首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic/tumor fusion cell (FC) vaccine is an effective approach for various types of cancer but has not yet been standardized. Antitumor activity can be modulated by different mechanisms such as dendritic cell (DC) maturation state. This study addressed optimal strategies for FC preparations to enhance Ag-specific CTL activity. We have created three types of FC preparations by alternating fusion cell partners: 1) immature DCs fused with autologous colorectal carcinoma cells (Imm-FCs); 2) Imm-FCs followed by stimulation with penicillin-inactivated Streptococcus pyogenes (OK-432) (Imm-FCs/OK); and 3) OK-432-stimulated DCs directly fused to autologous colorectal carcinoma cells (OK-FCs). Both OK-FCs and Imm-FCs/OK coexpressed the CEA, MUC1, and significantly higher levels of CD86, CD83, and IL-12 than those obtained with Imm-FCs. Short-term culture of fusion cell preparations promoted the fusion efficiency. Interestingly, OK-FCs were more efficient in stimulating CD4(+) and CD8(+) T cells capable of high levels of IFN-gamma production and cytolysis of autologous tumor or semiallogeneic targets. Moreover, OK-FCs are more effective inducer of CTL activation compared with Imm-FCs/OK on a per fusion cell basis. The pentameric assay confirmed that CEA- and MUC1-specific CTL was induced simultaneously by OK-FCs at high frequency. Furthermore, the cryopreserved OK-FCs retained stimulatory capacity for inducing antitumor immunity. These results suggest that OK-432 promotes fusion efficiency and induction of Ag-specific CTL by fusion cells. We conclude that DCs fused after stimulation by OK-432 may have the potential applicability to the field of antitumor immunotherapy and may provide a platform for adoptive immunotherapy in the clinical setting.  相似文献   

2.
OBJECTIVE: To describe the morphologic spectrum of metastatic malignant melanoma (MM) cells involving the breast and to explore the diagnostic utility of HMB45, Mart-1, Melan-A and T311 (antityrosinase) antibodies in fine needle aspiration material of MM metastatic to the breast. STUDY DESIGN: Cytologic material from 21 cases (18 women) was reviewed for cytomorphology (epithelioid, spindled, mixed) and immunocytochemical staining attributes for Mart-1, HMB45, T311, Melan-A and cytokeratin based on tissue availability. RESULTS: Seventeen cases (81%) demonstrated epithelioid cell morphology, with 14% exhibiting mixed and 5% spindled morphologies. All 21 cases (100%) were immunoreactive with Mart-1 antibody, with 81% (17/21) immunoreactive for HMB45. In 38% of cases there was a similar percentage of cells immunoreactive for Mart-1 and HMB45, while 48% showed a higher percentage of cells immunoreactive for MART-1 than HMB45. Immunoreactivity with T311 was seen in 8 of 11 cases tested (73%). All six cases tested (100%) were immunoreactive with Melan-A. Staining for cytokeratin was negative in all eight cases tested. CONCLUSION: Because the majority of MM metastatic to the breast shows epithelioid cell morphology, it may mimic primary breast carcinoma. Mart-1 should be part of the immunocytochemical panel utilized to confirm the diagnosis of MM metastatic to the breast.  相似文献   

3.
The choice of the tumor antigen preparation used for dendritic cell (DC) loading is important for optimizing DC vaccines. In the present study, we compared DCs pulsed with hepatocellular carcinoma (HCC) total RNA or cell lysates for their capacity to activate T cells. We showed here that HCC total RNA pulsed-DCs induced effector T lymphocyte responses which showed higher killing ability to HCC cell lines, as well as higher frequency of IFN-γ producing of CD4+ and CD8+ T cells when compared with lysate pulsed-DCs. Both of RNA and lysate loading did not influence the changes of mature DC phenotype and the capacity of inducing T cell proliferation. However, HCC lysate loading significantly inhibited the production of inflammatory cytokines IL-12p70, IFN-γ and enhanced the secretion of anti-inflammatory cytokines IL-10 of mature DCs. Our results indicated that DCs loaded with HCC RNA are superior to that loaded with lysate in priming anti-HCC CTL response, suggesting that total RNA may be a better choice for DCs-based HCC immunotherapy.  相似文献   

4.
5.
The immunostimulatory outcome of the interactions of many pathogens with dendritic cells (DCs) has been well characterized. There are many fewer examples of similar interactions between DCs and self-molecules, especially the abnormal self-proteins such as many tumor Ags, and their effects on DC function and the immune response. We show that human epithelial cell Ag MUC1 mucin is recognized in its aberrantly glycosylated form on tumor cells by immature human myeloid DCs as both a chemoattractant (through its polypeptide core) and a maturation and activation signal (through its carbohydrate moieties). On encounter with MUC1, similar to the encounter with LPS, immature DCs increase cell surface expression of CD80, CD86, CD40, and CD83 molecules and the production of IL-6 and TNF-alpha cytokines but fail to make IL-12. When these DCs are cocultured with allogeneic CD4+ T cells, they induce production of IL-13 and IL-5 and lower levels of IL-2, thus failing to induce a type 1 response. Our data suggest that, in vivo in cancer patients, MUC1 attracts immature DCs to the tumor through chemotaxis and subverts their function by negatively affecting their ability to stimulate type 1 helper T cell responses important for tumor rejection.  相似文献   

6.
Active immunotherapy of cancer requires the availability of a source of tumor antigens. To date, no such antigen associated with lung cancer has been identified. We have therefore investigated the ability of dendritic cells (DC) to capture whole irradiated human lung tumor cells and to present a defined surrogate antigen derived from the ingested tumor cells. We also describe an in vitro system using a modified human adenocarcinoma cell line (A549-M1) that expresses the well-characterized, immunogenic influenza M1 matrix protein as a surrogate tumor antigen. Peripheral blood monocyte-derived DC, when co-cultured with sub-lethally irradiated A549 cells or primary lung tumor cells derived from surgical resection of non-small cell carcinoma (NSCLC), efficiently ingested the tumor cells as determined by flow cytometry analysis and confocal microscopic examination. More importantly, DC loaded with irradiated A549-M1 cells efficiently processed and presented tumor cell-derived M1 antigen to T cells and elicited antigen-specific immune responses that included IFNgamma release from an M1-specific T-cell line, expansion of M1 peptide-specific Vbeta17+ and CD8+ peripheral T cells and generation of M1-specific cytotoxic T lymphocytes (CTL). We also compared DC loaded with irradiated tumor cells to those loaded with tumor cell lysate or killed tumor cells and found that irradiated lung tumor cells as a source of tumor antigen for DC loading is superior to tumor cell lysate or killed tumor cells in efficient induction of antigen-specific T-cell responses. Our results demonstrate the feasibility of using lung tumor cell-loaded DC to induce immune responses against lung cancer-associated antigens and support ongoing efforts to develop a DC-based lung cancer vaccine.  相似文献   

7.
Previous work has demonstrated that dendritic/tumor fusion cells induce potent antitumor immune responses in vivo and in vitro. However, little is known about the migration and homing of fusion cells after s.c. injection or the kinetics of CD4+ and CD8+ T cell activation. In the present study, fluorescence-labeled dendritic/MUC1-positive tumor fusion cells (FC/MUC1) were injected s.c. into MUC1-transgenic mice. The FC/MUC1 migrated to draining lymph nodes and were closely associated with T cells in a pattern comparable with that of unfused dendritic cells. Immunization of MUC1-transgenic mice with FC/MUC1 resulted in proliferation of T cells and induced MUC1-specific CD8+ CTL. Moreover, CD4+ T cells activated by FC/MUC1 were multifunctional effectors that produced IL-2, IFN-gamma, IL-4, and IL-10. These findings indicate that both CD4+ and CD8+ T cells can be primed in vivo by FC/MUC1 immunization.  相似文献   

8.
Over the past decade, many efforts have been made to identify MHC class II-restricted epitopes from different tumor-associated Ags. Melan-A/MART-1(26-35) parental or Melan-A/MART-1(26-35(A27L)) analog epitopes have been widely used in melanoma immunotherapy to induce and boost CTL responses, but only one Th epitope is currently known (Melan-A51-73, DRB1*0401 restricted). In this study, we describe two novel Melan-A/MART-1-derived sequences recognized by CD4 T cells from melanoma patients. These epitopes can be mimicked by peptides Melan-A27-40 presented by HLA-DRB1*0101 and HLA-DRB1*0102 and Melan-A25-36 presented by HLA-DQB1*0602 and HLA-DRB1*0301. CD4 T cell clones specific for these epitopes recognize Melan-A/MART-1+ tumor cells and Melan-A/MART-1-transduced EBV-B cells and recognition is reduced by inhibitors of the MHC class II presentation pathway. This suggests that the epitopes are naturally processed and presented by EBV-B cells and melanoma cells. Moreover, Melan-A-specific Abs could be detected in the serum of patients with measurable CD4 T cell responses specific for Melan-A/MART-1. Interestingly, even the short Melan-A/MART-1(26-35(A27L)) peptide was recognized by CD4 T cells from HLA-DQ6+ and HLA-DR3+ melanoma patients. Using Melan-A/MART-1(25-36)/DQ6 tetramers, we could detect Ag-specific CD4 T cells directly ex vivo in circulating lymphocytes of a melanoma patient. Together, these results provide the basis for monitoring of naturally occurring and vaccine-induced Melan-A/MART-1-specific CD4 T cell responses, allowing precise and ex vivo characterization of responding T cells.  相似文献   

9.

Background

Dendritic cells (DCs) play a pivotal role in the immune system. There are many reports concerning DC-based immunotherapy. The differentiation and maturation of DCs is a critical part of DC-based immunotherapy. We investigated the differentiation and maturation of DCs in response to various stimuli.

Methods

Thirty-one patients with malignant bone and soft tissue tumors were enrolled in this study. All the patients had metastatic tumors and/or recurrent tumors. Peripheral blood mononuclear cells (PBMCs) were suspended in media containing interleukin-4 (IL-4) and granulocyte-macrophage colony stimulating factor (GM-CSF). These cells were then treated with or without 1) tumor lysate (TL), 2) TL + TNF-α, 3) OK-432. The generated DCs were mixed and injected in the inguinal or axillary region. Treatment courses were performed every week and repeated 6 times. A portion of the cells were analyzed by flow cytometry to determine the degree of differentiation and maturation of the DCs. Serum IFN-γ and serum IL-12 were measured in order to determine the immune response following the DC-based immunotherapy.

Results

Approximately 50% of PBMCs differentiated into DCs. Maturation of the lysate-pulsed DCs was slightly increased. Maturation of the TL/TNF-α-pulsed DCs was increased, commensurate with OK-432-pulsed DCs. Serum IFN-γ and serum IL-12 showed significant elevation at one and three months after DC-based immunotherapy.

Conclusions

Although TL-pulsed DCs exhibit tumor specific immunity, TL-pulsed cells showed low levels of maturation. Conversely, the TL/TNF-α-pulsed DCs showed remarkable maturation. The combination of IL-4/GM-CSF/TL/TNF-α resulted in the greatest differentiation and maturation for DC-based immunotherapy for patients with bone and soft tissue tumors.  相似文献   

10.
Advances in tumor immunology and Identification of tumor-associated antigens (TAAs) provide a basis for the development of novel immunotherapies to treat malignant diseases. In order to identify novel TAAs, we performed comparative microarray analysis of (heterogeneous) tissues and found regulator of G protein-signaling 1 (RGS1) extensively up-regulated in renal cell carcinoma (RCC) tissues. To examine the possible function of this molecule as a novel, broadly applicable TAA, synthetic full-length RGS1-mRNA was synthesized for the transfection of monocyte-derived dendritic cells (DCs). These modified antigen-presenting cells (APCs) were then used to induce RGS1-specific cytotoxic T cells (CTLs) in vitro. The CTLs generated from several healthy donors and a patient with chronic lymphocytic leukemia (CLL) elicited an antigen-specific and HLA-A2- and -A3-restricted cytolytic activity against tumor cells endogenously expressing the RGS1 protein including renal cell carcinomas (RCCs), melanoma, ovarian carcinoma and the primary autologous CLL-blasts. In conclusion, our study demonstrates that the in vitro induction of RGS1-specific CTLs by RNA-transfected DCs is feasible and highly effective. Since this molecule is (over-) expressed in a broad variety of malignancies it might represent an interesting novel TAA in the context of cancer vaccines designed to target RGS1 expressing tumor cells.  相似文献   

11.
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) in human immune system. DC-based tumor vaccine has met with some success in specific malignancies, inclusive of breast cancer. In this study, we electrofused MDA-MB-231 breast cancer cell line with day-3 DCs derived from peripheral blood monocytes, and explored the biological characteristics of fusion vaccine and its anti-tumor effects in vitro. Day-3 mature DCs were generated from day-2 immature DCs by adding cocktails composed of TNF-α, IL-1β, IL-6 and PEG2. Day-3 mature DCs were identified and electofused with breast cancer cells to generate fusion vaccine. Phenotype of fusion cells were identified by fluorescence microscope and flow cytometer. The fusion vaccine was evaluated for T cell proliferation, secretion of IL-12 and IFN-γ, and induction of tumor-specific CTL response. Despite differences in morphology, day-3 and day-7 DC expressed similar surface markers. The secretion of IL-12 and IFN-γ in fusion vaccine group was much higher than that in the control group. Compared with control group, DC-tumor fusion vaccine could better stimulate the proliferation of allogeneic T lymphocytes and kill more breast cancer cells (MDA-MB-231) in vitro. Day-3 DCs had the same function as the day-7 DCs, but with a shorter culture period. Our findings suggested that day-3 DCs fused with whole apoptotic breast cancer cells could elicit effective specific antitumor T cell responses in vitro and may be developed into a prospective candidate for adoptivet immunotherapy.  相似文献   

12.
MUC1 transgenic (MUC1.Tg) mice have widely been used as model recipients of cancer immunotherapy with MUC1. Although MUC1.Tg mice have previously been shown to be immunologically tolerant to MUC1, the involvement of regulatory T (Treg) cells in this phenotype remains unclear. Here, we showed that numbers of Treg cells in MUC1-expressing tumors were greater in MUC1.Tg mice than in control C57BL/6 (B6) mice, and that the growth of tumor cells expressing MUC1, but not that of control cells, in MUC1. Tg mice was faster than in B6 mice. The MUC1.Tg mice appeared to develop MUC1-specific peripheral tolerance, as transferred MUC1-specific T cells were unable to function in MUC1.Tg mice but were functional in control B6 mice. The suppressive function of CD4+CD25high cells from MUC1.Tg mice was more potent than that of cells from control B6 mice when Treg cell activity against MUC1-specific T cells was compared in vitro. Therefore, the enhanced growth of MUC1-expressing tumor cells in MUC1.Tg mice is likely due to the presence of MUC1-specific Treg cells.  相似文献   

13.
Dendritic cell (DC)/tumor cell fusion cells (FCs) can induce potent CTL responses. The therapeutic efficacy of a vaccine requires the improved immunogenicity of both DCs and tumor cells. The DCs stimulated with the TLR agonist penicillin-killed Streptococcus pyogenes (OK-432; OK-DCs) showed higher expression levels of MHC class I and II, CD80, CD86, CD83, IL-12, and heat shock proteins (HSPs) than did immature DCs. Moreover, heat-treated autologous tumor cells displayed a characteristic phenotype with increased expression of HSPs, carcinoembryonic Ag (CEA), MUC1, and MHC class I (HLA-A2 and/or A24). In this study, we have created four types of FC preparation by alternating fusion cell partners: 1) immature DCs fused with unheated tumor cells; 2) immature DCs fused with heat-treated tumor cells; 3) OK-DCs fused with unheated tumor cells; and 4) OK-DCs fused with heat-treated tumor cells. Although OK-DCs fused with unheated tumor cells efficiently enhanced CTL induction, OK-DCs fused with heat-treated tumor cells were most active, as demonstrated by: 1) up-regulation of multiple HSPs, MHC class I and II, CEA, CD80, CD86, CD83, and IL-12; 2) activation of CD4+ and CD8+ T cells able to produce IFN- gamma at higher levels; 3) efficient induction of CTL activity specific for CEA or MUC1 or both against autologous tumor; and 4) superior abilities to induce CD107+ IFN-gamma+ CD8+ T cells and CD154+ IFN-gamma+ CD4+ T cells. These results strongly suggest that synergism between OK-DCs and heat-treated tumor cells enhances the immunogenicity of FCs and provides a promising means of inducing therapeutic antitumor immunity.  相似文献   

14.
Immunization with dendritic cells (DCs) transfected with genes encoding tumor-associated antigens (TAAs) is a highly promising approach to cancer immunotherapy. We have developed a system, using complexes of plasmid DNA expression constructs with the cationic peptide CL22, that transfects human monocyte-derived DCs much more efficiently than alternative nonviral agents. After CL22 transfection, DCs expressing antigens stimulated autologous T cells in vitro and elicited primary immune responses in syngeneic mice, in an antigen-specific manner. Injection of CL22-transfected DCs expressing a TAA, but not DCs pulsed with a TAA-derived peptide, protected mice from lethal challenge with tumor cells in an aggressive model of melanoma. The CL22 system is a fast and efficient alternative to viral vectors for engineering DCs for use in immunotherapy and research.  相似文献   

15.
Recent reports demonstrated that dendritic cells (DC) sense inflammatory and microbial signals differently, redefining their classical subdivision into an immature endocytic and a mature Ag-presenting differentiation stage. Although both signals induce DC maturation by up-regulating MHC class II and costimulatory molecules, only TLR signals such as LPS are able to trigger proinflammatory cytokine secretion by DCs, including Th1-polarizing IL-12. Here, we explored the murine Leishmania major infection model to examine the CD4(+) T cell response induced by differentially matured DCs. When partially matured TNF-DCs were injected into BALB/c mice before infection, the mice failed to control L. major infection and developed a Th2 response which was dependent on IL-4Ralpha signaling. In contrast, injections of fully matured LPS+CD40-DCs induced a Th1 response controlling the infection. Pulsing DCs with a lysate of L. major did not affect DC maturation with TNF-alpha or LPS+anti-CD40. When the expression of different Notch ligands on DCs was analyzed, we found increased expression of Th2-promoting Jagged2 in TNF-DCs, whereas LPS+CD40-DCs up-regulated the Th1-inducing Delta4 and Jagged1 molecules. The Th2 polarization induced by TNF-DCs required interaction with CD1d-restricted NKT cells. However, NKT cell activation by L. major lysate-pulsed DCs was not affected by blockade of the endogenous glycolipid, suggesting exchange with exogenous parasite-derived CD1 glycolipid Ag. In sum, the differentiation stage of DCs as well as their interaction with NKT cells determines Th1/Th2 differentiation. These results have generic implications for the understanding of DC-driven Th cell responses and the development of improved DC vaccines against leishmaniasis.  相似文献   

16.
The overall prevalence with which endogenous tumor Ags induce host T cell responses is unclear. Even when such responses are detected, they do not usually result in spontaneous remission of the cancer. We hypothesized that this might be associated with a predominant phenotype and/or cytokine profile of tumor-specific responses that is different from protective T cell responses to other chronic Ags, such as CMV. We detected significant T cell responses to CEA, HER-2/neu, and/or MAGE-A3 in 17 of 21 breast cancer patients naive to immunotherapy. The pattern of T cell cytokines produced in response to tumor-associated Ags (TAAs) in breast cancer patients was significantly different from that produced in response to CMV or influenza in the same patients. Specifically, there was a higher proportion of IL-2-producing CD8(+) T cells, and a lower proportion of IFN-gamma-producing CD4(+) and/or CD8(+) T cells responding to TAAs compared with CMV or influenza Ags. Finally, the phenotype of TAA-responsive CD8(+) T cells in breast cancer patients was almost completely CD28(+)CD45RA(-) (memory phenotype). CMV-responsive CD8(+) T cells in the same patients were broadly distributed among phenotypes, and contained a high proportion of terminal effector cells (CD27(-)CD28(-)CD45RA(+)) that were absent in the TAA responses. Taken together, these results suggest that TAA-responsive T cells are induced in breast cancer patients, but those T cells are phenotypically and functionally different from CMV- or influenza-responsive T cells. Immunotherapies directed against TAAs may need to alter these T cell signatures to be effective.  相似文献   

17.
Cancer stem cells (CSCs) are responsible for therapeutic resistance and recurrence in colorectal cancer. Despite advances in immunotherapy, the inability to specifically eradicate CSCs has led to treatment failure. Hence, identification of appropriate antigen sources is a major challenge in designing dendritic cell (DC)-based therapeutic strategies against CSCs. Here, in an in vitro model using the HT-29 colon cancer cell line, we explored the efficacy of DCs loaded with exosomes derived from CSC-enriched colonospheres (CSCenr-EXOs) as an antigen source in activating CSC-specific T-cell responses. HT-29 lysate, HT-29-EXOs and CSCenr lysate were independently assessed as separate antigen sources. Having confirmed CSCs enrichment in spheroids, CSCenr-EXOs were purified and characterized, and their impact on DC maturation was investigated. Finally, the impact of the antigen-pulsed DCs on the proliferation rate and also spheroid destructive capacity of autologous T cells was assessed. CSCenr-EXOs similar to other antigen groups had no suppressive/negative impacts on phenotypic maturation of DCs as judged by the expression level of costimulatory molecules. Notably, similar to CSCenr lysate, CSCenr-EXOs significantly increased the IL-12/IL-10 ratio in supernatants of mature DCs. CSCenr-EXO-loaded DCs effectively promoted T-cell proliferation. Importantly, T cells stimulated with CSCenr-EXOs disrupted spheroids' structure. Thus, CSCenr-EXOs present a novel and promising antigen source that in combination with conventional tumour bulk-derived antigens should be further explored in pre-clinical immunotherapeutic settings for the efficacy in hampering recurrence and metastatic spread.  相似文献   

18.
Fusions of patient-derived dendritic cells (DCs) and autologous tumor cells induce T-cell responses against autologous tumors in animal models and human clinical trials. These fusion cells require patient-derived tumor cells, which are not, however, always available. Here we fused autologous DCs from patients with hepatocellular carcinoma (HCC) to an allogeneic HCC cell line (HepG2). These fusion cells co-expressed tumor-associated antigens (TAAs) and DC-derived costimulatory and MHC molecules. Both CD4+ and CD8+ T cells were activated by the fusion cells. Cytotoxic T lymphocytes (CTLs) induced by the fusion cells were able to kill autologous HCC by HLA-A2- and/or HLA-A24-restricted mechanisms. CTL activity against shared TAAs indicates that the presence of alloantigens does not prevent the development of CTLs with activity against autologous HCC cells. These fusion cells may have applications in anti-tumor immunotherapy through cross-priming against shared tumor antigens and may provide a platform for adoptive immunotherapy.  相似文献   

19.
Pancreatic cancer is a highly aggressive, treatment refractory disease and is the fourth leading cause of death in the United States. In humans, 90% of pancreatic adenocarcinomas over-express altered forms of a tumor-associated antigen, MUC1 (an epithelial mucin glycoprotein), which is a target for immunotherapy. Using a clinically relevant mouse model of pancreas cancer that demonstrates peripheral and central tolerance to human MUC1 and develops spontaneous tumors of the pancreas, we have previously reported the presence of functionally active, low affinity, MUC1-specific precursor cytotoxic T cells (pCTLs). Hypothesis for this study is that MUC1-based immunization may enhance the low level MUC1-specific immunity that may lead to an effective anti-tumor response. Data demonstrate that MUC1 peptide-based immunization elicits mature MUC1-specific CTLs in the peripheral lymphoid organs. The mature CTLs secrete IFN-gamma and are cytolytic against MUC1-expressing tumor cells in vitro. However, active CTLs that infiltrate the pancreas tumor microenvironment become cytolytically anergic and are tolerized to MUC1 antigen, allowing the tumor to grow. We demonstrate that the CTL tolerance could be reversed at least in vitro with the use of anti-CD40 co-stimulation. The pancreas tumor cells secrete immunosuppressive cytokines, including IL-10 and TGF-beta that are partly responsible for the down-regulation of CTL activity. In addition, they down-regulate their MHC class I molecules to avoid immune recognition. CD4+ CD25+ T regulatory cells, which secrete IL-10, were also found in the tumor environment. Together these data indicate the use of several immune evasion mechanisms by tumor cells to evade CTL killing. Thus altering the tumor microenvironment to make it more conducive to CTL killing may be key in developing a successful anti-cancer immunotherapy.  相似文献   

20.
Low-frequency CTL and low-titer IgM responses against tumor-associated Ag MUC1 are present in cancer patients but do not prevent cancer growth. Boosting MUC1-specific immunity with vaccines, especially effector mechanisms responsible for tumor rejection, is an important goal. We studied immunogenicity, tumor rejection potential, and safety of three vaccines: 1) MUC1 peptide admixed with murine GM-CSF as an adjuvant; 2) MUC1 peptide admixed with adjuvant SB-AS2; and 3) MUC1 peptide-pulsed dendritic cells (DC). We examined the qualitative and quantitative differences in humoral and T cell-mediated MUC1-specific immunity elicited in human MUC1-transgenic (Tg) mice compared with wild-type (WT) mice. Adjuvant-based vaccines induced MUC1-specific Abs but failed to stimulate MUC1-specific T cells. MUC1 peptide with GM-CSF induced IgG1 and IgG2b in WT mice but only IgM in MUC1-Tg mice. MUC1 peptide with SB-AS2 induced high-titer IgG1, IgG2b, and IgG3 Abs in both WT and MUC1-Tg mice. Induction of IgG responses was T cell independent and did not have any effect on tumor growth. MUC1 peptide-loaded DC induced only T cell immunity. If injected together with soluble peptide, the DC vaccine also triggered Ab production. Importantly, the DC vaccine elicited tumor rejection responses in both WT and MUC1-Tg mice. These responses correlated with the induction of MUC1-specific CD4+ and CD8+ T cells in WT mice, but only CD8(+) T cells in MUC1-Tg mice. Even though MUC1-specific CD4+ T cell tolerance was not broken, the capacity of MUC1-Tg mice to reject tumor was not compromised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号