首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TAp73, a homologous of tumor suppressor p53, regulates apoptosis in a p53-independent manner and its suppressive as well as stimulatory role in promoting angiogenesis has been reported. It exists in multiple isoforms which varies structurally in their N-terminus and C-terminus region and crucial interplay among them guides the decision of cell survival and death. As molecular chaperones control both stability and degradation of TAp73, selective regulation of p73 isoforms has implication upon developing new therapeutic for hypoxic tumor. We have discovered that under DNA damage carboxy terminus Hsp70 interacting protein (CHIP's) antiapoptotic function is displayed via its E3 ligase activity that inhibits exclusively TAp73α-mediated apoptosis in cancer cell. The decrease in TAp73α level by CHIP as it is supported by increased ubiquitination pattern is reverted back by sh-CHIP. Further, the transactivation of p53-downstream apoptotic genes BAX, PUMA and PIG3 by TAp73α is also shown to be subsequently inhibited by CHIP. The tetratricopeptide TPR-domain of CHIP in its amino-terminus interacts with the carboxy-terminus of TAp73α and ΔNp73α and as a result, U-BOX domain of CHIP in the carboxy-terminus is able to ubiquitinate TAp73α for proteasomal degradation. Due to lack of C-terminus in TAp73β, CHIP fails to interact with and degrade it. In conclusion, we have thus uncovered for the first time a novel mechanism of chaperone-assisted regulation of p73 stability as well as its apoptotic functions by CHIP that might be utilized to develop new anticancer strategies.  相似文献   

2.
The p53-related p63 gene encodes six isoforms with differing N and C termini. TAp63 isoforms possess a transactivation domain at the N terminus and are able to transactivate a set of genes, including some targets downstream of p53. Accumulating evidence indicates that TAp63 plays an important role in regulation of cell proliferation, differentiation, and apoptosis, whereas transactivation-inert deltaNp63 functions to inhibit p63 and other p53 family members. Mutations in the p63 gene that abolish p63 DNA-binding and transactivation activities cause human diseases, including ectrodactyly ectodermal dysplasia and facial clefting (EEC) syndrome. In this study, we show that mutant p63 proteins with a single amino acid substitution found in EEC syndrome are DNA binding deficient, transactivation inert, and highly stable. We demonstrate that TAp63 protein expression is tightly controlled by its specific DNA-binding and transactivation activities and that p63 is degraded in a proteasome-dependent, MDM2-independent pathway. In addition, the N-terminal transactivation domain of p63 is indispensable for its protein degradation. Furthermore, the wild-type TAp63gamma can act in trans to promote degradation of mutant TAp63gamma defective in DNA binding, and the TA domain deletion mutant of TAp63gamma inhibits transactivation activity and stabilizes the wild-type TAp63 protein. Taken together, these data suggest a feedback loop for p63 regulation, analogous to the p53-MDM2 feedback loop.  相似文献   

3.
4.
5.
p73 induces apoptosis by different mechanisms   总被引:11,自引:0,他引:11  
p73, like its homologue, the tumor suppressor p53, is able to induce apoptosis in several cell types. This property is important for the involvement of p73 in cancer development and therapy. However, in contrast with p53, the TAp73 gene has two distinct promoters coding for two protein isoforms with opposite effects: while the transactivation proficient TAp73 shows pro-apoptotic effects, the amino-terminal-deleted DeltaNp73 has an anti-apoptotic function. Indeed, the relative expression of these two proteins is related to the prognosis of several cancers. Here we discuss recent developments in the control of p73-induced apoptosis. First, TAp73 induces ER stress via the direct transactivation of Scotin. Second, TAp73 induces the mitochondrial pathway by directly transactivating both Bax and the BH3 only protein PUMA promoters. While the first transactivation is weak, and not sufficient to trigger apoptosis (at least in the in vitro cellular models so far evaluated), the induction of PUMA is strong and lethal. Third, the promoter of the death receptor CD95 contains a p53 responsive element and preliminary experiments suggest that TAp73 also activates the death receptor pathway. In addition, TAp73 is able to transactivate its own second promoter, thus inducing the expression of the anti-apoptotic DeltaNp73 isoform. Therefore, the balance between TAp73 and DeltaNp73 finely regulates cellular sensitivity to death.  相似文献   

6.
The amino terminal of human P51/TAp63, a P53 homologue, possesses a transactivation domain involved in the activation of its target genes by binding to DNA elements responsive to the p53 protein family. Using a series of amino terminal deletions, the transactivation domain was mapped between amino acid residues 50 to 69. This domain also regulates protein stability in a proteasome-dependent manner, and Ser51 and Ser68 were found to be essential for this stability. Our results suggest that P51 activity is greatly affected by protein stability.  相似文献   

7.
8.
P73, the homolog of p53, exists in 2 major forms: either as a pro-apoptotic TAp73 or an amino-terminally truncated DNp73, the latter lacking the first transactivation domain. While TAp73s tumor suppressive functions have been established, DNp73 is an anti-apoptotic protein conferring chemoresistance and is associated with poor survival. However, both forms are variably overexpressed in many human cancers. In this context, we have recently demonstrated that TAp73 is stabilized by hypoxia, a tumor-relevant condition that is associated with cell survival, via HIF-1α-mediated suppression of Siah1 E3 ligase that degrades TAp73. Consequently, hypoxic signals lead to TAp73-mediated activation of several angiogenic genes and blood vessel formation, thereby supporting tumorigenesis. We show here that, similar to TAp73, DNp73 is stabilized by hypoxia in a HIF-1α-dependent manner, which otherwise is degraded by Siah1. Moreover, DNp73 is capable of inducing the expression of Vegf-A, the prototypic angiogenic gene, and loss of DNp73 expression results in reduction in tumor vasculature and size. These data therefore indicate a common mode of regulation for both p73 forms by hypoxia, resulting in the promotion of angiogenesis and tumor growth, highlighting common functionality of these antagonistic proteins under specific physiological contexts.  相似文献   

9.
10.
11.
p63 and p73 are members of the p53 protein family and have been shown to play an important role in cell death, development, and tumorigenesis. In particular, p63 has been shown to be involved in the maintenance of epidermal stem cells and in the stratification of the epidermis. Sonic Hedgehog (Shh) is a morphogen that has also been implicated to play a role in epithelial stem cell proliferation and in the development of organs. Recently, Shh has also been shown to play an important role in the progression of a variety of cancers. In this report, we show that p63 and p73 but not p53 overexpression induces Shh expression. In particular, p63gamma and p63beta (both TA and DeltaN isoforms) and TAp73beta isoform induce Shh. Expression of Shh was found to be significantly reduced in mouse embryo fibroblasts obtained from p63-/- mice. The naturally occurring p63 mutant TAp63gamma(R279H) and the tumor suppressor protein p14(ARF) inhibited the TAp63gamma-mediated transactivation of Shh. The region -228 to -102 bp of Shh promoter was found to be responsive to TAp63gamma-induced transactivation and TAp63gamma binds to regions within the Shh promoter in vivo. The results presented in this study implicate p63 in the regulation of the Shh signaling pathway.  相似文献   

12.
13.
14.
Histone deacetylases (HDACs) play important roles in fundamental cellular processes, and HDAC inhibitors are emerging as promising cancer therapeutics. p73, a member of the p53 family, plays a critical role in tumor suppression and neural development. Interestingly, p73 produces two classes of proteins with opposing functions: the full-length TAp73 and the N-terminally truncated ΔNp73. In the current study, we sought to characterize the potential regulation of p73 by HDACs and found that histone deacetylase 1 (HDAC1) is a key regulator of TAp73 protein stability. Specifically, we showed that HDAC1 inhibition by HDAC inhibitors or by siRNA shortened the half-life of TAp73 protein and subsequently decreased TAp73 expression under normal and DNA damage-induced conditions. Mechanistically, we found that HDAC1 knockdown resulted in hyperacetylation and inactivation of heat shock protein 90, which disrupted the interaction between heat shock protein 90 and TAp73 and thus promoted the proteasomal degradation of TAp73. Functionally, we found that down-regulation of TAp73 was required for the enhanced cell migration mediated by HDAC1 knockdown. Together, we uncover a novel regulation of TAp73 protein stability by HDAC1-heat shock protein 90 chaperone complex, and our data suggest that TAp73 is a critical downstream mediator of HDAC1-regulated cell migration.  相似文献   

15.
Apoptin, a protein derived from the chicken anaemia virus, induces cell death in various cancer cells but shows little or no cytotoxicity in normal cells. The mechanism of apoptin-induced cell death is currently unknown but it appears to induce apoptosis independent of p53 status. Here we show that p73, a p53 family member, is important in apoptin-induced apoptosis. In p53 deficient and/or mutated cells, apoptin induced the expression of TAp73 leading to the induction of apoptosis. Knockdown of p73 using siRNA resulted in a significant reduction in apoptin-induced cytotoxicity. The p53 and p73 pro-apoptotic target PUMA plays an important role in apoptin-induced cell death as knockdown of PUMA significantly reduced cell sensitivity to apoptin. Importantly, apoptin expression resulted in a marked increase in TAp73 protein stability. Investigation into the mechanisms of TAp73 stability showed that apoptin induced the expression of the ring finger domain ubiquitin ligase PIR2 which is involved in the degradation of the anti-apoptotic ?Np73 isoform. Collectively, our results suggest a novel mechanism of apoptin-induced apoptosis through increased TAp73 stability and induction of PIR2 resulting in the degradation of ?Np73 and activation of pro-apoptotic targets such as PUMA causing cancer cell death.  相似文献   

16.
17.
The p73 gene, a homologue of the p53 tumor suppressor, is expressed as TA and ΔN isoforms. TAp73 has similar activity as p53 and functions as a tumor suppressor whereas ΔNp73 has both pro- and anti-survival functions. While p73 is rarely mutated in spontaneous tumors, the expression status of p73 is linked to the sensitivity of tumor cells to chemotherapy and prognosis for many types of human cancer. Thus, uncovering its regulators in tumors is of great interest. Here, we found that Pirh2, a RING finger E3 ubiquitin ligase, promotes the proteasome-dependent degradation of p73. Specifically, we showed that knockdown of Pirh2 up-regulates, whereas ectopic expression of Pirh2 down-regulates, expression of endogenous and exogenous p73. In addition, Pirh2 physically associates with and promotes TAp73 polyubiquitination both in vivo and in vitro. Moreover, we found that p73 can be degraded by both 20 S and 26 S proteasomes. Finally, we showed that Pirh2 knockdown leads to growth suppression in a TAp73-dependent manner. Taken together, our findings indicate that Pirh2 promotes the proteasomal turnover of TAp73, and thus targeting Pirh2 to restore TAp73-mediated growth suppression in p53-deficient tumors may be developed as a novel anti-cancer strategy.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号