首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study a clonal Jurkat cell line deficient in expression of Bak was used to analyze the role of Bak in cytochrome c release from mitochondria. The Bak-deficient T leukemic cells were resistant to apoptosis induced by UV, staurosporin, VP-16, bleomycin, or cisplatin. In contrast to wild type Jurkat cells, these Bak-deficient cells did not respond to UV or treatment with these anticancer drugs by membranous phosphatidylserine exposure, DNA breaks, activation of caspases, or release of mitochondrial cytochrome c. The block in the apoptotic cascade was in the mitochondrial mechanism for cytochrome c release because purified mitochondria from Bak-deficient cells failed to release cytochrome c or apoptosis-inducing factor in response to recombinant Bax or truncated Bid. The resistance of Bak-deficient cells to VP-16 was reversed by transduction of the Bak gene into these cells. Also, the cytochrome c releasing capability of the Bak-deficient mitochondria was restored by insertion of recombinant Bak protein into purified mitochondria. Following mitochondrial localization, low dose recombinant Bak restored the mitochondrial release of cytochrome c in response to Bax; at increased doses it induced cytochrome c release itself. The function of Bak is independent of Bid and Bax because recombinant Bak induced cytochrome c release from mitochondria purified from Bax(-/-), Bid(-/-), or Bid(-/-) Bax(-/-) mice. Together, our findings suggest that Bak plays a key role in the apoptotic machinery of cytochrome c release and thus in the chemoresistance of human T leukemic cells.  相似文献   

2.
The anti-tumor effect of Icariside II (IcaS), a natural prenylated flavonol glycoside, was studied on human breast cancer MCF7 cells to unveil the underlying mechanisms involved. IcaS in MCF7 cells produced a loss of mitochondrial membrane potential and release of cytochrome c and apoptosis-inducing factor (AIF), and activation of caspase-9 revealed the involvement of the intrinsic apoptosis pathway. In contrast, IcaS enhanced the expression level of Fas and the Fas-associated death domain (FADD), and activated caspase-8, suggesting the involvement of the extrinsic apoptosis pathway. IcaS also increased the expression of Bax and BimL without affecting the expression status of Bcl-2 and Bid, suggesting that the apoptosis induced by IcaS was related to Bcl-2 family protein regulation. IcaS thus induced apoptosis in MCF7 cells involving both the intrinsic and extrinsic signaling pathways. Its potential as a candidate for an anti-cancer agent warrants further investigation.  相似文献   

3.
Anaplasma phagocytophilum infects human neutrophils and inhibits the intrinsic pathway of spontaneous neutrophil apoptosis by protecting mitochondrial membrane integrity. In the present study, we investigated the molecular signalling of the extrinsic pathway and the interaction between the intrinsic and extrinsic pathways in the inhibition of spontaneous human neutrophil apoptosis by A. phagocytophilum. Cell surface Fas clustering during spontaneous neutrophil apoptosis was significantly blocked by A. phagocytophilum infection. The cleavage of pro-caspase 8, caspase 8 activation and the cleavage of Bid, which links the intrinsic and extrinsic pathways, in the extrinsic pathway of spontaneous neutrophil apoptosis were inhibited by A. phagocytophilum infection. Inhibition of this pathway was active as the cleavage of pro-caspase 8 and Bid in anti-Fas-induced neutrophil apoptosis was also inhibited by A. phagocytophilum infection. Likewise, A. phagocytophilum infection inhibited the pro-apoptotic Bax translocation to mitochondria, activation of caspase 9, the initiator caspase in the intrinsic pathway, and the degradation of a potent caspase inhibitor, X-chromosome-linked inhibitor of apoptosis protein (XIAP), during spontaneous neutrophil apoptosis. These data point to a novel mechanism induced by A. phagocytophilum involving both extrinsic and intrinsic pathways to ensure to delay the apoptosis of host neutrophils.  相似文献   

4.
The anti-tumor effect of Icariside II (IcaS), a natural prenylated flavonol glycoside, was studied on human breast cancer MCF7 cells to unveil the underlying mechanisms involved. IcaS in MCF7 cells produced a loss of mitochondrial membrane potential and release of cytochrome c and apoptosis-inducing factor (AIF), and activation of caspase-9 revealed the involvement of the intrinsic apoptosis pathway. In contrast, IcaS enhanced the expression level of Fas and the Fas-associated death domain (FADD), and activated caspase-8, suggesting the involvement of the extrinsic apoptosis pathway. IcaS also increased the expression of Bax and BimL without affecting the expression status of Bcl-2 and Bid, suggesting that the apoptosis induced by IcaS was related to Bcl-2 family protein regulation. IcaS thus induced apoptosis in MCF7 cells involving both the intrinsic and extrinsic signaling pathways. Its potential as a candidate for an anti-cancer agent warrants further investigation.  相似文献   

5.
We have previously shown that Bax translocation was crucial in TNFalpha or etoposide-induced apoptosis. Overexpression of Bax sensitized chronic myeloid leukemic K562 cells to etoposide-induced apoptosis. Treatment with TNF-related apoptosis-inducing ligand (TRAIL) induces a loss of mitochondrial membrane potential (DeltaPsim), cytochrome c release from mitochondria, activation of caspases-8, -9, and -3, and cleavage of Bid in the K562 cell line. Bax failed to sensitize K562 cells to TRAIL-induced apoptosis. TRAIL did not induce Bax expression and/or translocation from cytosol to mitochondria in the K562 cell line. However, 100 microM Z-VAD.fmk, a pan caspase inhibitor, completely blocked TRAIL-initiated mitochondrial alterations and cleavages of caspases and Bid. We propose that TRAIL-induced apoptosis in K562 cells is via Type I apoptotic signal pathway. Bax translocation is not essential for TRAIL-induced cytochrome c release and DeltaPsim collapse in the Type I cells.  相似文献   

6.
Cyclosporin A (CyA) and bongkrekic acid (BK) prevented Fas-induced apoptosis in two type I cell lines (H9 and SKW6.4) and two type II cell lines (Jurkat and CEM). CyA and BK inhibited the release of cytochrome c in all four cell lines. In type I cells and in CEM cells, CyA and BK did not prevent the translocation of Bax to the mitochondria. In these same cells, full-length Bid decreased in the mitochondria and cytosol. The cleavage product of Bid, tBid, appeared in the cytosol and to a lesser extent in the mitochondria. In Jurkat cells, Bid also decreased in the cytosol, but increased in the mitochondria. Similar to the other cells, tBid appeared in the mitochondria and cytosol. In the type I H9 and SKW6.4 cells and type II Jurkat cells, the caspase-8 inhibitor Z-Ile-Glu(OMe)-Thr-Asp(OMe)-CH2F (IETD) prevented the cell killing. In the type I cells, IETD prevented the translocation of Bax, the degradation of Bid and the accumulation of tBid. By contrast, IETD only marginally protected the type II CEM cells. In these cells in the presence of IETD, Bax translocated to the mitochondria, in the absence of any degradation of Bid or accumulation of tBid. In the type I H9 cells, IETD produced a depletion of ATP, an effect that did not occur in the type II CEM cells. It is concluded that in type I cells the extrinsic signaling pathway is mitochondrial dependent to the same extent as is the intrinsic pathway in type II cells.  相似文献   

7.
We have examined UV irradiation-induced cell death in Jurkat cells and evaluated the relationships that exist between inhibition of caspase activity and the signaling mechanisms and pathways of apoptosis. Jurkat cells were irradiated with UV-C light, either with or without pretreatment with the pan-caspase inhibitor, z-VAD-fmk (ZVAD), or the more selective caspase inhibitors z-IETD-fmk (IETD), z-LEHD-fmk (LEHD), and z-DEVD-fmk (DEVD). Flow cytometry was used to examine alterations in viability, cell size, plasma membrane potential (PMP), mitochondrial membrane potential (DeltaPsi(mito)), intracellular Na(+) and K(+) concentrations, and DNA degradation. Processing of pro-caspases 3, 8, and 9 and the pro-apoptotic protein Bid was determined by Western blotting. UV-C irradiation of Jurkat cells resulted in characteristic apoptosis within 6 h after treatment and pretreatment of cells with ZVAD blocked these features. In contrast, pretreatment of the cells with the more selective caspase inhibitors under conditions that effectively blocked DNA degradation and inhibited caspase 3 and 8 processing as well as Bid cleavage had little protective effect on the other apoptotic characteristics examined. Thus, both intrinsic and extrinsic pathways are activated during UV-induced apoptosis in Jurkat cells and this redundancy appears to assure cell death during selective caspase inhibition.  相似文献   

8.
Heat shock protein 72 (Hsp72) inhibits apoptosis induced by some stresses that trigger the intrinsic apoptosis pathway. However, with the exception of TNFalpha-induced apoptosis, a role for Hsp72 in modulating the extrinsic pathway of apoptosis has not been clearly established. In this study, it was demonstrated that Hsp72 could inhibit Fas-mediated apoptosis of type II CCRF-CEM cells, but not type I SW480 or CH1 cells. Similar results were obtained when Fas ligand or an agonistic Fas antibody initiated the Fas apoptosis pathway. In CCRF-CEM cells, Hsp72 inhibited mitochondrial membrane depolarization and cytochrome c release but did not alter surface Fas expression or processing of caspase-8 and Bid, indicating that Hsp72 acts upstream of the mitochondria to inhibit Fas-mediated apoptosis. Thus, the ability of Hsp72 to inhibit Fas-mediated apoptosis is limited to type II cells where involvement of the intrinsic pathway is required for efficient effector caspase activation.  相似文献   

9.
While investigating the mechanism of action of the novel antitumor drug Aplidin, we have discovered a potent and novel cell-killing mechanism that involves the formation of Fas/CD95-driven scaffolds in membrane raft clusters housing death receptors and apoptosis-related molecules. Fas, tumor necrosis factor-receptor 1, and tumor necrosis factor-related apoptosis-inducing ligand receptor 2/death receptor 5 were clustered into lipid rafts in leukemic Jurkat cells following Aplidin treatment, the presence of Fas being essential for apoptosis. Preformed membrane-bound Fas ligand (FasL) as well as downstream signaling molecules, including Fas-associated death domain-containing protein, procaspase-8, procaspase-10, c-Jun amino-terminal kinase, and Bid, were also translocated into lipid rafts, connecting death receptor extrinsic and mitochondrial intrinsic apoptotic pathways. Blocking Fas/FasL interaction partially inhibited Aplidin-induced apoptosis. Aplidin was rapidly incorporated into membrane rafts, and drug uptake was inhibited by lipid raft disruption. Actin-linking proteins ezrin, moesin, RhoA, and RhoGDI were conveyed into Fas-enriched rafts in drug-treated leukemic cells. Disruption of lipid rafts and interference with actin cytoskeleton prevented Fas clustering and apoptosis. Thus, Aplidin-induced apoptosis involves Fas activation in both a FasL-independent way and, following Fas/FasL interaction, an autocrine way through the concentration of Fas, membrane-bound FasL, and signaling molecules in membrane rafts. These data indicate a major role of actin cytoskeleton in the formation of Fas caps and highlight the crucial role of the clusters of apoptotic signaling molecule-enriched rafts in apoptosis, acting as concentrators of death receptors and downstream signaling molecules and as the linchpin from which a potent death signal is launched.  相似文献   

10.
The goal of cancer chemotherapy to induce multi-directional apoptosis as targeting a single pathway is unable to decrease all the downstream effect arises from crosstalk. Present study reports that Withanolide D (WithaD), a steroidal lactone isolated from Withania somnifera, induced cellular apoptosis in which mitochondria and p53 were intricately involved. In MOLT-3 and HCT116p53+/+ cells, WithaD induced crosstalk between intrinsic and extrinsic signaling through Bid, whereas in K562 and HCT116p53-/- cells, only intrinsic pathway was activated where Bid remain unaltered. WithaD showed pronounced activation of p53 in cancer cells. Moreover, lowered apoptogenic effect of HCT116p53-/- over HCT116p53+/+ established a strong correlation between WithaD-mediated apoptosis and p53. WithaD induced Bax and Bak upregulation in HCT116p53+/+, whereas increase only Bak expression in HCT116p53-/- cells, which was coordinated with augmented p53 expression. p53 inhibition substantially reduced Bax level and failed to inhibit Bak upregulation in HCT116p53+/+ cells confirming p53-dependent Bax and p53-independent Bak activation. Additionally, in HCT116p53+/+ cells, combined loss of Bax and Bak (HCT116Bax-Bak-) reduced WithaD-induced apoptosis and completely blocked cytochrome c release whereas single loss of Bax or Bak (HCT116Bax-Bak+/HCT116Bax+Bak-) was only marginally effective after WithaD treatment. In HCT116p53-/- cells, though Bax translocation to mitochondria was abrogated, Bak oligomerization helped the cells to release cytochrome c even before the disruption of mitochondrial membrane potential. WithaD also showed in vitro growth-inhibitory activity against an array of p53 wild type and null cancer cells and K562 xenograft in vivo. Taken together, WithaD elicited apoptosis in malignant cells through Bax/Bak dependent pathway in p53-wild type cells, whereas Bak compensated against loss of Bax in p53-null cells.  相似文献   

11.
Recent work suggests a participation of mitochondria in apoptotic cell death. This role includes the release of apoptogenic molecules into the cytosol preceding or after a loss of mitochondrial membrane potential DeltaPsim. The two uncouplers of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 2, 4-dinitrophenol (DNP) reduce DeltaPsim by direct attack of the proton gradient across the inner mitochondrial membrane. Here we show that both compounds enhance the apoptosis-inducing capacity of Fas/APO-1/CD95 signaling in Jurkat and CEM cells without causing apoptotic changes on their own account. This amplification occurred upstream or at the level of caspases and was not inhibited by Bcl-2. The effect could be blocked by the cowpox protein CrmA and is thus likely to require caspase 8 activity. Apoptosis induction by staurosporine in Jurkat cells as well as by Fas in SKW6 cells was unaffected by CCCP and DNP. The role of cytochrome c during Fas-DNP signaling was investigated. No early cytochrome c release from mitochondria was detected by Western blotting. Functional assays with cytoplasmic preparations from Fas-DNP-treated cells also indicated that there was no major contribution by cytochrome c or caspase 9 to the activation of effector caspases. Furthermore, an increase of rhodamine-123 uptake into intact cells, which has been explained by mitochondrial swelling, occurred considerably later than the caspase activation and was blocked by Z-VAD-fmk. These data show that uncouplers of oxidative phosphorylation can presensitize some but not all cells for a Fas death signal and provide information about the existence of separate pathways in the induction of apoptosis.  相似文献   

12.
Eosinophils readily undergo apoptosis when removed from a physiological environment via activation of the intrinsic cell death pathway. This can be further enhanced by certain chemicals (for example, glucocorticoid), or by extrinsic means (that is, Fas receptor engagement). In this investigation, we examined the relative importance of these pathways in cultured human peripheral blood eosinophils in the context of expression and activation of the BH3-only Bcl2 homologue Bid. Bid activation was examined under conditions where programmed cell death was either stimulated (via Fas engagement or glucocorticoid treatment) or inhibited (interleukin-5 (IL-5)) relative to control. Full-length Bid was found to be highly expressed in eosinophils, and processed to a similar extent during either agonist anti-Fas or glucocorticoid treatment. IL-5 blocked intrinsic Bid activation during factor withdrawal or glucocorticoid treatment, and partially attenuated that caused by Fas activation. Caspase 8 (but not caspase 9) antagonism partly but significantly affected receptor-mediated Bid activation and cell death; these processes were not altered by either caspase inhibitor during simple factor withdrawal or glucocorticoid treatment. Bid processing appears to be central to both intrinsic and extrinsic pathways of cell death in eosinophils. The role of IL-5 in blocking the intrinsic pathway of eosinophil apoptosis is underscored. Results of specific inhibition support the existence of Bid activation pathways in eosinophils other than those mediated by the classic initiator caspases.  相似文献   

13.
Proapoptotic members of the Bcl-2 protein family, including Bid and Bax, can activate apoptosis by directly interacting with mitochondria to cause cytochrome c translocation from the intermembrane space into the cytoplasm, thereby triggering Apaf-1-mediated caspase activation. Under some circumstances, when caspase activation is blocked, cells can recover from cytochrome c translocation; this suggests that apoptotic mitochondria may not always suffer catastrophic damage arising from the process of cytochrome c release. We now show that recombinant Bid and Bax cause complete cytochrome c loss from isolated mitochondria in vitro, but preserve the ultrastructure and protein import function of mitochondria, which depend on inner membrane polarization. We also demonstrate that, if caspases are inhibited, mitochondrial protein import function is retained in UV-irradiated or staurosporine-treated cells, despite the complete translocation of cytochrome c. Thus, Bid and Bax act only on the outer membrane, and lesions in the inner membrane occurring during apoptosis are shown to be secondary caspase-dependent events.  相似文献   

14.
Apoptosis is modulated by extrinsic and intrinsic signaling pathways through the formation of the death receptor-mediated death-inducing signaling complex (DISC) and the mitochondrial-derived apoptosome, respectively. Ino-C2-PAF, a novel synthetic phospholipid shows impressive antiproliferative and apoptosis-inducing activity. Little is known about the signaling pathway through which it stimulates apoptosis. Here, we show that this drug induces apoptosis through proteins of the death receptor pathway, which leads to an activation of the intrinsic apoptotic pathway. Apoptosis induced by Ino-C2-PAF and its glucosidated derivate, Glc-PAF, was dependent on the DISC components FADD and caspase-8. This can be inhibited in FADD−/− and caspase-8−/− cells, in which the breakdown of the mitochondrial membrane potential, release of cytochrome c and activation of caspase-9, -8 and -3 do not occur. In addition, the overexpression of crmA, c-Flip or dominant negative FADD as well as treatment with the caspase-8 inhibitor z-IETD-fmk protected against Ino-C2-PAF-induced apoptosis. Apoptosis proceeds in the absence of CD95/Fas-ligand expression and is independent of blockade of a putative death-ligand/receptor interaction. Furthermore, apoptosis cannot be inhibited in CD95/Fas−/− Jurkat cells. Expression of Bcl-2 in either the mitochondria or the endoplasmic reticulum (ER) strongly inhibited Ino-C2-PAF- and Glc-PAF-induced apoptosis. In conclusion, Ino-C2-PAF and Glc-PAF trigger a CD95/Fas ligand- and receptor-independent atypical DISC that relies on the intrinsic apoptotic pathway via the ER and the mitochondria.  相似文献   

15.
The signaling events leading to apoptosis can be divided into two major pathways, involving either mitochondria (intrinsic) or death receptors (extrinsic). In a recent study, we have shown the involvement of the mitochondria-dependent apoptotic pathway in heat-induced male germ cell apoptosis in the rat. In additional studies, using the gld (generalized lymphoproliferation disease) and lprcg (lymphoproliferation complementing gld) mice, which harbor loss-of-function mutations in Fas L and Fas, respectively, we have shown that heat-induced germ cell apoptosis is not blocked, thus providing evidence that the Fas signaling system is not required for heat-induced germ cell apoptosis in the testis. In the present study, we have found that the initiation of apoptosis in wild-type mice was preceded by a redistribution of Bax from a cytoplasmic to paranuclear localization in heat-susceptible germ cells. The relocation of Bax is accompanied by sequestration of ultracondensed mitochondria into paranuclear areas of apoptotic germ cells, cytosolic translocation of mitochondrial cytochrome c and DIABLO, and is associated with activation of the initiator caspase 9 and the executioner caspase 3. Similar events were also noted in both gld and lprcg mice. Taken together, these results indicate that the mitochondria-dependent pathway is the key apoptotic pathway for heat-induced male germ cell death in mice.  相似文献   

16.
Epithelial cells require adhesion to the extracellular matrix for survival, and in the absence of adhesion they undergo apoptosis (anoikis). This is distinct from apoptosis induced by extracellular death ligands, such as tumor necrosis factor, which result in direct activation of caspase 8. Bid is a member of the BH3-only subfamily of the Bcl-2 proteins and is important for most cell types to apoptose in response to Fas and tumor necrosis factor receptor activation. Caspase 8 cleaves full-length Bid, resulting in truncated p15 tBid. p15 tBid is potently apoptotic and activates the multidomain Bcl-2 protein, Bax, resulting in release of cytochrome c from mitochondria. We have previously shown that Bax rapidly translocates from the cytosol to mitochondria following loss of adhesion and that this is required for anoikis. We have now examined the role of Bid in anoikis. Bid translocates to mitochondria with identical kinetics as Bax. Although Bid is required for anoikis, it does not require proteolytic cleavage by caspase 8. Furthermore, it does not require Bid to interact directly with other Bcl-2 family proteins, such as Bax. Our data indicate that Bid is important for regulating apoptosis via the intrinsic pathway and has implications for how Bid may fulfill that role.  相似文献   

17.
In many types of apoptosis, the proapoptotic protein Bax undergoes a change in conformation at the level of the mitochondria. This event always precedes the release of mitochondrial cytochrome c, which, in the cytosol, activates caspases through binding to Apaf-1. The mechanisms by which Bax triggers cytochrome c release are unknown. Here we show that following binding to the BH3-domain-only proapoptotic protein Bid, Bax oligomerizes and then integrates in the outer mitochondrial membrane, where it triggers cytochrome c release. Bax mitochondrial membrane insertion triggered by Bid may represent a key step in pathways leading to apoptosis.  相似文献   

18.
Past studies have shown that TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis in a high proportion of cultured melanoma by caspase-dependent mechanisms. In the present studies we have examined whether TRAIL-induced apoptosis of melanoma was mediated by direct activation of effector caspases or whether apoptosis was dependent on changes in mitochondrial membrane potential (MMP) and mitochondrial-dependent pathways of apoptosis. Changes in MMP were measured by fluorescent emission from rhodamine 123 in mitochondria. TRAIL, but not TNF-alpha or Fas ligand, was shown to induce marked changes in MMP in melanoma, which showed a high correlation with TRAIL-induced apoptosis. This was associated with activation of proapoptotic protein Bid and release of cytochrome c into the cytosol. Overexpression of B cell lymphoma gene 2 (Bcl-2) inhibited TRAIL-induced release of cytochrome c, changes in MMP, and apoptosis. The pan caspase inhibitor z-Val-Ala-Asp-fluoromethylketone (zVAD-fmk) and the inhibitor of caspase-8 (z-Ile-Glu-Thr-Asp-fluoromethylketone; zIETD-fmk) blocked changes in MMP and apoptosis, suggesting that the changes in MMP were dependent on activation of caspase-8. Activation of caspase-9 also appeared necessary for TRAIL-induced apoptosis of melanoma. In addition, TRAIL, but not TNF-alpha or Fas ligand, was shown to induce clustering of mitochondria around the nucleus. This process was not essential for apoptosis but appeared to increase the rate of apoptosis. Taken together, these results suggest that TRAIL induces apoptosis of melanoma cells by recruitment of mitochondrial pathways to apoptosis that are dependent on activation of caspase-8. Therefore, factors that regulate the mitochondrial pathway may be important determinants of TRAIL-induced apoptosis of melanoma.  相似文献   

19.
Monocyte-derived dendritic cells (DC) were found to be cytotoxic for several tumor cell lines including Jurkat cells, which were killed through a calcium-independent pathway. K562 cells were resistant, excluding a NK cell-like activity. DC-mediated apoptosis did not involve classical death receptors because it was not reversed by blocking TNF/TNFR, CD95/CD95 ligand, or TNF-related apoptosis-inducing ligand/TNF-related apoptosis-inducing ligand receptor interactions. Fas-associated death domain-deficient, but not caspase-8 deficient, Jurkat cells were killed by DC. Indeed, caspase-8 cleavage was demonstrated in Jurkat cells cocultured with DC, and the use of specific caspase inhibitors confirmed that apoptosis triggered by DC was caspase-8 dependent. Furthermore, the involvement of Bcl-2 family members in the control of DC-mediated apoptosis was demonstrated by Bid cleavage in Jurkat cells cocultured with DC and resistance of Jurkat cells overexpressing Bcl-2 to DC-mediated cytotoxicity. Overall, these data indicate that monocyte-derived DC exert a caspase-8-dependent, Fas associated death domain-independent tumoricidal activity, a finding that could be relevant to their therapeutic use in cancer.  相似文献   

20.
Yin XM 《Cell research》2000,10(3):161-167
Two major apoptosis pathways have been defined in mammalian cells,the Fas/TNF-R1 death receptor pathway and the mitochondria pathway.The Bcl-2 family proteins consist of both anti-apoptosis and pro-apoptosis members that regulate apoptosis,mainly by controlling the release of cytochrome c and other mitochondrial apoptotic events.However,death signals mediated by Fas/TNF-R1 receptors can usually activate caspases directly,bypassing the need for mitochondria and escaping the regulation by Bcl-2 family proteins.Bid is a novel pro-apoptosis Bcl-2 family protein that is activated by caspase 8 in response to Fas/TNF-R1 death receptor signals.Activated Bid is translocated to mitochondria and induces cytochrome c release,which in turn activates downstream caspases.Such a connection between the two apoptosis pathways could be important for induction of apoptosis in certain types of cells and responsible for the pathogenesis of a number of human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号