首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Aims

Sorghum is commonly grown under dryland conditions, where yields are limited by soil water deficits. Yield increase may be possible by selecting genotypes that express traits that are desirable for water-limited conditions. Water conservation is one possible trait for increasing yield since this trait could increase water availability during critical stages of crop development. Water conservation could be achieved by slower transpiration rate with soil drying initiated at a high fraction of transpirable soil water (FTSW) so that the use of soil water is extended over a longer period of time. This water conservation strategy may allow the crop to have water available during the critical phase of grain filling. Therefore, the objective of this study was to compare genotypes of sorghum for possible differences in the threshold for the decline in transpiration.

Methods

Sixteen sorghum genotypes were selected for this study based on differences in their sensitivity to elevated vapor pressure deficit (VPD). These genotypes were subjected to dry-down experiments in pots in a greenhouse to determine the threshold FTSW for the decrease in transpiration rate as the soil dried.

Results

Differences in the FTSW threshold for transpiration decline were observed to range among genotypes from 0.32 to 0.48. The genotypes differed between low and high FTSW thresholds in the same manner as they did for a breakpoint in the VPD or lack of breakpoint, respectively. Those genotypes with high FTSW thresholds exhibited the hypothesized desired trait. However, they did not exhibit the water conserving trait of limited transpiration rate at high VPD. On the other hand, those genotypes with a low FTSW threshold were those selected for limited transpiration rate at high VPD. These genotypes also differed based on their transpiration rate under well-watered conditions with the genotypes with a low FTSW threshold exhibiting a low transpiration rate.

Conclusions

These results demonstrated that among the sorghum genotypes there are several alternative traits for enhancing soil water conservation for growth under dry land conditions.  相似文献   

2.

Background and aims

Soil drying leads to the generation of chemical signals in plants that regulate water use via control of the stomatal aperture. The aim of our work was to identify the presence and identity of potential chemical signals, their dynamics, and their relationship with transpiration rate during soil drying in hop (Humulus lupulus (L.)) plants.

Methods

We used pressure chamber technique for measurement of shoot water potential and collection of shoot xylem sap. We analyzed concentrations of abscisic acid (ABA), nitrate, phosphate, sulphate and malate in sap and also the rate of whole plant transpiration.

Results

Transpiration rate decreased prior to changes in shoot water potential. The concentration of ABA in xylem sap continuously increased from early to later stages of water stress, whereas in leaves it increased only at later stages. Shoot sap pH increased simultaneously with the decrease of transpiration rate. Xylem sap alkalization was in some cases accompanied by a decrease in nitrate concentration and an increase in malate concentration. Concentration of sulphate increased in xylem sap during drying and sulphate in combination with a higher ABA concentration enhanced stomatal closure.

Conclusions

Several early chemical signals appear in sap of hop plants during soil drying and their impact on transpiration may vary according to the stage of soil drying.  相似文献   

3.

Aims

A simulation model to demonstrate that soil water potential can regulate transpiration, by influencing leaf water potential and/or inducing root production of chemical signals that are transported to the leaves.

Methods

Signalling impacts on the relationship between soil water potential and transpiration were simulated by coupling a 3D model for water flow in soil, into and through roots (Javaux et al. 2008) with a model for xylem transport of chemicals (produced as a function of local root water potential). Stomatal conductance was regulated by simulated leaf water potential (H) and/or foliar chemical signal concentrations (C; H?+?C). Split-root experiments were simulated by varying transpiration demands and irrigation placement.

Results

While regulation of stomatal conductance by chemical transport was unstable and oscillatory, simulated transpiration over time and root water uptake from the two soil compartments were similar for both H and H?+?C regulation. Increased stomatal sensitivity more strongly decreased transpiration, and decreased threshold root water potential (below which a chemical signal is produced) delayed transpiration reduction.

Conclusions

Although simulations with H?+?C regulation qualitatively reproduced transpiration of plants exposed to partial rootzone drying (PRD), long-term effects seemed negligible. Moreover, most transpiration responses to PRD could be explained by hydraulic signalling alone.  相似文献   

4.
Nitrogen fixation activity in common bean is generally thoughtto be low and sensitive to soil drying and, consequently, droughtcan have important negative effects on N accumulation and yieldpotential. The objectives of this research were to examine theresponse of N2fixation to drought stress in common bean, andto test the hypothesis that drought sensitivity of N2fixationin common bean is linked to ureide levels in the plants. Twoglasshouse experiments were conducted to compare the responsesof leaf transpiration and acetylene reduction activity (ARA)to soil water contents. ARA decrease during soil dehydrationwas found to lag behind the decline in transpiration. This indicatesthat ARA is relatively less sensitive to soil dehydration comparedto leaf gas exchange. Further, in comparing two cultivars therewas no consistent difference in the relative response of ARAand transpiration to soil drying. The ureide concentrationsmeasured in common bean plants were low, ranging from 0.1 to1.0 mmol l-1in xylem sap exudates. Ureide concentrations inthe sap exudate varied significantly among the two genotypeseven though there was no difference in ARA response to drought.It was concluded that in common bean, the lower sensitivityof N2fixation to drought compared to leaf gas exchange couldbe related to low ureide concentrations in petioles and xylemsap.Copyright 1998 Annals of Botany Company Phaseolus vulgaris,nitrogen fixation, drought stress, nodules, ureides.  相似文献   

5.

Background and Aims

Drought is the principal constraint on world production of legume crops. There is considerable variability among genotypes in sensitivity of nitrogen fixation to drought, which has been related to accumulation of ureides in soybean. The aim of this study was to search for genotypic differences in drought sensitivity and ureide accumulation in common bean (Phaseolus vulgaris) germplasm that may be useful in the improvement of tolerance to water deficit in common bean.

Methods

Changes in response to water deficit of nitrogen fixation rates, ureide content and the expression and activity of key enzymes for ureide metabolism were measured in four P. vulgaris genotypes differing in drought tolerance.

Key Results

A variable degree of drought-induced nitrogen fixation inhibition was found among the bean genotypes. In addition to inhibition of nitrogen fixation, there was accumulation of ureides in stems and leaves of sensitive and tolerant genotypes, although this was higher in the leaves of the most sensitive ones. In contrast, there was no accumulation of ureides in the nodules or roots of stressed plants. In addition, the level of ureides in the most sensitive genotype increased after inhibition of nitrogen fixation, suggesting that ureides originate in vegetative tissues as a response to water stress, probably mediated by the induction of allantoinase.

Conclusions

Variability of drought-induced inhibition of nitrogen fixation among the P. vulgaris genotypes was accompanied by subsequent accumulation of ureides in stems and leaves, but not in nodules. The results indicate that shoot ureide accumulation after prolonged exposure to drought could not be the cause of inhibition of nitrogen fixation, as has been suggested in soybean. Instead, ureides seem to be produced as part of a general response to stress, and therefore higher accumulation might correspond to higher sensitivity to the stressful conditions.  相似文献   

6.

Aims

Wild soybean accession PI 468917 [Glycine soja (Sieb. and Zucc.)] was examined for traits that could potentially be beneficial for development of drought resistant soybean cultivars.

Methods

Water use was examined in controlled environment chambers at three temperatures (25, 30, and 35 °C). Root morphology of plants grown in hydroponics was analyzed using digital imaging software.

Results

Wild soybean had lower transpiration efficiency in producing mass than the domesticated soybean cultivar Hutcheson at all temperatures. As soil dried, wild soybean decreased transpiration earlier (at a higher soil water content) than domesticated soybean, but only at 25 °C. Wild soybean had much greater root length than the modern soybean when grown at 25 or 30 °C in hydroponics, with the increase observed in the 0.25 to 0.50 mm diameter class. Wild soybean’s advantages dissipated at higher growth temperatures.

Conclusions

Wild soybean populations, potentially, can offer useful traits for improving drought resistance of modern soybean. Sensitive transpiration control in response to soil drying would contribute to ‘slow-wilting’ strategies known to be advantageous for drought resistance, and greater root length would enhance water acquisition from the soil profile. Use of the traits in breeding programs will require extending the temperature range for trait expression.  相似文献   

7.

Background and Aims

This study was conducted to reveal the genetic diversity of common bean (Phaseolus vulgaris L.) nodulating rhizobia in various agroecological regions in Nepal.

Method

A total of 63 strains were isolated from common bean grown in the soils collected from seven bean fields in Nepal and characterized based on the partial sequences of 16S–23S internal transcribed spacer (ITS) regions, 16S rDNA, nodC, and nifH. Symbiotic properties of some representative strains with host plants were examined to elucidate their characteristics in relation to genotype and their origin.

Results

The isolated strains belonged to Rhizobium leguminosarum, Rhizobium etli, Rhizobium phaseoli, and one unknown Rhizobium lineage, all belonging to a common symbiovar (sv.) phaseoli. Nine ITS genotypes were detected mainly corresponding to a single site, including a dominant group at three sites harboring highly diverse multiple ITS sequences. Three symbiotic genotypes corresponded to a geographical region, not to the ribosomal DNA group, suggesting horizontal transfer of symbiotic genes separately in each region. Great differences in nitrogenase activity and nodule forming ability among the strains irrespective of their species and origin were observed.

Conclusions

Nepalese Himalaya harbor phylogenetically highly diverse and site-specific strains of common bean rhizobia, some of which could have high potential of symbiotic nitrogen fixation.  相似文献   

8.

Aims

Roots need to be in good contact with the soil to take up water and nutrients. However, when the soil dries and roots shrink, air-filled gaps form at the root-soil interface. Do gaps actually limit the root water uptake, or do they form after water flow in soil is already limiting?

Methods

Four white lupins were grown in cylinders of 20 cm height and 8 cm diameter. The dynamics of root and soil structure were recorded using X-ray CT at regular intervals during one drying/wetting cycle. Tensiometers were inserted at 5 and 18 cm depth to measure soil matric potential. Transpiration rate was monitored by continuously weighing the columns and gas exchange measurements.

Results

Transpiration started to decrease at soil matric potential ψ between ?5 kPa and ?10 kPa. Air-filled gaps appeared along tap roots between ψ?=??10 kPa and ψ?=??20 kPa. As ψ decreased below ?40 kPa, roots further shrank and gaps expanded to 0.1 to 0.35 mm. Gaps around lateral roots were smaller, but a higher resolution is required to estimate their size.

Conclusions

Gaps formed after the transpiration rate decreased. We conclude that gaps are not the cause but a consequence of reduced water availability for lupins.  相似文献   

9.

Aims

We aimed to identify plant growth-promoting rhizobacteria that could be used to develop a biofertilizer for rice.

Methods

To obtain plant growth-promoting rhizobacteria, rhizosphere soils from different crops (rice, wheat, oats, crabgrass, maize, ryegrass, and sweet potato) were inoculated to rice plants. In total, 166 different bacteria were isolated and their plant growth-promoting traits were evaluated in terms of colony morphology, indole-3-acetic acid production, acetylene reduction activity, and phosphate solubilization activity. Moreover, genetic analysis was carried out to evaluate their phylogenetic relationships based on 16S rRNA sequence data.

Results

Strains of Bacillus altitudinis, Pseudomonas monteilii, and Pseudomonas mandelii formed associations with rice plants and fixed nitrogen. A strain of Rhizobium daejeonense showed nitrogen fixation activity in an in vitro assay and in vivo. Strains of B. altitudinis and R. daejeonense derived from rice rhizosphere soil, strains of P. monteilii and Enterobacter cloacae derived from wheat rhizosphere soil, and a strain of Bacillus pumilus derived from maize rhizosphere soil significantly promoted rice plant growth.

Conclusions

These methods are effective to identify candidate species that could be developed as biofertilizers for target crops.  相似文献   

10.

Background and aims

We studied the effect of different biochar (BC) application rates on soil properties, crop growth dynamics and yield on a fertile sandy clay loam in boreal conditions.

Methods

In a three-year field experiment conducted in Finland, the field was divided into three sub-experiments with a split-plot experimental design, one for each crop: wheat (Triticum aestivum), turnip rape (Brassica rapa), and faba bean (Vicia faba). The main plot factor was BC rate (0, 5 and 10 t DM ha?1) and the sub-plot factor was the N-P-K fertiliser rate. Soil physico-chemical properties as well as plant development, yield components and quality were investigated.

Results

BC addition did not significantly affect the soil chemical composition other than the increased C and initially increased K contents. Increased soil moisture content was associated with BC application, especially at the end of the growing seasons. BC decreased the N content of turnip rape and wheat biomass in 2010, thus possibly indicating an initial N immobilisation. In dry years, the seed number per plant was significantly higher in faba bean and turnip rape when grown with BC, possibly due to compensation for decreased plant density and relieved water deficit. However, the grain yields and N uptake with BC addition were not significantly different from the control in any year.

Conclusions

Even though BC application to a fertile sandy clay loam in a boreal climate might have relieved transient water deficit and thereby supported yield formation of crops, it did not improve the yield or N uptake.  相似文献   

11.

Aims

The main aim of this study was to validate the HYDRUS-2D model for the simulation of Cd, Cu, Pb and Zn transport within a soil column and their accumulation by willows.

Methods

A simulation of metal transport and uptake by willow was implemented using the HYDRUS-2D code. Two scenarios of the column experiment were compared: soil (C) and soil with planted willows (V). Seeping water, soil water content and actual transpiration were measured. Metal contents in soil water and willows were analysed.

Results

The single-porosity model (applied for isotropic soil media) was sufficient for scenario C. The single-porosity (applied for anisotropic soil media) and dual-porosity models (characterizing non-equilibrium water flow) were explored in scenario V. Measured cumulative Cd and Zn uptake showed a 20- and 10-times higher accumulation, respectively, in comparison with the modelled ones. On the other hand, modelled cumulative Pb uptake was reduced by reducing the maximum value of the root uptake concentration c Root .

Conclusions

The HYDRUS-2D program was usable for modelling of Cd, Cu, Pb and Zn transport and their willow uptake. Additionally, consideration of dual-porosity soil media as well as anisotropy was suitable for the experiment with roots presence in the soil.  相似文献   

12.

Background and aim

Intuitively, access to water from the soil at key phenological stages is important for adaptation to drought. This study aimed to assess the temporal pattern of water extraction under terminal drought stress.

Methods

Pearl millet genotypes with varying levels of terminal drought tolerance were grown in a lysimetric system with a soil volume and plant spacing similar to field conditions. Water extraction was monitored until maturity under differing water regimes.

Results

The yield did not differ among genotypes under well-watered (WW) conditions, and the water extraction profile of WW plants was similar across all genotypes. In contrast, the yield of sensitive genotypes was 30–100 % lower than that of tolerant lines under water stress (WS). The total volumes of water extracted by tolerant and sensitive genotypes were similar under WS; however, tolerant genotypes extracted less water prior to anthesis, and more water after anthesis. Grain yield was positively related to the amount of water extracted during week three after panicle emergence. Increased water extraction after anthesis benefitted the tillers more than the main culm and was correlated with higher staygreen scores.

Conclusion

Increased water uptake after anthesis, which results from earlier water conservation during pre-anthesis, increases yield under terminal drought in pearl millet.  相似文献   

13.

Background and aims

Incorporating soybean (Glycine max) genotypes with a high nitrogen fixation potential into cropping systems can sustainably improve the livelihoods of smallholder farmers in Western Kenya. Nitrogen fixation is, however, often constrained by low phosphorus (P) availability. The selection of soybean genotypes for increased P efficiency could help to overcome this problem. This study investigated the contribution of different root traits to variation in P efficiency among soybean genotypes.

Methods

Eight genotypes were grown in a Ferralsol amended with suboptimal (low P) and optimal (high P) amounts of soluble P. Root hair growth was visualized by growing plants in a novel agar system where P intensity was buffered by Al2O3 nanoparticles.

Results

In the pot trial, P uptake was unaffected among the genotypes at high P but differed about 2-fold at low P. The genotypes differed in P uptake efficiency but not in P utilization efficiency. Regression analysis and mechanistic modeling indicated that P uptake efficiencies were to a large extent related to root hair development (length and density) and, to a lower extent, to colonization by mycorrhizal fungi.

Conclusion

Breeding for improved root hair development is a promising way to increase P uptake efficiency in soybean.  相似文献   

14.

Aims

Because of its high dry matter (DM) productivity, elephant grass (Pennisetum purpureum) is an ideal candidate for biomass production for biofuel production if low N fertilizer rates are used to avoid high fossil fuel inputs. The objective of this study was to investigate the potential of different elephant grass genotypes to obtain contributions of plant-associated biological N2 fixation (BNF).

Methods

Three field experiments with 4 or 5 different genotypes were conducted on low-fertility Acrisols, two in Rio de Janeiro State and one in Espirito Santo for the evaluation of DM and N accumulation and 15N abundance.

Results

DM and N accumulation rates of four genotypes in the two experiments in Rio State stabilized at high levels after 2?years of growth. In all experiments the spontaneously-occurring weeds in the plots were significantly higher in 15N abundance than the elephant grass genotypes. The lower 15N abundance of the elephant grass was shown not to be due to lower δ15N abundance at depth in the soil.

Conclusions

Four of the grass genotypes obtained between 18 and 70% of their N from BNF amounting to inputs of between 36 and 132?kg N ha?1?yr?1.  相似文献   

15.

Background and Aims

Understanding the impact of soil rhizobial populations and inoculant rhizobia in supplying sufficient nodulation is crucial to optimising N2 fixation by legume crops. This study explored the impact of different rates of inoculant rhizobia and contrasting soil rhizobia on nodulation and N2 fixation in faba bean (Vicia faba L.).

Methods

Faba beans were inoculated with one of seven rates of rhizobial inoculation, from no inoculant to 100 times the normal rate of inoculation, sown at two field sites, with or without soil rhizobia present, and their nodulation and N2 fixation assessed.

Results

At the site without soil rhizobia, inoculation increased nodule number and increased N2 fixation from 21 to 129 kg shoot N ha?1, while N2 fixation increased from 132 to 218 kg shoot N ha?1 at the site with high background soil rhizobia. At the site without soil rhizobia, inoculation increased concentrations of shoot N from 14 to 24 mg g?1, grain N from 32 to 45 mg g?1, and grain yields by 1.0 Mg (metric tonne) ha?1. Differences in nodulation influenced the contributions of fixed N to the system, which varied from the net removal of 20 kg N ha?1 from the system in the absence of rhizobia, to a net maximum input of 199 kg N ha?1 from legume shoot and root residues, after accounting for removal of N in grain harvest.

Conclusions

The impact of inoculation and soil rhizobia strongly influenced grain yield, grain N concentration and the potential contributions of legume cropping to soil N fertility. In soil with resident rhizobia, N2 fixation was improved only with the highest inoculation rate.  相似文献   

16.

Aims

Sweet potato (Ipomoea batatas) is known for its ability to grow under nitrogen-limited conditions. To clarify the possible contribution of biological nitrogen fixation, we tried to isolate and identify diazotrophic bacteria from sweet potatoes.

Methods

By using cultivation technique, we isolated putative endophytes, which possess nifH genes, from surface-sterilized sweet potatoes. Their nitrogen-fixing abilities were demonstrated by the acetylene reduction assay in a semi-solid malate medium and sweet potato extracts. We also examined the colonization of an isolated strain (AT1) in sweet potatoes and their influence on growth and nitrogen fixation in plants as assessed by an acetylene reduction assay and 15N-isotope dilution technique.

Results

The isolates were identified as strains of Bradyrhizobium sp. AT1, Paenibacillus sp. AS2 and Pseudomonas sp. T16 based on their 16S rRNA gene sequences. They showed acetylene reduction activity (ARA) in the semi-solid malate medium. Among them, B. sp. AT1 showed ARA in sweet potato extracts under micro-aerobic conditions whereas both P. sp. AS2 and P. sp. T16 showed no ARA. The inoculation of B. sp. AT1 to the sweet potatoes resulted in increases in the fresh weights and detection of ARA in the inoculated plants. Moreover, the reduction of 15N atom % was observed in the inoculated plants compared to uninoculated controls.

Conclusions

B. sp. AT1 actively expresses nitrogenase activity in sweet potatoes and may contribute to the nitrogen nutrition of host plants.  相似文献   

17.

Aims

The objective of this study was to investigate the role of transpiration on accumulation and distribution of thallium (Tl) in young durum wheat (Triticum turgidum L. var ‘Kyle’) and spring canola (Brassica napus L. cv ‘Hyola 401’) plants.

Methods

Seedlings were grown hydroponically and exposed to Tl(I) under different high relative humidity (RH) conditions which resulted in different rates of transpiration among treatments. Plants were harvested prior to exposure, after a dark period of 9 (wheat) or 10?h (canola), and after 24?h of exposure. Harvested plant material was digested and analyzed for Tl by GFAAS.

Results

Our results indicated that accumulation and distribution of Tl by plants was dependent on plant species, Tl(I) dose, duration of exposure and RH, but that the effect of RH was influenced by plant species and Tl dose. Plants exposed to Tl(I) under different RH conditions did not accumulate more Tl overall. In wheat, shoots with higher transpiration rates contained a higher Tl concentration. In canola, the rate of transpiration did not consistently affect the concentration of Tl in shoots.

Conclusions

Overall, our results suggest that accumulation and translocation of Tl by plants is influenced by environmental factors that affect transpiration, in addition to soil characteristics.  相似文献   

18.

Aims

A commonly accepted challenge when visualising plant roots in X-ray micro Computed Tomography (μCT) images is the similar X-ray attenuation of plant roots and soil phases. Soil moisture content remains a recognised, yet currently uncharacterised source of segmentation error. This work sought to quantify the effect of soil moisture content on the ability to segment roots from soil in μCT images.

Methods

Rice (Oryza sativa) plants grown in contrasting soils (loamy sand and clay loam) were μCT scanned daily for nine days whilst drying from saturation. Root volumes were segmented from μCT images and compared with volumes derived by root washing.

Results

At saturation the overlapping attenuation values of root material, water-filled soil pores and soil organic matter significantly hindered segmentation. However, in dry soil (ca. six days of drying post-saturation) the air-filled pores increased image noise adjacent to roots and impeded accurate visualisation of root material. The root volume was most accurately segmented at field capacity.

Conclusions

Root volumes can be accurately segmented from μCT images of undisturbed soil without compromising the growth requirements of the plant providing soil moisture content is kept at field capacity. We propose all future studies in this area should consider the error associated with scanning at different soil moisture contents.  相似文献   

19.
20.

Background

Despite the general assumption that nitrogen fixed by associated cyanobacteria will be readily utilised for growth by the Sphagnum, no empirical evidence is available in the literature. Therefore the effects of nitrogen transfer from cyanobacteria associated with S. riparium were investigated.

Methods

Cultivation of S. riparium with and without cyanobacteria was performed under laboratory conditions for 57 days.

Results

We show that nitrogen fixation by cyanobacteria associated with Sphagnum mosses, influences moss growth by transfer of fixed nitrogen to the moss. More than 35 % of the nitrogen fixed by cyanobacteria was transferred to the newly formed moss biomass and resulted in an increase in the growth of Sphagnum biomass compared to the controls. The variation in the increase of nitrogen content explained 76 % of the biomass increment.

Conclusion

Hence, nitrogen fixation will have immediate effect on the carbon fixation by Sphagnum. This shows that factors regulating nitrogen fixation will have a direct effect on the role of Sphagnum dominated ecosystems with respect to carbon cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号