首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物尿苷二磷酸葡萄糖焦磷酸化酶(UGPase)是蔗糖合成与降解途径的关键酶。本研究采用水稻叶片离体培养方法,结合Northern杂交技术,研究了外源糖对水稻Ugp1基因表达的影响。研究结果表明,蔗糖、葡萄糖、果糖、光照均能上调水稻Ugp1基因的表达,同时这种上调表达依赖于己糖激酶;果糖能上调水稻成熟叶片中Ugp1基因的表达,但并不影响苗期叶片中Ugp1基因的表达,具组织特异性;葡萄糖和果糖协同作用对Ugp1基因的诱导表达强于蔗糖,这种诱导除依赖于己糖激酶外,还存在其它未知的调控途径。水稻中存在UGPase的多种异构体,蔗糖及光照可诱导水稻Ugp1基因的上调表达,但对水稻UGPase的多种异构体形式并无影响。研究结果将有助于深入了解水稻Ugp1基因与糖信号途径互作调控网络。  相似文献   

2.
过量表达OsUgp2基因提高紫芝多糖含量   总被引:2,自引:0,他引:2  
张帆  钟威  穆虹  李刚 《菌物学报》2011,30(3):442-452
尿苷二磷酸葡萄糖焦磷酸化酶(UDP-glucose pyrophosphorylase,UGPase)是多糖生物合成过程中重要的酶,水稻基因组中存在两个UGPase同源基因分别命名为OsUgp1和OsUgp2。构建了由构巢曲霉3-磷酸甘油醛脱氢酶基因启动子驱动OsUgp2表达的真菌过量表达载体,并通过农杆菌介导法将OsUgp2基因转入紫芝中,获得了潮霉素抗性的转化菌株。PCR和Southern杂交结果显示OsUgp2基因成功整合到受体紫芝基因组中。半定量RT-PCR检测结果显示外源基因OsUgp2在紫芝转  相似文献   

3.
A polymorphic protein well-correlated to the diploid S genotypes of the pollen parent was detected by two-dimensional gel electrophoresis in Pyrus pyrifolia (Japanese pear). Its molecular weight was about 50 kDa, and it was expressed primarily in pollen. Partial amino acid sequences of the polymorphic protein from 'Nijisseiki' (S2S4), a cultivar of P. pyrifolia, were determined. Based on these sequences, two cDNA sequences associated with the S2 and S4 genotypes were identified by PCR-based methods. Both encode a protein of 458 amino acids whose sequence has high similarity to eukaryotic UDP-glucose pyrophosphorylases (UGPases) (EC 2.7.7.9), so they were named UGPases PA and PC. As there are only three amino acid substitutions between UGPases PA and PC, it is unlikely that they are pollen factors that recognize self and non-self S-RNases. Although this UGPase had more than 75% sequence identity to the known plant UGPases, its C-terminal sequences differed markedly. This unique C-terminal region of UGPases PA and PC may act in their subcellular localization in the pollen or interact with some other factor(s).  相似文献   

4.
UDP-glucose pyrophosphorylase (UGPase) is an important enzyme of synthesis of sucrose, cellulose, and several other polysaccharides in all plants. The protein is evolutionarily conserved among eukaryotes, but has little relation, aside from its catalytic reaction, to UGPases of prokaryotic origin. Using protein homology modeling strategy, 3D structures for barley, poplar, and Arabidopsis UGPases have been derived, based on recently published crystal structure of human UDP-N-acetylglucosamine pyrophosphorylase. The derived 3D structures correspond to a bowl-shaped protein with the active site at a central groove, and a C-terminal domain that includes a loop (I-loop) possibly involved in dimerization. Data on a plethora of earlier described UGPase mutants from a variety of eukaryotic organisms have been revisited, and we have, in most cases, verified the role of each mutation in enzyme catalysis/regulation/structural integrity. We have also found that one of two alternatively spliced forms of poplar UGPase has a very short I-loop, suggesting differences in oligomerization ability of the two isozymes. The derivation of the structural model for plant UGPase should serve as a useful blueprint for further function/structure studies on this protein.  相似文献   

5.
The expression of the enzyme UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) from potato (Solanum tuberosum L.) was analysed with respect to sink-source interactions and potato tuber storage. The highest level of expression was found in developing tubers, the strongest sink tissue. Storage of mature tubers at low temperatures led to an increase of the steady-state level of UGPase mRNA, implicating a role of this enzyme in the process of cold-sweetening. Transgenic plants were created expressing UGPase antisensee RNA under the control of the 35S promoter of the Cauliflower Mosaic Virus with the polyadenylation signal of the octopine-synthase gene. Regenerated plants were tested for reduction of UGPase at the RNA, protein and activity levels. Plants with a 95%–96% reduction of UGPase activity in growing tubers showed no change in growth and development. Also, carbohydrate metabolism in tubers of these plants was not substantially affected, indicating that only 4% of the wild-type UGPase activity is sufficient for the enzyme to function in plant growth and development.Abbreviations cDNA copy DNA - CaMV Cauliflower Mosaic Virus - Glc1P glucose-1-phosphate - UDPGlc UDP-glucose - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - UGPase UDP-glucose pyrophosphorylase We are grateful to Dr. J.P. Spychalla (Cambridge Laboratory, Norwich, Norfolk, UK) for providing antiserum directed against the potato tuber UGPase protein. We thank J. Bergstein and B. Schäfer for photographic work, J. Dietze for plant transformation and R. Breitfeld and B. Burose for taking care of the greenhouse plants.  相似文献   

6.
UDP-glucose pyrophosphorylases (UGPase; EC 2.7.7.9) catalyze the conversion of UTP and glucose-1-phosphate to UDP-glucose and pyrophosphate and vice versa. Prokaryotic UGPases are distinct from their eukaryotic counterparts and are considered appropriate targets for the development of novel antibacterial agents since their product, UDP-glucose, is indispensable for the biosynthesis of virulence factors such as lipopolysaccharides and capsular polysaccharides. In this study, the crystal structures of UGPase from Helicobacter pylori (HpUGPase) were determined in apo- and UDP-glucose/Mg2+-bound forms at 2.9 Å and 2.3 Å resolutions, respectively. HpUGPase is a homotetramer and its active site is located in a deep pocket of each subunit. Magnesium ion is coordinated by Asp130, two oxygen atoms of phosphoryl groups, and three water molecules with octahedral geometry. Isothermal titration calorimetry analyses demonstrated that Mg2+ ion plays a key role in the enzymatic activity of UGPase by enhancing the binding of UGPase to UTP or UDP-glucose, suggesting that this reaction is catalyzed by an ordered sequential Bi Bi mechanism. Furthermore, the crystal structure explains the specificity for uracil bases. The current structural study combined with functional analyses provides essential information for understanding the reaction mechanism of bacterial UGPases, as well as a platform for the development of novel antibacterial agents.  相似文献   

7.
UDP-glucose is the universal activated form of glucose, employed in all organisms for glucosyl transfer reactions and as precursor for various activated carbohydrates. In animal and fungal metabolism, UDP-glucose is required for utilization of galactose and for the synthesis of glycogen, the major carbohydrate storage polymer. The formation of UDP-glucose is catalyzed by UDP-glucose pyrophosphorylase (UGPase), which is highly conserved among eukaryotes. Here, we present the crystal structure of yeast UGPase, Ugp1p. Both in solution and in the crystal, Ugp1p forms homooctamers, which represent the enzymatically active form of the protein. Ugp1p subunits consist of three domains, with the active site presumably located in the central SpsA GnT I core (SGC) domain. The association in the octamer is mediated by contacts between left-handed beta-helices in the C-terminal domains, forming a toroidal solenoid structure in the core of the complex. The catalytic domains attached to this scaffold core do not directly contact each other, consistent with simple Michaelis-Menten kinetics found for Ugp1p. Conservation of hydrophobic residues at the subunit interfaces suggests that all fungal and animal homologs form this quarternary structure arrangement in contrast to monomeric plant UGPases, which have charged residues at these positions. Implications of this oligomeric arrangement for regulation of UGPase activity in fungi and animals are discussed.  相似文献   

8.
UDP-glucose pyrophosphorylase (UGPase) is an important enzyme in the production (and conversions) of UDP-glucose, a key precursor for carbohydrate biosynthesis. cDNAs corresponding to two UGPase isozymes in Arabidopsis were overexpressed in Escherichia coli and, subsequently, the recombinant proteins were purified and characterized. Both proteins were highly conserved, sharing 93% identity. Based on crystal structure-derived images, the main amino acid differences mapped to N- and C-termini domains, but not to central active site region. The two proteins existed mainly as monomers, and they had similar molecular masses of ca. 53 kDa. However, comparison of molecular masses of UGPases from Arabidopsis root and leaf extracts revealed that the root protein was slightly larger, suggesting a post-translational modification. Specific activity of the purified UGPase-1 was ca. 10-30% lower than that of UGPase-2, depending on direction of the reaction, whereas its K(m) values with all substrates in both directions of the reaction were consistently ca. twice lower than those of UGPase-2 (0.03-0.14 mM vs. 0.07-0.36 mM, respectively). Both proteins were "true" UGPases, and had no activity with ADP-glucose/ATP or galactose-1-P. Equilibrium constant for both proteins was ca. 0.3, suggesting preference for the pyrophosphorolysis direction of the reaction. The data are discussed with respect to potential roles of UGPase in carbohydrate synthesis/metabolism in Arabidopsis.  相似文献   

9.
Eleven cDNA clones encoding UDP-glucose pyrophosphorylase (UGPase) have been isolated from cDNA libraries prepared from seed embryo, seed endosperm and leaves of barley (Hordeum vulgare L.). The sequences were identical, with the exception of positioning of the poly(A) tail; at least five clones with different polyadenylation sites were found. For a putative full-length cDNA [1775 nucleotides (nt) plus polyadenylation tail], isolated from an embryo cDNA library, an open reading frame of 1419 nt encodes a protein of 473 amino acids (aa) of 51.6 kDa. An alignment of the derived aa sequence with other UGPases has revealed high identity to UGPases from eukaryotic tissues, but not from bacteria. Within the aa sequence, no homology was found to a UDP-glucose-binding motif that has been postulated for a family of glucosyl transferases. The derived aa sequence of UGPase contains three putative N-glycosylation sites and has a highly conserved positioning of five Lys residues, previously shown to be critical for catalysis and substrate binding of potato tuber UGPase. A possible role for N-glycosylation in the intracellular targeting of UGPase is discussed.  相似文献   

10.
Jin SH  Cho EH  Ko JE  Jung EH  Ahn B  Hahm JR  Kim JW  Kim CW  Kim DR 《Proteomics》2003,3(12):2428-2436
The developmental stage-specific regulation of V(D)J recombination, a gene rearrangement process of antigen receptor gene segments, is tightly controlled in cells. Here we screened proteins uniquely or differentially expressed among three developmentally distinguishable B cells (pro-B, pre-B and mature B cells) using two-dimensional gel electrophoresis and mass spectrometry. Chromatin assembly factor 1 was uniquely expressed in pro-B cells. Purine nucleotide phosphorylase, LCK, E2A and many other unidentified proteins were dominantly present in the nucleus at the early stage of B cell development where the V(D)J recombination process occurs. Also, few proteins including guanidine nucleotide binding proteins were exclusively expressed in pre-B cell. Such findings can provide some information to help understand the developmental regulation of gene rearrangement occurring during B cell development.  相似文献   

11.
UGPase (UDP-glucose pyrophosphorylase) is highly conserved among eukaryotes. UGPase reversibly catalyses the formation of UDP-glucose and is critical in carbohydrate metabolism. Previous studies have mainly focused on the UGPases from plants, fungi and parasites, and indicate that the regulatory mechanisms responsible for the enzyme activity vary among different organisms. In the present study, the crystal structure of hUGPase (human UGPase) was determined and shown to form octamers through end-to-end and side-by-side interactions. The observed latch loop in hUGPase differs distinctly from yUGPase (yeast UGPase), which could explain why hUGPase and yUGPase possess different enzymatic activities. Mutagenesis studies showed that both dissociation of octamers and mutations of the latch loop can significantly affect the UGPase activity. Moreover, this latch effect is also evolutionarily meaningful in UGPase from different species.  相似文献   

12.
王宁  齐耀程  徐朗莱  张炜 《西北植物学报》2007,27(12):2371-2378
以水稻(Oryza sativa L.)苗期幼嫩根尖作为材料,利用葡聚糖-聚乙二醇两相分配法纯化得到纯度达90%的质膜组分,使用4种不同的水化液溶解质膜蛋白,进行IEF/SDS-PAGE双向电泳和MALDI-TOF/TOF质谱分析.结果显示,4种水化液中,以7 mol/L Urea2、mol/L Thiourea、4%CHAPS、20 mmol/L DTE、1%ASB14的条件对膜蛋白的溶解效果和双向电泳分离效果最好;16个被鉴定蛋白中有9个为质膜相关蛋白,5个为未知蛋白,来自其它细胞器的蛋白仅有2个.研究表明,在常用水化液中添加磺基甘氨酸三甲内盐ASB14有利于植物细胞质膜蛋白质组的分析,并且该优化条件下的双向电泳适合分离水稻质膜中亲水性相对较高的膜附着蛋白.  相似文献   

13.
14.
15.
16.
By immunocytochemistry, quantitative immunoblotting, and two-dimensional gel electrophoresis, we have analyzed the distribution of nuclear lamin proteins during chicken embryonic development. Whereas no qualitative differences in the patterns of expression of lamins A, B1, and B2 were observed during gametogenesis in either the female or the male germ line, profound changes in the composition of the nuclear lamina occurred during the development of somatic tissues. Most unexpectedly, early chicken embryos were found to contain little if any lamin A, although they contained substantial amounts of lamins B1 and B2. During embryonic development, lamin A became increasingly prominent, whereas the amounts of lamin B1 decreased in many tissues. Interestingly, the extent and the developmental timing of these changes displayed pronounced tissue-specific variations. Lamin B2 was expressed in fairly constant amounts in all cell types investigated (except for pachytene-stage germ cells). These results have implications for the purported functional specializations of individual lamin proteins. In addition, they suggest that alterations in the composition of the nuclear lamina may be important for the establishment of cell- or tissue-specific differences in nuclear architecture.  相似文献   

17.
Rice endosperm UDP-glucose pyrophosphorylase (UGPase) cDNA clones were isolated by screening a lambda ZAP II library prepared from poly (A(+)) RNA of japonica rice (cv Sasanishiki) endosperm with a probe of potato UGPase cDNA. One cDNA clone, possessing about 1,700 nucleotides, contained the complete open reading frame of rice UGPase. At the nucleotide-sequence level, the UGPase cDNA of rice endosperm had high homology with the UGPase cDNA of barley endosperm (84%) and potato tuber (71%). The calculated molecular weight (50 kDa) agrees with the value determined by SDS-PAGE (51 kDa). At the amino-acid sequence level, rice UGPase has high homology with the UGPase of barley (92%) and potato (85%). The enzyme contained conserved sequence elements which are thought to be involved in substrate binding and catalytic activity. A Southern-blot analysis indicated that the gene existed as a single copy. Expression of the enzyme in rice endosperm examined by Northern-blot analysis was high at 10-15 days after heading.  相似文献   

18.
UDP-glucose pyrophosphorylase (UGPase) is involved in the production of UDP-glucose, a key precursor to polysaccharide synthesis in all organisms. UGPase activity has recently been proposed to be regulated by oligomerization, with monomer as the active species. In the present study, we investigated factors affecting oligomerization status of the enzyme, using purified recombinant barley UGPase. Incubation of wild-type (wt) UGPase with phosphate or Tris buffers promoted oligomerization, whereas Mops and Hepes completely dissociated the oligomers to monomers (the active form). Similar buffer effects were observed for KK127-128LL and C99S mutants of UGPase; however, the buffers had a relatively small effect on the oligomerization status of the LIV135-137NIN mutant, impaired in deoligomerization ability and showing only 6-9% activity of the wt. Buffer composition had no effect on UGPase activity at UGPase protein concentrations below ca. 20 ng/ml. However, at higher protein concentration the activity in Tris, but not Mops nor Hepes, underestimated the amount of the enzyme. The data suggest that oligomerization status of UGPase can be controlled by subtle changes in an immediate environment (buffers) and by protein dilution. The evidence is discussed in relation to our recent model of UGPase structure/function, and with respect to earlier reports on the oligomeric integrity/activity of UGPases from eukaryotic tissues.  相似文献   

19.
UDP-glucose pyrophosphorylase (UGPase) was cloned from six American and nine European potato (Solanum tuberosum L.) cultivars. Restriction mapping of the different UGPase-cDNAs with BamHI, HindIII, and EcoRI revealed that at least two mRNA populations were present in most cultivars. Staining for UGPase activity in nondenaturing gels of proteins extracted from developing potato tubers yielded two major isozymes that were highly active and appeared to be dimeric in nature. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, all isozymes were disassociated into a single subunit with a molecular mass of 53 kD. Since UGPase has been demonstrated to be a single-copy gene in the haploid genome of potato (A.Y. Borovkov, P.E. McClean, J.R. Sowokinos, S.H. Ruud, G.A. Secor [1995] J Plant Physiol 147: 644-652), there must be allelic differences at the UGPase locus (chromosome 11). The two alleles, designated ugpA and ugpB, were identified by the absence and presence of a BamHI site, respectively. The relative band intensities of the two cDNA populations following polymerase chain reaction amplification and agarose gel electrophoresis were related to a potato cultivar's ability to resist sweetening when exposed to cold temperatures.  相似文献   

20.
Proteomic analysis of jasmonic acid-regulated proteins in rice leaf blades   总被引:1,自引:0,他引:1  
Jasmonates play a critical role in plant defense against pathogens through regulation of the expression of defense-related genes. To study the role of jasmonic acid (JA) in the rice self-defense mechanism, a proteomic approach was applied. When 3-week-old rice cv. Java 14 was treated with 100 microM JA for 3 days, numerous necrotic brown spots were observed on the leaf blade. Three-week-old rice was treated with JA and proteins from cytosolic and membrane fractions of leaf blade were separated by two-dimensional polyacrylamide gel electrophoresis. A total of 305 proteins were detected in both cytosolic and membrane fractions. When rice plant was treated with 100 microM JA for 2 days, 12 proteins were up-regulated and 2 proteins were down-regulated. Out of them, 8 proteins were changed in dose dependence manner, while 4 proteins were changed in a time course manner. Among them, pathogenesis-related protein 5 (PR5) and probenazole inducible protein 1 (PBZ1) were significantly induced by 100 microM JA for 2 days. These results suggest that PR5 and PBZ1 are important proteins expressed down-stream of JA signals in rice cv. Java 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号