首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of extracellular matrix proteins, such as type IV collagen and fibronectin, by mesangial cells contributes to progressive glomerulosclerosis. In this study, the ability of vasopressin (AVP), which causes mesangial cell proliferation and hypertrophy, to stimulate type IV collagen production by cultured human mesangial cells was examined using an enzyme-linked immunosorbent assay. AVP induced a concentration-dependent increase in the production of type IV collagen and this effect was potently and concentration-dependently inhibited by AVP V1A receptor antagonists, including YM218. AVP also induced a concentration-dependent increase in transforming growth factor (TGF)-β secretion by human mesangial cells and this effect was inhibited by V1A receptor antagonists. Furthermore, TGF-β also induced an increase in the production of type IV collagen; the AVP-enhanced production of type IV collagen was inhibited by an anti-TGF-β antibody. These findings indicate that AVP stimulates synthesis of type IV collagen by cultured human mesangial cells through the induction of TGF-β synthesis mediated by V1A receptors; consequently, AVP contributes to glomerular remodeling and extracellular matrix accumulation observed in glomerular diseases.  相似文献   

2.
Rat mesangial cell-matrix interactions in culture   总被引:5,自引:0,他引:5  
The glomerular mesangium contains fibronectin (FN), laminin, and collagen IV, but it remains unclear whether these matrix proteins affect mesangial cellular functions. The present experiments were designed to test whether cell-matrix interactions could affect some functions of mesangial cells. Cultured rat mesangial cells synthesized a cellular form of FN that was both secreted and incorporated into an extensive, fibrillar pericellular matrix. This FN matrix was increased in high-density cultures and was more developed in human mesangial cells. Rat mesangial cells in vitro displayed a marked capacity to incorporate exogenous FN into a pericellular matrix, demonstrating that accumulations of FN in the mesangial matrix could result from endogenous and/or exogenous sources. Rat mesangial cells also expressed RGD-sensitive integrin receptors for FN, laminin, and collagens I and IV that promoted cell adhesion and that directed differential changes in morphology. Indirect evidence suggested the existence of other mesangial binding sites for extracellular matrix proteins. FN and collagen IV also stimulated modest increases in [3H]thymidine uptake and cell number by quiescent cells. Taken together, these results suggest that cultured mesangial cells present a model system for studying the regulation of cell-matrix interactions in the mesangium.  相似文献   

3.
Connective tissue growth factor (CTGF) is overexpressed in a variety of fibrotic disorders such as renal fibrosis and atherosclerosis. Fibrosis is a common final pathway of renal diseases of diverse etiology, including inflammation, hemodynamics, and metabolic injury. Mechanical strains such as stretch, shear stress, and static pressure are possible regulatory elements in CTGF expression. In this study, we examined the ability of static pressure to modulate CTGF gene expression in cultured human mesangial cells. Low static pressure (40-80 mm Hg) stimulated cell proliferation via a protein kinase C-dependent pathway. In contrast, high static pressure (100-180 mm Hg) induced apoptosis in human mesangial cells. This effect was reversed by treatment with CTGF antisense oligonucleotide but not with transforming growth factor beta1-neutralizing antibody or protein kinase C inhibitor. High static pressure not only up-regulated the expression of CTGF, but also the expression of extracellular matrix proteins (collagen I and IV, laminin). This up-regulation of extracellular matrix proteins was also reversed by treatment with CTGF antisense oligonucleotide. As judged by mRNA expression of a total of 1100 genes, including apoptosis-associated genes using DNA microarray techniques, recombinant CTGF protein induced apoptosis by down-regulation of a number of anti-apoptotic genes. Overexpression of CTGF in mesangial cells by transient transfection had similar effects. Taken together, these results suggest that high blood pressure up-regulates CTGF expression in mesangial cells. High levels of CTGF in turn enhance extracellular matrix production and induce apoptosis in mesangial cells, and may contribute to remodeling of mesangium and ultimately glomerulosclerosis.  相似文献   

4.
5.
Glycated albumin, an early-glycation Amadori-modified protein, stimulates transforming growth factor-β (TGF-β) expression and increases the production of the extracellular matrix proteins in mesangial cells, contributing to the pathogenesis of diabetic nephropathy. Glycated albumin has been shown to increase NADPH oxidase-dependent superoxide formation in mesangial cells. However, the mechanisms are not well understood. Therefore, in the present studies, we determined the mechanisms by which glycated albumin activates NADPH oxidase in primary rat mesangial cells and its contribution to glycated albumin-induced TGF-β expression and extracellular matrix protein production. Our data showed that glycated albumin treatment stimulated NADPH oxidase activity and increased the formation of superoxide formation in rat mesangial cells. Moreover, glycated albumin treatment stimulated the expression and phosphorylation of p47phox, one of the cytosolic regulatory subunits of the NADPH oxidase. However, the levels of other NADPH oxidase subunits including Nox1, Nox2, Nox4, p22phox, and p67phox were not altered by glycated albumin. Moreover, siRNA-mediated knockdown of p47phox inhibited glycated albumin-induced NADPH oxidase activity and superoxide formation. Glycated albumin-induced TGF-β expression and extracellular matrix production (fibronectin) was also inhibited by p47phox knock down. Taken together, these data suggest that up-regulation of p47phox is involved in glycated albumin-mediated activation of NADPH oxidase, leading to glycated albumin-induced expression of TGF-β and extracellular matrix proteins in mesangial cells and contributing to the development of diabetic nephropathy.  相似文献   

6.
Accumulation of mesangial matrix is a pivotal event in the pathophysiology of diabetic nephropathy. The molecular triggers for matrix production are still being defined. Here, suppression subtractive hybridization identified 15 genes differentially induced when primary human mesangial cells are exposed to high glucose (30 mM versus 5 mM) in vitro. These genes included (a) known regulators of mesangial cell activation in diabetic nephropathy (fibronectin, caldesmon, thrombospondin, and plasminogen activator inhibitor-1), (b) novel genes, and (c) known genes whose induction by high glucose has not been reported. Prominent among the latter were genes encoding cytoskeleton-associated proteins and connective tissue growth factor (CTGF), a modulator of fibroblast matrix production. In parallel experiments, elevated CTGF mRNA levels were demonstrated in glomeruli of rats with streptozotocin-induced diabetic nephropathy. Mannitol provoked less mesangial cell CTGF expression in vitro than high glucose, excluding hyperosmolality as the key stimulus. The addition of recombinant CTGF to cultured mesangial cells enhanced expression of extracellular matrix proteins. High glucose stimulated expression of transforming growth factor beta1 (TGF-beta1), and addition of TGF-beta1 to mesangial cells triggered CTGF expression. CTGF expression induced by high glucose was partially suppressed by anti-TGF-beta1 antibody and by the protein kinase C inhibitor GF 109203X. Together, these data suggest that 1) high glucose stimulates mesangial CTGF expression by TGFbeta1-dependent and protein kinase C dependent pathways, and 2) CTGF may be a mediator of TGFbeta1-driven matrix production within a diabetic milieu.  相似文献   

7.
The spreading of freshly isolated arterial smooth muscle cells on a substrate of fibronectin is mediated by an integrin receptor on the cell surface. It is associated with organization of actin filaments in stress fibers and marked changes in cell morphology and function, collectively referred to as a transition from a contractile to a synthetic phenotype. To study further how extracellular matrix components affect smooth muscle phenotype, we have analyzed the expression and organization of smooth-muscle-specific alpha-actin in freshly isolated rat aortic smooth muscle cells cultured on a substrate of fibronectin under serum-free conditions. Northern-blot analysis showed that the expression of mRNA for smooth muscle alpha-actin, but not for nonmuscle actin, was strongly repressed during primary culture. On the other hand, the cellular content of alpha-actin was only moderately changed during the same period. Indirect immunofluorescence staining revealed that nonmuscle actin was rapidly organized in stress fibers, which did not stain with a monoclonal antibody against smooth muscle alpha-actin. Filament bundles containing alpha-actin were most prominent in the central parts of the cytoplasm and gradually disappeared as the spreading of the cells progressed. In contrast to the situation with nonmuscle actin, there was no apparent overlap in the staining for alpha-actin and the fibronectin receptor (alpha 5 beta 1), indicating that this receptor interacted with nonmuscle actin during the initial spreading process. Taken together, the results show that the expression and organization of smooth muscle alpha-actin are changed during interaction of the cells with fibronectin early in primary culture. They support the notion that integrin-mediated interactions between extracellular matrix components and arterial smooth muscle cells take part in the control of smooth muscle phenotype.  相似文献   

8.
The study was undertaken to examine the effects of C-peptide on glomerular volume (V(GLOM)), mesangial matrix synthesis, and degradation in streptozotocin (STZ)-diabetic rats with poor or moderate glycemic control. Series 1 (poor glycemic control) included groups of healthy rats, hyperglycemic rats, diabetic insulin-treated rats and diabetic C-peptide-treated rats. Series 2 (moderate glycemic control) included groups of healthy rats, diabetic insulin-treated rats, diabetic insulin- and C-peptide-treated rats. After 8 weeks, the left kidney was excised for evaluation of V(GLOM) and mesangial matrix area via light microscopy. Mesangial cells were cultured for 48 h and type IV collagen expression and matrix metalloproteinase (MMP)-2 expression were measured by ELISA and RT-PCR. The results indicated that in Series 1, C-peptide administration suppressed the diabetes-induced increase in the V(GLOM) and the mesangial matrix area. In Series 2, C-peptide administration resulted in a similar decrease in the V(GLOM) and a greater decrease in the mesangial matrix area when compared with insulin therapy alone. Moreover, C-peptide (300 nM) completely inhibited the glucose-induced increase of the collagen IV mRNA expression and protein concentration in mesangial cells cultured in 30 mM glucose medium. MMP-2 mRNA expression was not influenced by C-peptide. In conclusion, C-peptide administration to STZ-diabetic rats for 8 weeks results in the inhibition of diabetes-induced expansion of the mesangial matrix. This effect is independent of the level of glycemic control and results from the inhibition of diabetes-induced excessive formation of mesangial type IV collagen.  相似文献   

9.
We have previously shown that one of the potential mediators of the deleterious effects of high glucose on extracellular matrix protein (ECM) expression in renal mesangial cells is its metabolic flux through the hexosamine biosynthesis pathway (HBP). Here, we investigate further whether the hexosamines induce oxidative stress, cell-cycle arrest and ECM expression using SV-40-transformed rat mesangial (MES) cells and whether the anti-oxidant alpha-lipoic acid will reverse some of these effects. Culturing renal MES cells with high glucose (HG, 25 mM) or glucosamine (GlcN, 1.5 mM) for 48 h stimulates laminin gamma1 subunit expression significantly approximately 1.5 +/- 0.2- and 1.9 +/- 0.3-fold, respectively, when compared to low glucose (LG, 5 mM). Similarly, HG and GlcN increase the level of G0/G1 cell-cycle progression factor cyclin D1 significantly approximately 1.7 +/- 0.2- and 1.4 +/- 0.04-fold, respectively, versus LG (p < 0.01 for both). Azaserine, an inhibitor of glutamine:fruc-6-PO(4) amidotransferase (GFAT) in the HBP, blocks the HG-induced expression of laminin gamma1 and cyclin D1, but not GlcN's effect because it exerts its metabolic function distal to GFAT. HG and GlcN also elevate reactive oxygen species (ROS) generation, pro-apoptotic caspase-3 activity, and lead to mesangial cell death as revealed by TUNEL and Live/Dead assays. FACS analysis of cell-cycle progression shows that the cells are arrested at G1 phase; however, they undergo cell growth and hypertrophy as the RNA/DNA ratio is significantly (p < 0.05) increased in HG or GlcN-treated cells relative to LG. The anti-oxidant alpha-lipoic acid (150 microM) reverses ROS generation and mesangial cell death induced by HG and GlcN. Alpha-lipoic acid also reduces HG and GlcN-induced laminin gamma1 and cyclin D1 expression in MES cells. In addition, induction of diabetes in rats by streptozotocin (STZ) increases both laminin gamma1 and cyclin D1 expression in the renal cortex and treatment of the diabetic rats with alpha-lipoic acid (400 mg kg(-1) body weight) reduces the level of both proteins significantly (p < 0.05) when compared to untreated diabetic rats. These results support the hypothesis that the hexosamine pathway mediates mesangial cell oxidative stress, ECM expression and apoptosis. Anti-oxidant alpha-lipoic acid reverses the effects of high glucose, hexosamine and diabetes on oxidative stress and ECM expression in mesangial cells and rat kidney.  相似文献   

10.
Myofibroblasts are a major source of proinflammatory cytokines and extracellular matrix in progressive tissue fibrosis leading to chronic organ failure. Myofibroblasts are characterized by de novo expression of smooth muscle alpha-actin (SMalphaA), which correlates with the extent of disease progression, although their exact role is unknown. In vitro cultured myofibroblasts from kidney of SMalphaA knock-out mice demonstrate significantly more prominent cell motility, proliferation, and type-I procollagen expression than those of wild-type myofibroblasts. These pro-fibrotic properties are suppressed by adenovirus-mediated SMalphaA re-expression, accompanied by down-regulation of focal adhesion proteins. In interstitial fibrosis model, tissue fibrosis area, proliferating interstitial cell number, and type-I procollagen expression are enhanced under SMalphaA deficiency. In mesangioproliferative glomerulonephritis model, cell proliferation in the mesangial area is also enhanced in SMalphaA knock-out mice. Adenoviral SMalphaA introduction into renal interstitium obviously ameliorates tissue fibrosis in interstitial fibrosis model. These results indicate that SMalphaA suppresses the pro-fibrotic properties of myofibroblasts, highlighting the significance of smooth muscle-related proteins in moderating chronic organ fibrosis under pathological conditions.  相似文献   

11.
Advanced diabetic nephropathy is characterized by abnormal synthesis of extracellular matrix (ECM) proteins, such as collagen I (COL I). The present experiments were designed to test the hypothesis that the presence of abnormal ECM proteins may be responsible for increased generation of reactive oxygen species (ROS) that are thought to have an important role in the pathogenesis of diabetic nephropathy. SV40 MES 13 murine mesangial cells were plated on COL I or collagen IV (COL IV) for 3 h at 5.5 or 25 mM D-glucose concentration. Increased intracellular ROS generation and reduced intracellular nitric oxide (NO) production was measured in cells attached to COL I compared with cells attached to COL IV. Treatment with N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NO synthase, reduced this difference in ROS generation between cells attached to either COL I or IV. The results using antibodies against integrins also indicated that an alpha(2) integrin-mediated pathway was involved in the different response in ROS generation caused by ECM proteins. These results suggest that contact between altered ECM proteins that are present in advanced diabetic nephropathy and mesangial cells has the potential to increase intracellular oxidative stress, leading to progressive glomerular damage.  相似文献   

12.
Excess mesangial extracellular matrix (ECM) and mesangial cell proliferation is the major pathologic feature of diabetic nephropathy (DN). Fenofibrate, a PPARα agonist, has been shown to attenuate extracellular matrix formation in diabetic nephropathy. However, the mechanisms underlying this effect remain to be elucidated. In this study, the effect of fenofibrate on high-glucose induced cell proliferation and extracellular matrix exertion and its mechanisms were investigated in cultured rat mesangial cells by the methylthiazoletetrazolium (MTT) assay, flow cytometry and western blot. The results showed that treatment of mesangial cells (MCs) with fenofibrate repressed high-glucose induced up-regulation of extracellular matrix Collagen-IV, and inhibited entry of cell cycle into the S phase. This G1 arrest and ECM inhibition was caused by the reduction of phosphorylation and activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT. On the contrary, PPARα siRNA accelerated high glucose-induced cell cycle progression by ERK1/2 and AKT activation. Taken together, fenofibrate ameliorated glucose-induced mesangial cell proliferation and matrix production via its inhibition of PI3K/AKT and ERK1/2 signaling pathways. Such mechanisms may contribute to the favorable effects of treatment using fenofibrate in diabetic nephropathy.  相似文献   

13.
Low density lipoprotein receptor-related protein (LRP) is a multifunctional endocytic receptor implicated in the modulation of a number of cellular processes, including the turnover of proteases and the degradation of extracellular matrix proteins. As such, it can play a key role in the control of fibrosis. The aim of this investigation was to ascertain whether the anti-fibrotic effects exerted by the angiotensin-converting enzyme inhibitor (ACE-I) perindoprilat on macrophage-conditioned medium (MPCM)-injured human mesangial cells can be modulated by this receptor. Addition of receptor-associated protein to MPCM-injured mesangial cells with and without ACE-I increased the amount of tissue plasminogen activator protein detected in mesangial cell culture supernatants without affecting the protein levels of plasminogen activator inhibitor-1. The ability of ACE-I to reduce fibronectin was diminished in the presence of receptor-associated protein. ACE-I induced an increase in mesangial cell MMP9 mRNA, but reduced the MMP9 enzyme activity detected in mesangial cell supernatants. Mesangial cell lysates from ACE-I-treated cells were able to bind immobilized fibronectin at higher dilutions than cell lysates from untreated cells. Flow cytometry showed that MPCM induced an increase in LRP surface expression in mesangial cells over that in control cells and that this expression was further increased by ACE-I treatment. The increase in LRP expression in response to ACE-I was also observed by Western blotting. Northern blot analysis of RNA extracted from cells following a 24-h exposure to MPCM with and without ACE-I demonstrated that there was no change in LRP mRNA expression upon ACE-I treatment. In conclusion, we show that ACE-I treatment is able to modulate mesangial cell-surface expression of LRP, providing an additional mechanism whereby ACE-Is can mediate anti-fibrotic actions independent of their hemodynamic actions.  相似文献   

14.
Oxidative injury in glomerular disease may oxidize extracellular matrix proteins which might modulate their interaction with mesangial cells and thereby account for the hypocellularity seen in advanced glomerulosclerosis. In this study we evaluated whether oxidation of extracellular matrix could modulate human mesangial cell apoptosis. Human mesangial cells were seeded onto plates coated with unmodified (control) or oxidized Matrigel, laminin, or type IV collagen. Mesangial cell apoptosis was increased on oxidized Matrigel as well as on oxidized laminin and type IV collagen. Mesangial cells behaved similarly on plates coated with control and oxidized forms of the integrin ligand-containing peptide GRGDSP. Cells on oxidized matrix demonstrated enhanced expression of Bax, increased fragmentation of PARP, and diminished apoptosis in the presence of the interleukin-1 beta converting enzyme inhibitor Ac-Tyr-Val-Ala-Asp-aldehyde. These data suggest that oxidation of extracellular matrix proteins may enhance human mesangial cell apoptosis via a mechanism that appears to involve enhanced expression of Bax and caspase activation. This may account for irreversible mesangial hypocellularity in glomerulosclerosis.  相似文献   

15.
To determine the ability of radiation to modulate mesangial cell expression of various molecules involved in promoting extracellular matrix (ECM) accumulation [fibronectin, plasminogen activator-inhibitor 1 (Pai1), and tissue inhibitor of metalloproteinase-2 (Timp2)] and degradation (Tgfb, plasminogen activators u-PA or t-PA, matrix metalloproteinases Mmp2 and Mmp9), primary cultures of rat mesangial cells (passage number 6-11) were placed in serum-free medium 24 h prior to irradiation with single doses of 0.5-20 Gy (137)Cs gamma rays. After irradiation, cells were maintained in serum-free medium for a further 48 h. Irradiation of quiescent mesangial cells resulted in significant (P < 0.05) time- and dose-dependent increases in Fn and Pai1 mRNA and/or immunoreactive protein. Despite an increase in Tgfb1 mRNA, there was little evidence for an increase in total Tgfb protein. Indeed, active levels remained unaltered after irradiation. Irradiation led to differential changes in MMP expression; active Mmp2 levels increased, while Mmp9 levels appeared unaltered. In addition, secretion of plasminogen activators into the medium was unchanged after irradiation, while secretion of Timp2 increased. We conclude that irradiating mesangial cells leads to altered production of various molecules involved in accumulation and degradation of extracellular matrix.  相似文献   

16.
Lupus nephritis (LN) is the most common complication of systemic lupus erythematosus. Patients with LN mostly die of sclerosing glomerulonephritis and renal failure. The inhibition of glomerular mesangial matrix deposition is an efficient method to restrict the progress of renal injury. By recognizing and binding extracellular and intracellular ligands, Toll-like receptor 2 (TLR2) contributes to the pathogenesis of most immune diseases. However, the relationship between TLR2 and LN is still unknown. Our previous studies confirmed that high-mobility group box 1 (HMGB1), an important ligand of TLR2, promotes the progression of LN by inducing the proliferation of glomerular mesangial cells. However, whether or not HMGB1 participates in the pathogenesis of glomerular mesangial matrix deposition in LN remains unknown. In this study, we observed the upregulated expression of TLR2 in the glomeruli of LN patients and MRL/lpr mice. The inhibition of either TLR2 or HMGB1 inhibited the release of fibronectin and the activation of the MyD88/NF-κB pathway in mesangial cells cultured with LN plasma. In addition, both TLR2- and HMGB1-deficient mice showed reduced 24 hr urine protein levels and improved glomerular histological changes and sclerosis levels. These results indicate that TLR2 regulates glomerular mesangial matrix deposition in LN through the activation of the MyD88/NF-κB pathway by binding to HMGB1.  相似文献   

17.
This study investigated whether integrin-linked kinase (ILK) is involved in the pathogenesis of chronic glomerulonephritis (GN) by analyzing the expression and activity of glomerular ILK in a chronic rat model of mesangioproliferative GN. Double immunostaining of kidneys obtained at different time points with glomerular cell-specific markers revealed that ILK was primarily expressed by glomerular epithelial cells, and weakly by mesangial cells (MCs) and endothelial cells in control rats, but dramatically increased in a typical mesangial pattern at days 21 and 28 of GN. Semiquantitative assessment indicated that the level of glomerular ILK expression closely parallels the level of accumulation of glomerular extracellular matrix (ECM) as well as fibronectin (FN). Immunoprecipitation and kinase activity assays using isolated nephritic glomeruli indicated a striking increase of ILK activity on days 21 and 28 of GN. Further, cultured rat MCs overexpressing kinase-deficient ILK diminished FN assembly and collagen matrix remodeling as compared with control transfectants. The results showed that glomerular ILK expression and activity are markedly increased in an experimental model of chronic GN. Increased activity of ILK in MCs may contribute to the development of chronic mesangial alterations leading to glomerular scarring.  相似文献   

18.
The hyperglycemia-enhanced flux through the hexosamine biosynthetic pathway (HBP) has been implicated in the up-regulated gene expression of transforming growth factor-beta1 (TGF-beta1) in mesangial cells, thus leading to mesangial matrix expansion and diabetic glomerulosclerosis. Since the -1013 to -1002 region of the TGF-beta1 promoter shows high homology to glucose-response elements (GlRE) formerly described in genes involved in glucose metabolism, we studied the function of the GlRE in the high glucose-induced TGF-beta1 gene activation in mesangial cells. We found that high glucose concentrations enhanced the nuclear amount of upstream stimulatory factors (USF) and their binding to this sequence. Fusion of the GlRE to the thymidine kinase promoter resulted in glucose responsiveness of this promoter construct. Overexpression of either USF-1 or USF-2 increased TGF-beta1 promoter activity 2-fold, which was prevented by mutation or deletion of the GlRE. The high glucose-induced activation of the GlRE is mediated by the HBP; increased flux through the HBP induced by high glucose concentrations, by glutamine, or by overexpression of the rate-limiting enzyme glutamine:fructose-6-phosphate aminotransferase (GFAT) particularly activated USF-2 expression. GFAT-overexpressing cells showed higher USF binding activity to the GlRE and enhanced promoter activation via the GlRE. Increasing O-GlcNAc modification of proteins by streptozotocin, thereby mimicking HBP activation, also resulted in increased mRNA and nuclear protein levels of USF-2, leading to enhanced DNA binding activity to the GlRE. USF proteins themselves were not found to be O-GlcNAc-modified. Thus, we have provided evidence for a new molecular mechanism linking high glucose-enhanced HBP activity with increased nuclear USF protein levels and DNA binding activity and with up-regulated TGF-beta1 promoter activity.  相似文献   

19.
Diabetic nephropathy (DN) is the leading cause of chronic kidney failure. Moreover, DN is associated with elevated cardiovascular morbidity and mortality. DN is characterized by progressive expansion of the mesangial matrix and thickening of the glomerular basement membrane, resulting in the obliteration of glomerular capillaries. Advanced glycation endproducts (AGEs) produced as the result of hyperglycemia are known to stimulate the production of extracellular matrix (ECM) proteins, resulting in glomerulosclerosis. Exposure of cultured mesangial cells to AGEs results in a receptor-mediated upregulation of mRNA and protein secretion of type IV collagen (Col4), which is a major component of ECM. Here we review recent novel insights into the pathogenesis and diagnosis of DN, with a special emphasis on the emerging concept that diabetic glomerulosclerosis can result from activation of the signaling cascade leading to irreversible ECM overproduction. Finally, we describe signaling pathways involved in the initial change of DN and how these pathways can be manipulated for therapeutic benefit.  相似文献   

20.
Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor beta1 (TGF-beta) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-beta induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-beta on MSCs, we employed a proteomic strategy to analyze the effect of TGF-beta on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and we identified approximately 30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-beta. The proteins regulated by TGF-beta included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-beta increased the expression of smooth muscle alpha-actin and decreased the expression of gelsolin. Overexpression of gelsolin inhibited TGF-beta-induced assembly of smooth muscle alpha-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of alpha-actin and actin filaments without significantly affecting alpha-actin expression. These results suggest that TGF-beta coordinates the increase of alpha-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号