that is responsible for host recognition. Factor H was found to bind a variety of polyanions, including heparin, heparan sulfate, dextran sulfate, and clusters of sialic acid. In heparin-agarose binding assays it exhibited an affinity for heparin only 2-fold weaker than that of antithrombin III. Factor H exhibited little or no affinity for polyaspartic acid or bacterial colominic acid (polysialic acid). Factor H (Mr 150,000 with approximate dimensions of 30 x 600 A) is composed of 20 highly homologous domains (SCRs) that are arranged as beads on a string. Polyanions were found to block a tryptic cleavage site in domain 15, and a photoaffinity-tagged heparin probe labeled the region between domains 12 and 15. Affinity chromatography of tryptic fragments on heparin-Sepharose confirmed that this region contained the heparin-binding site. CNBr cleavage at Met787 located between SCRs 13 and 14 split the photoaffinity-tagged region. Sequence analysis strongly suggests that domain 13 contains the primary site of polyanion binding. Factor H expresses its complement regulatory function through a site located in domains 4-6 where C3b binds. Thus, the polyanion-binding site that regulates the affinity of factor H for C3b appears to reside more than 200 A away from the C3b-binding site.  相似文献   

5.
Membrane cofactor protein (MCP, CD46) is a widely expressed transmembrane complement regulator. As does the soluble regulator factor H, it inhibits complement activation by inactivating the C3b that is deposited on target membranes. Factor H mutations have been described in 15-30% of patients with atypical haemolytic uraemic syndrome (HUS). Recent studies have identified mutations in the MCP gene in four families. In one, a heterozygous deletion resulted in the intracellular retention of the mutant protein. In another, a different heterozygous deletion led to a premature stop codon and the loss of the C-terminus. In the other two, a substitution (S206P) resulted in cell-surface expression but inefficient inactivation of surface-bound C3b. These findings provide further evidence that complement dysregulation predisposes to the development of HUS.  相似文献   

6.
Several recent studies have established an association between abnormalities of complement factor H (FH) and the development of hemolytic uremic syndrome (HUS). To identify the relative importance of mutations in FH as a cause of HUS, we have undertaken mutation screening of the FH gene in 19 familial and 31 sporadic patients with FH. Mutations were found in two familial and three sporadic patients, and these clustered in exons 18-20, a domain important for host recognition. Moreover, this study demonstrates that familial HUS is likely to be a heterogeneous condition.  相似文献   

7.
Genetic studies have demonstrated the involvement of the complement regulator factor H in nondiarrheal, nonverocytotoxin (i.e., atypical) cases of hemolytic uremic syndrome. Different factor H mutations have been identified in 10%-30% of patients with atypical hemolytic uremic syndrome (aHUS), and most of these mutations alter single amino acids in the C-terminal region of factor H. Although these mutations are considered to be responsible for the disease, the precise role that factor H plays in the pathogenesis of aHUS is unknown. We report here the structural and functional characterization of three different factor H proteins purified from the plasma of patients with aHUS who carry the factor H mutations W1183L, V1197A, or R1210C. Structural anomalies in factor H were found only in R1210C carriers; these individuals show, in their plasma, a characteristic high-molecular-weight factor H protein that results from the covalent interaction between factor H and human serum albumin. Most important, all three aHUS-associated factor H proteins have a normal cofactor activity in the proteolysis of fluid-phase C3b by factor I but show very low binding to surface-bound C3b. This functional impairment was also demonstrated in recombinant mutant factor H proteins expressed in COS7 cells. These data support the hypothesis that patients with aHUS carry a specific dysfunction in the protection of cellular surfaces from complement activation, offering new possibilities to improve diagnosis and develop appropriate therapies.  相似文献   

8.
Mutations and polymorphisms in the regulator of complement activation, factor H, have been linked to atypical hemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis, and age-related macular degeneration. Many aHUS patients carry mutations in the two C-terminal modules of factor H, which normally confer upon this abundant 155-kDa plasma glycoprotein its ability to selectively bind self-surfaces and prevent them from inappropriately triggering the complement cascade via the alternative pathway. In the current study, the three-dimensional solution structure of the C-terminal module pair of factor H has been determined. A binding site for a fully sulfated heparin-derived tetrasaccharide has been delineated using chemical shift mapping and the C3d/C3b-binding site inferred from sequence comparisons and computational docking. The resultant information allows assessment of the likely consequences of aHUS-associated amino acid substitutions in this critical region of factor H. It is striking that, excepting those likely to perturb the three-dimensional structure, aHUS-associated missense mutations congregate in the polyanion-binding site delineated in this study, thus potentially disrupting a vital mechanism for control of complement on self-surfaces in the microvasculature of the kidney. It is intriguing that a single nucleotide polymorphism predisposing to age-related macular degeneration occupies another region of factor H that harbors a polyanion-binding site.  相似文献   

9.
Human complement factor H-related protein (CFHR) 4 belongs to the factor H family of plasma glycoproteins that are composed of short consensus repeat (SCR) domains. Although factor H is a well known inhibitor of the alternative complement pathway, the functions of the CFHR proteins are poorly understood. CFHR4 lacks SCRs homologous to the complement inhibitory domains of factor H and, accordingly, has no significant complement regulatory activities. We have previously shown that CFHR4 binds C-reactive protein via its most N-terminal SCR, which leads to classical complement pathway activation. CFHR4 binds C3b via its C terminus, but the significance of this interaction is unclear. Therefore, we set out to clarify the functional relevance of C3b binding by CFHR4. Here, we report a novel role for CFHR4 in the complement system. CFHR4 serves as a platform for the assembly of an alternative pathway C3 convertase by binding C3b. This is based on the sustained ability of CFHR4-bound C3b to bind factor B and properdin, leading to an active convertase that generates C3a and C3b from C3. The CFHR4-C3bBb convertase is less sensitive to the factor H-mediated decay compared with the C3bBb convertase. CFHR4 mutants containing exchanges of conserved residues within the C-terminal C3b-binding site showed significantly reduced C3b binding and alternative pathway complement activation. In conclusion, our results suggest that, in contrast to the complement inhibitor factor H, CFHR4 acts as an enhancer of opsonization by promoting complement activation.  相似文献   

10.
Hemolytic uremic syndrome (HUS) is defined by the triad of mechanical hemolytic anemia, thrombocytopenia and renal impairment. Atypical HUS (aHUS) defines non Shiga-toxin-HUS and even if some authors include secondary aHUS due to Streptococcus pneumoniae or other causes, aHUS designates a primary disease due to a disorder in complement alternative pathway regulation. Atypical HUS represents 5 -10% of HUS in children, but the majority of HUS in adults. The incidence of complement-aHUS is not known precisely. However, more than 1000 aHUS patients investigated for complement abnormalities have been reported. Onset is from the neonatal period to the adult age. Most patients present with hemolytic anemia, thrombocytopenia and renal failure and 20% have extra renal manifestations. Two to 10% die and one third progress to end-stage renal failure at first episode. Half of patients have relapses. Mutations in the genes encoding complement regulatory proteins factor H, membrane cofactor protein (MCP), factor I or thrombomodulin have been demonstrated in 20-30%, 5-15%, 4-10% and 3-5% of patients respectively, and mutations in the genes of C3 convertase proteins, C3 and factor B, in 2-10% and 1-4%. In addition, 6-10% of patients have anti-factor H antibodies. Diagnosis of aHUS relies on 1) No associated disease 2) No criteria for Shigatoxin-HUS (stool culture and PCR for Shiga-toxins; serology for anti-lipopolysaccharides antibodies) 3) No criteria for thrombotic thrombocytopenic purpura (serum ADAMTS 13 activity > 10%). Investigation of the complement system is required (C3, C4, factor H and factor I plasma concentration, MCP expression on leukocytes and anti-factor H antibodies; genetic screening to identify risk factors). The disease is familial in approximately 20% of pedigrees, with an autosomal recessive or dominant mode of transmission. As penetrance of the disease is 50%, genetic counseling is difficult. Plasmatherapy has been first line treatment until presently, without unquestionable demonstration of efficiency. There is a high risk of post-transplant recurrence, except in MCP-HUS. Case reports and two phase II trials show an impressive efficacy of the complement C5 blocker eculizumab, suggesting it will be the next standard of care. Except for patients treated by intensive plasmatherapy or eculizumab, the worst prognosis is in factor H-HUS, as mortality can reach 20% and 50% of survivors do not recover renal function. Half of factor I-HUS progress to end-stage renal failure. Conversely, most patients with MCP-HUS have preserved renal function. Anti-factor H antibodies-HUS has favourable outcome if treated early.  相似文献   

11.
Missense mutations in the tyrosine kinase domain of the MET proto-oncogene occur in selected cases of papillary renal carcinoma. In biochemical and biological assays, these mutations produced constitutive activation of the MET kinase and led to tumor formation in nude mice. Some mutations caused transformation of NIH 3T3 cells. To elucidate the mechanism of ligand-independent MET kinase activation by point mutations, we constructed several 3D models of the wild-type and mutated MET catalytic core domains. Analysis of these structures showed that some mutations (e.g., V1110I, Y1248H/D/C, M1268T) directly alter contacts between residues from the activation loop in its inhibitory conformation and those from the main body of the catalytic domain; others (e.g., M1149T, L1213V) increase flexibility at the critical points of the tertiary structure and facilitate subdomain movements. Mutation D1246N plays a role in stabilizing the active form of the enzyme. Mutation M1268T affects the S+1 and S+3 substrate-binding pockets. Models implicate that although these changes do not compromise the affinity toward the C-terminal autophosphorylation site of the MET protein, they allow for binding of the substrate for the c-Abl tyrosine kinase. We provide biochemical data supporting this observation. Mutation L1213V affects the conformation of Tyr1212 in the active form of MET. Several somatic mutations are clustered at the surface of the catalytic domain in close vicinity of the probable location of the MET C-terminal docking site for cytoplasmic effectors.  相似文献   

12.
13.
Cells have evolved elaborate mechanisms to counteract the onslaught of viral infections. To activate these defenses, the viral threat must be recognized. Danger signals, or pathogen-associated molecular patterns, that are induced by pathogens include double-stranded RNA (dsRNA), viral single-stranded RNA, glycolipids, and CpG DNA. Understanding the signal transduction pathways activated and host gene expression induced by these danger signals is vital to understanding virus-host interactions. The vaccinia virus E3L protein is involved in blocking the host antiviral response and increasing pathogenesis, functions that map to separate C-terminal dsRNA- and N-terminal Z-DNA-binding domains. Viruses containing mutations in these domains allow modeling of the role of dsRNA and Z-form nucleic acid in the host response to virus infection. Deletions in the Z-DNA- or dsRNA-binding domains led to activation of signal transduction cascades and up-regulation of host gene expression, with many genes involved in the inflammatory response. These data suggest that poxviruses actively inhibit cellular recognition of viral danger signals and the subsequent cellular response to the viral threat.  相似文献   

14.
Complement proteins in blood recognize charged particles. The anionic phospholipid (aPL) cardiolipin binds both complement proteins C1q and factor H. C1q is an activator of the complement classical pathway, while factor H is an inhibitor of the alternative pathway. To examine opposing effects of C1q and factor H on complement activation by aPL, we surveyed C1q and factor H binding, and complement activation by aPL, either coated on microtitre plates or in liposomes. Both C1q and factor H bound to all aPL tested, and competed directly with each other for binding. All the aPL activated the complement classical pathway, but negligibly the alternative pathway, consistent with accepted roles of C1q and factor H. However, in this system, factor H, by competing directly with C1q for binding to aPL, acts as a direct regulator of the complement classical pathway. This regulatory mechanism is distinct from its action on the alternative pathway. Regulation of classical pathway activation by factor H was confirmed by measuring C4 activation by aPL in human sera in which the C1q:factor H molar ratio was adjusted over a wide range. Thus factor H, which is regarded as a down-regulator only of the alternative pathway, has a distinct role in downregulating activation of the classical complement pathway by aPL. A factor H homologue, β2-glycoprotein-1, also strongly inhibits C1q binding to cardiolipin. Recombinant globular domains of C1q A, B and C chains bound aPL similarly to native C1q, confirming that C1q binds aPL via its globular heads.  相似文献   

15.
The C-terminal fragment, Bb, of factor B combines with C3b to form the pivotal C3-convertase, C3bBb, of alternative complement pathway. Bb consists of a von Willebrand factor type A (vWFA) domain that is structurally similar to the I domains of integrins and a serine protease (SP) domain that is in inactive conformation. The structure of the C3bBb complex would be important in deciphering the activation mechanism of the SP domain. However, C3bBb is labile and not amenable to X-ray diffraction studies. We engineered a disulfide bond in the vWFA domain of Bb homologous to that shown to lock I domains in active conformation. The crystal structures of Bb(C428-C435) and its inhibitor complexes reveal that the adoption of the "active" conformation by the vWFA domain is not sufficient to activate the C3-convertase catalytic apparatus and also provide insights into the possible mode of C3-convertase activation.  相似文献   

16.
SOX proteins bind similar DNA motifs through their high-mobility-group (HMG) domains, but their action is highly specific with respect to target genes and cell type. We investigated the mechanism of target selection by comparing SOX1/2/3, which activate δ-crystallin minimal enhancer DC5, with SOX9, which activates Col2a1 minimal enhancer COL2C2. These enhancers depend on both the SOX binding site and the binding site of a putative partner factor. The DC5 site was equally bound and bent by the HMG domains of SOX1/2 and SOX9. The activation domains of these SOX proteins mapped at the distal portions of the C-terminal domains were not cell specific and were independent of the partner factor. Chimeric proteins produced between SOX1 and SOX9 showed that to activate the DC5 enhancer, the C-terminal domain must be that of SOX1, although the HMG domains were replaceable. The SOX2-VP16 fusion protein, in which the activation domain of SOX2 was replaced by that of VP16, activated the DC5 enhancer still in a partner factor-dependent manner. The results argue that the proximal portion of the C-terminal domain of SOX1/2 specifically interacts with the partner factor, and this interaction determines the specificity of the SOX1/2 action. Essentially the same results were obtained in the converse experiments in which COL2C2 activation by SOX9 was analyzed, except that specificity of SOX9-partner factor interaction also involved the SOX9 HMG domain. The highly selective SOX-partner factor interactions presumably stabilize the DNA binding of the SOX proteins and provide the mechanism for regulatory target selection.  相似文献   

17.
18.
19.
aHUS (atypical haemolytic uraemic syndrome), AMD (age-related macular degeneration) and other diseases are associated with defective AP (alternative pathway) regulation. CFH (complement factor H), CFI (complement factor I), MCP (membrane cofactor protein) and C3 exhibited the most disease-associated genetic alterations in the AP. Our interactive structural database for these was updated with a total of 324 genetic alterations. A consensus structure for the SCR (short complement regulator) domain showed that the majority (37%) of SCR mutations occurred at its hypervariable loop and its four conserved Cys residues. Mapping 113 missense mutations onto the CFH structure showed that over half occurred in the C-terminal domains SCR-15 to -20. In particular, SCR-20 with the highest total of affected residues is associated with binding to C3d and heparin-like oligosaccharides. No clustering of 49 missense mutations in CFI was seen. In MCP, SCR-3 was the most affected by 23 missense mutations. In C3, the neighbouring thioester and MG (macroglobulin) domains exhibited most of 47 missense mutations. The mutations in the regulators CFH, CFI and MCP involve loss-of-function, whereas those for C3 involve gain-of-function. This combined update emphasizes the importance of the complement AP in inflammatory disease, clarifies the functionally important regions in these proteins, and will facilitate diagnosis and therapy.  相似文献   

20.
Serum resistance, an important virulence determinant of Borrelia burgdorferi sensu lato strains belonging to the Borrelia afzelii and B. burgdorferi sensu stricto genotypes, is related to binding of the complement inhibitor factor H to the spirochete surface protein outer surface protein E (OspE) and its homologues. In this study, we show that the C-terminal short consensus repeats 18-20 of both human and mouse factor H bind to OspE. Analogously, factor H-related protein 1, a distinct plasma protein with three short consensus repeat domains homologous to those in factor H, bound to OspE. Deleting 15-aa residues (region V) from the C terminus of the OspE paralog P21 (a 20.7-kDa OspE-paralogous surface lipoprotein in the B. burgdorferi sensu stricto 297 strain) abolished factor H binding. However, C-terminal peptides from OspE, P21, or OspEF-related protein P alone and the C-terminal deletion mutants of P21 inhibited factor H binding to OspE only partially when compared with full-length P21 or its N-terminal mutant. Alanine substitution of amino acids in peptides from the key binding regions of the OspE family indicated that several lysine residues are required for factor H binding. Thus, the borrelial OspE family proteins bind the C inhibitor factor H via multiple sites in a lysine-dependent manner. The C-terminal site V (Ala(151)-Lys(166)) is necessary, but not sufficient, for factor H binding in both rodents and humans. Identification of the necessary binding sites forms a basis for the development of vaccines that block the factor H-OspE interaction and thereby promote the killing of Borreliae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号