首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effect of the intravenous infusion of 16,16-dimethylprostaglandin E2 methyl ester (di-M-PGE2) and somatostatin on bombesin-stimulated gastric acid secretion, plasma gastrin and plasma pancreatic polypeptide in four chronic gastric fistula dogs. Bombesin-stimulated gastric acid secretion was significantly inhibited by somatostatin and virtually abolished by di-M-PGE2. Both agents caused significant, but indistinguishable inhibition of gastrin release (P less than 0.05). Bombesin-stimulated pancreatic polypeptide release was also significantly inhibited by both somatostatin and di-M-PGE2; the inhibitory effect of somatostatin was significantly greater than that of di-M-PGE2 (P less than 0.05). This study provides further evidence in support of the complex interrelationships between agents responsible for the modulation of gastrointestinal physiology.  相似文献   

2.
The influence of dobutamine on glucoregulation has been assessed in the rat during and after an intravenous infusion given at the following doses: 0, 0.1, 1.0, 10, 100, and 1000 micrograms X kg-1 X min-1. Plasma glucose, insulin, and glucagon levels were measured at 15-min intervals in unanesthetized previously cannulated rats. Basal glucose levels were preserved with the less than or equal to 10 micrograms X kg-1 X min-1 doses. At the greater than or equal to 100 micrograms X kg-1 X min-1 doses, a marked hyperglycemic effect was observed, partly attributable to some inhibitory effect of dobutamine on glucose-induced insulin secretion and to its stimulatory effect on glucagon secretion. Such data suggest that dobutamine may disturb the normal glucose homeostasis, particularly in situations of deficient insulin reserve.  相似文献   

3.
The purpose of these studies was to measure circulating gastrin and somatostatin concentrations during sham feeding in humans and to evaluate the effect of two doses of intravenous atropine on circulating concentrations of these peptides. Gastric acid and bicarbonate secretion and pulse rate were also measured. Sham feeding increased plasma gastrin concentrations by approximately 15 pg/ml but had no effect on plasma somatostatin-like immunoreactivity (SLI). A small dose of atropine (5 micrograms/kg) augmented plasma gastrin concentrations during sham feeding significantly (P less than 0.01), but did not affect plasma SLI. Atropine also significantly inhibited gastric acid secretion and gastric bicarbonate secretion (by 62% and 52%, respectively), but pulse rate was not affected. A larger dose of atropine (15 micrograms/kg intravenously) suppressed plasma gastrin concentrations significantly compared to the smaller 5 micrograms/kg atropine dose (P less than 0.02), so that plasma gastrin concentrations when 15 micrograms/kg atropine was given were not significantly different from those during the control study. 15 micrograms/kg atropine reduced gastric acid and bicarbonate secretion by 81% and 66%, respectively, and also increased pulse rate by 15 min-1. These studies indicate that small doses of atropine enhance vagally mediated gastrin release in humans, probably by blocking a cholinergic inhibitory pathway for gastrin release. Although the nature of this cholinergic inhibitory mechanism is unclear, we found no evidence to incriminate somatostatin. Our finding that the larger dose of atropine reduced serum gastrin concentrations compared with the smaller dose suggests that certain vagal-cholinergic pathways may facilitate gastrin release.  相似文献   

4.
The effects of continuous intravenous infusions (6 h) of ammonium chloride (5.6; 11.2; and 16.8 mumol.kg-1.min) on plasma glucose and immunoreactive insulin (I.R.I.) levels were studied in three adult sheep. Infusions of 5.6 and 11.2 mumol.kg-1.min elevated ammonia levels in circulating blood from 100 to 150 and 300 microgram.100 ml-1, respectively, but showed no appreciable effect on plasma glucose and I.R.I. concentrations. Infusion of 16.8 mumol.kg-1.min-1 resulted in a blood ammonia concentration of about 400 microgram.100 ml-1 after six hours of infusion. Blood ammonia returned to normal 1 to 2 hours after the end of infusion. Plasma glucose concentration tended to increase slightly from 65 to 75 mg . 100 ml-1 when 16.8 mumol of NH4Cl were infused kg-1.min-1 and remained at the elevated level at least for two additional hours when ammonia infusions were stopped. Plasma I.R.I. tended to decrease from 48 to 38 microunits . ml-1 during the time of the NH4Cl infusion and increased continually to 82 microunits . ml-1 when NH4Cl infusions were stopped. It is concluded from the time courses of plasma glucose and plasma I.R.I. that the effect of ammonia infusion of these parameters cannot entirely be explained by a regulatory release of adrenaline.  相似文献   

5.
This study was undertaken to evaluate the effects of Sandostatin, a potent somatostatin analogue, on pancreatic and intestinal growth and plasma and pancreatic levels of insulin-like growth factor I, a known growth factor. Rats weighing 320-330 g, equipped with an intravenous cannula were infused with either bovine serum albumin or Sandostatin at a dose of 5 micrograms kg-1 h-1 for 7 days. Sandostatin caused significant reductions in pancreatic and intestinal weights accompanied by decreases in total DNA, RNA in both organs and total protein in the intestine while total pancreatic enzymes were increased. Plasma cholecystokinin and insulin-like growth factor I were reduced whereas total insulin-like growth factor I pancreatic content was increased. It is suggested that Sandostatin may reduce growth of these two organs by decreasing cholecystokinin and insulin-like growth factor release and their specific effects at the pancreatic and duodenal cellular level.  相似文献   

6.
The effects of 1-h infusions of bombesin and gastrin releasing peptide (GRP) at 50 pmol/kg per h and neurotensin at 100 pmol/kg per h on gastrin, pancreatic polypeptide (PP) and neurotensin release in man were determined following either saline or atropine infusion (20 micrograms/kg). Bombesin produced a rise in plasma neurotensin from 32 +/- 6 to 61 +/- 19 pmol/l and of PP from 26 +/- 8 to 36 +/- 7 pmol/l. There was a further rise of plasma PP to 50 +/- 13 pmol/l after cessation of the infusion. GRP had no significant effect on plasma neurotensin, but compared to bombesin, produced a significantly greater rise in plasma PP from 34 +/- 6 to 66 +/- 19 pmol/l during infusion. There was no post-infusional increase. At this dose, GRP was as effective as bombesin in releasing gastrin, although unlike bombesin its effect was enhanced by atropine. Neurotensin produced a rise in plasma PP from 17 +/- 4 to 38 +/- 8 pmol/l. Atropine blocked the release of PP during GRP and neurotensin infusion. Atropine had no effect on neurotensin or PP release during bombesin infusion, but did block the rise in plasma PP following bombesin infusion. We conclude that, in contrast to meal-stimulated neurotensin release, bombesin-stimulated neurotensin release is cholinergic independent. Despite structural homology, bombesin and GRP at the dose used are dissimilar in man in their actions and sensitivity to cholinergic blockade.  相似文献   

7.
The influence of dopamine as compared with dobutamine on glucose homeostasis has been assessed in thyroidectomized euthyroid rats. Both sympathomimetic agents were given intravenously over 6 h at four dosages, varying from 2 to 30 micrograms.kg-1.min-1. Immediately before the end of the infusion period, serum concentrations of glucose and insulin as well as plasma glucagon concentrations were measured. Dobutamine infusions did not exert any influence on these parameters. At a dose of 7.5 micrograms.kg-1.min-1, dopamine infusion caused a decrease in glucose concentrations, accompanied by a rise of glucagon and insulin levels. Glucose levels were significantly increased in the presence of unaltered insulin and decreasing glucagon levels at higher dopamine doses. The rise in glucose levels was reversed by 8 micrograms.kg-1.min-1 and inverted to a decrease by 12 micrograms.kg-1.min-1 of the alpha-adrenergic blocking agent phentolamine, simultaneously infused with 15 micrograms.kg-1.min-1 dopamine, while the insulin levels were increased and glucagon levels remained elevated. These findings demonstrate that dopamine acts on glucoregulation divergently, according to the dosage applied. The data suggest that dopamine rather than dobutamine treatment may disturb glucose homeostasis.  相似文献   

8.
The time course of pancreatic effects of somatostatin was studied over a period of 2 h in unanesthetized unrestrained rats after administration of the peptide by intravenous infusion and by single and multiple subcutaneous injections. During infusion of 10 and 30 micrograms/kg per min, somatostatin continuously suppressed plasma insulin and plasma glucagon. Plasma glucose was significantly increased at the lower dose, but not affected at the higher dose. Single subcutaneous injections of 0.3 and 3 mg/kg decreased plasma insulin and glucagon dose-dependently for 20-60 min without affecting plasma glucose. Multiple subcutaneous injections of somatostatin (one to four doses of 3 mg/kg, administered at intervals of 30 min) caused an initial decrease of plasma insulin (at 30 min), a rebound-increase at 60 and 90 min, and a final return to control values by 120 min. Plasma glucagon remained continuously suppressed. Plasma glucose increased significantly at 60 and 90 min and tended to return towards control values thereafter. In conclusion, pancreatic B cells - but not A cells - of the rat develop tachyphylaxis to somatostatin within 2 h after multiple subcutaneous injections of the peptide. By this mode of administration, 'selective' suppression of plasma glucagon can be achieved with somatostatin in the rat.  相似文献   

9.
The peripheral plasma concentrations of immunoreactive motilin, pancreatic polypeptide (PP), somatostatin and gastrin were measured in 7 pigs fasted to 24 h and subsequently fed a standard meal. Plasma motilin peaked during the last part of phase II activity of the migrating myoelectric complex (MMC) sequence (25.2 +/- 2.3 pM), the lowest value being recorded during phase I (10.6 +/- 1.5 pM) after a 24 h fast. Plasma motilin remained at a low level during the digestive pattern of duodenal activity, no fluctuation occurring when the first postprandial MMC recurred. At variance analysis, gastrin and PP were not released phasically with MMC in the fasting state, while at autocovariance both peptides tended to fluctuate during the MMC sequence with positive and negative peaks at regular intervals along MMC cycles. No variation of plasma somatostatin was observed in the fasting animals. These findings argue against a major role of circulating PP, gastrin and somatostatin-like components in the control of fasted and post absorptive duodenal motility in pigs while the role of motilin remains equivocal.  相似文献   

10.
Changes in the concentrations of cholecystokinin, gastric inhibitory peptide, gastrin, motilin, pancreatic polypeptide, secretin, somatostatin, and vasoactive intestinal peptide in calf plasma and antral, duodenal and/or pancreatic tissues were assessed by radioimmunoassay during postnatal development and after weaning in 50 male Holstein-Friesian calves (randomly distributed into 10 groups of 5 animals each). The calves in the first group were killed at birth while those in 6 other groups were colostrum-fed for 2 days and then milk-fed until 7, 28, 56, 70 or 119 days of age. Those in the remaining 3 groups were given the same diets until day 28, were then weaned between day 29-56, and slaughtered on days 56, 70 or 119. In milk-fed animals, changes in plasma and tissue concentrations of almost all digestive regulatory peptides were observed during the 1st month of postnatal life, especially at day 2. Weaning was accompanied by variations in the plasma concentrations of somatostatin, secretin, gastrin, pancreatic polypeptide and gastric inhibitory peptide but not by any apparent change in peptide tissue concentrations (except VIP in the duodenum). Thus, the variations in tissue concentrations are primarily age-related, while plasma concentrations were modified by age and weaning.  相似文献   

11.
In 4 conscious dogs with gastric fistulas the somatostatin responses to a meal were measured and compared to the responses seen after i.v. infusion of atropine sulfate (20 and 50 micrograms.kg-1.h-1) or cimetidine (8 mg.kg-1.h-1). The experiments were repeated after truncal vagotomy. The somatostatin responses to bombesin (0.5 micrograms.kg-1.h-1) were also measured before and after vagotomy. Vagotomy decreased basal and postprandial somatostatin levels and reduced the somatostatin responses to feeding during the first 30-min period following the ingestion of the meal but not during subsequent periods. Bombesin-induced somatostatin release was increased after vagotomy. Atropine decreased the somatostatin responses to the meal before and after vagotomy. Cimetidine had no significant effect. These studies suggest that, in conscious dogs, somatostatin released into the circulation is partly under vagal control and that, as for gastrin release, vagal pathways for stimulation and inhibition are present. Our studies also suggest that cholinergic mechanisms are involved in the control of postprandial somatostatin release.  相似文献   

12.
The postprandial release of immunoreactive insulin, glucagon, gastrin, somatostatin, pancreatic polypeptide (PP), and gastric inhibitory polypeptide (GIP) was studied in parallel with the absorption of sugars and amino acids in conscious pigs. Six pigs fitted with permanent catheters in the portal vein and arterial blood system as well as within an electromagnetic flow probe around the portal vein received successively at 3-day intervals, three meals of 800 g each containing 0, 14, or 28% protein (semisynthetic diets based on fish protein). Blood samples were collected and portal blood flow was recorded during a postprandial period of 8 h. For the same level of feed intake, an increase in the dietary protein concentration led to a higher alpha-amino nitrogen absorption and to a lower appearance of reducing sugars in the portal vein; in addition, the carbohydrate absorption efficiency (amounts absorbed as a percentage of amounts ingested) was reduced, showing the competition between the absorption of amino acids and glucose. The largest absorption occurred during the first 4 h after the meal, but neither the digestion of proteins nor that of carbohydrates were finished 8 h after the meal since portoarterial differences could still be observed. All test meals induced a rise of portal and peripheral concentrations of insulin, gastrin, somatostatin, and PP, and of the systemic level of GIP. Glucagon increased after the 28% protein meal only. The rise of plasma insulin paralleled that of blood glucose, and bore a significant positive relationship to the systemic GIP level in the early postprandial period. In terms of absolute amounts, portoarterial concentration gradients increased postprandially. Insulin release was significantly the highest after intake of the 14% protein diet. The gastrin response was significantly correlated to the amount of protein. Similarly the release of glucagon and somatostatin tended to increase with increasing dietary amount, but differences failed to reach significance (P less than 0.05), except for glucagon 2 h after the meal. There were very close relationships between the hourly amounts of alpha-amino nitrogen absorbed and gastrin and glucagon production, as between insulin and PP secretions. From the present results, the induction of physiological increments of plasma peptide concentration in 60-kg pigs would require infusion rates of about 50-250 micrograms/h for insulin, 1-4 micrograms/h for gastrin 17, 5-10 micrograms/h for glucagon and somatostatin, and 5-50 micrograms/h for PP.  相似文献   

13.
Four dogs with chronic gastric fistulas were give intravenous bombesin nonapeptide (B9), ranatensin, and litorin by constant infusion for 90 min at 1.2 micrograms x kg-1 on separate days. A dose response study with substance P (1.5, 3.0, 60, 18 and 54 micrograms x kg-1 x h-1) was also carried out and all tests compared to a standard protein meal (10g x kg-1). Plasma gastrin and PP were measured by radioimmunoassay and gastric acid by autobiuret titration. Substance P failed to stimulate gastric acid secretion or release either pancreatic polypeptide (PP) or gastrin. Basal gastrin levels were 8 +/-2 fmol/ml. The peak increment of gastrin released by bombesin was 95 +/- 16, ranatensin 22 +/- 6, litorin 18 +/- 4, and meal 39 +/- 5 fmol/ml. Bombesin caused significantly greater release of gastrin than a meal, litorin or ranatensin (P less than 0.01). Basal gastric secretion was 23 +/- 4 microequiv./min. B9 produced a peak acid secretion of 356 +/- 124 muequiv./min. There was no significant difference between the bombesin-like peptides (P less than 0.01). Basal plasma PP was 38 +/- 12 fmol/ml. B9 produced a peak PP increment of 600 +/- 50, litorin 137 +/- 36, ranatensin 98 +/- 11, and a meal 305 +/- 58 fmol/ml. B9 released significantly more PP than either litorin of ranatensin (P less than 0.01). The different amino acid sequences of the peptides are probably responsible for their potency. The substitution of a penultimate phenylalanine residue in litorin and ranatensin for leucine in bombesin does not prevent PP or gastrin release by bombesin-like peptides. Since bombesin-like peptides are widely distributed in the gastrointestinal tract of man and stimulate both acid and gut hormone secretion, it is possible that they might play a physiological role in the modulation of gastrointestinal function.  相似文献   

14.
Plasma concentrations of regulatory peptides were monitored in groups of obese and normal-weight subjects following modified sham feeding and a liquid fatty meal. Following modified sham feeding a significant increase in immunoreactive cholecystokinin (CCK) in plasma was recorded in both groups. In the obese subjects, however, the concentrations following sham feeding were significantly lower than in normal-weight subjects, and the initial part of the response was negative. Basal and modified sham feeding stimulated immunoreactive pancreatic polypeptide (PP) concentrations in plasma did not differ between the groups. After the liquid fatty meal plasma CCK concentrations increased similarly in both groups. In contrast immunoreactive neurotensin and somatostatin concentrations following the meal were lower in the obese group, and a changed concentration-time pattern for somatostatin was observed in the obese group. Postprandial concentrations of PP and immunoreactive gastrin were not different in the groups. The results indicate that the plasma concentration patterns of CCK, somatostatin and NT are disarranged in obesity. The changes may promote rapid propulsion and absorption of ingested food, and facilitate deposition of fat in adipose tissue in obesity and thus may be of pathophysiological importance.  相似文献   

15.
The release of somatostatin from the pancreas and stomach following the ingestion of a meal and its increase in the peripheral circulation elicits an attenuation of postprandial hormone secretion such as insulin, pancreatic polypeptide and gastrin and retards the rate at which nutrients enter the circulation. Reduced tissue somatostatin content and/or an attenuated somatostatin release is associated with hyperinsulinism and obesity in certain animal models. In the obese Zucker rat, however, tissue somatostatin levels are increased and therefore the present study was designed to determine the effect of synthetic somatostatin on basal and postprandial arterial insulin levels in obese and lean Zucker rats. Synthetic somatostatin was infused at doses of 0.25, 0.5, 1 and 5 ng/kg X min before and after the intragastric instillation of a liver extract/sucrose test meal. In the obese rats somatostatin at a dose of 5 ng/kg X min reduced basal plasma insulin levels significantly, whereas no effect of somatostatin was observed on basal insulin levels in the lean animals at all doses employed. The integrated postprandial insulin response was reduced during 0.25, 0.5, 1 and 5 ng/kg X min somatostatin in the obese animals, whereas only 0.5 ng/kg X min and higher doses had an inhibitory effect in the lean rats. The degree of inhibition in relation to the postprandial insulin response during saline infusions was 35-230% in the obese and 30-100% in the lean Zucker rats within the range of somatostatin infusions employed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
《Regulatory peptides》1987,17(5):285-293
Infusion of the neuropeptide bombesin stimulates the secretion of several gastrointestinal hormones by an unknown mechanism. We have investigated the effects of atropine (15 ng/kg as bolus followed by 2.5 ng/kg · 30 min) and somatostatin (125 μg as i.v. bolus followed by 62.5 μg/30 min) on the stimulation of 3 hormones (gastrin, cholecystokinin and pancreatic polypeptide) by 60 pmol/kg · 20 min bombesin in 6 healthy volunteers. Plasma samples for measurement of hormones by sensitive and specific radioimmunoassays were obtained at − 5, 0, 2.5, 5, 7.5, 10, 15, 20, 25 and 30 min. Bombesin induced significant increases in plasma gastrin (12 ± 2 to 34 ± 3 pM; P < 0.0005), cholecystokinin (1.2 ± 0.2 to 8.9 ± 0.7 pM; P < 0.0001) and pancreatic polypeptide (22 ± 4 to 72 ± 19 pM; P < 0.05). There were great differences between the effects of atropine and somatostatin on the hormonal responses to bombesin. Atropine slightly increased the response of gastrin by 19% and that of cholecystokinin by 15%, but strongly inhibited the bombesin-stimulated pancreatic polypeptide secretion by 97%. On the other hand, somatostatin inhibited the bombesin-induced secretion of gastrin by 48%, cholecystokinin by 82% and pancreatic polypeptide by 107%. These results point to considerable qualitative and quantitative differences in the stimulatory mechanisms of bombesin on the hormones studied.  相似文献   

17.
The effect on plasma gastroenteropancreatic hormone levels on infusing the porcine gastrin-releasing peptide and bombesin into dogs demonstrated no qualitative difference in the spectrum of activity of the two peptides. Sustained elevations in plasma immunoreactive gastrin, pancreatic polypeptide, enteroglucagon, gastric inhibitory polypeptide, pancreatic glucagon and transient elevations in plasma insulin were seen during infusions of both peptides. The similar spectrum of activities and the structural homology between the two peptides suggests that the porcine gastrin releasing peptide is the porcine counterpart of the amphibian peptide bombesin.  相似文献   

18.
Prostacyclin (PGI-2), 6-keto-PGF-1 alpha and PGF-2 alpha were infused continuously for 6 h into the dorsal aorta of rats 8 days pregnant. PGF-2 alpha (10 micrograms/h) significantly reduced plasma progesterone concentrations by 66% and luteal tissue concentrations of pregnenolone and progesterone by 78% and 95% respectively. Plasma concentrations of 20 alpha-dihydroprogesterone remained unchanged whilst luteal tissue concentrations rose 2-fold. Plasma progesterone concentrations were significantly reduced to 50% by PGI-2 (10 micrograms/h) but were unaffected by 6-keto-PGF-1 alpha (10 or 100 micrograms/h). Neither PGI-2 (10 micrograms/h) nor 6-keto PGF-1 alpha (10 or 100 micrograms/h) had any significant effect on plasma concentrations of 20 alpha-dihydroprogesterone or on luteal tissue concentrations of pregnenolone, progesterone or 20 alpha-dihydroprogesterone. Arterial blood pressure was unaffected by PGF-2 alpha and 6-keto-PGF-1 alpha, but was significantly reduced by PGI-2 at infusion rates greater than or equal to 60 micrograms/h.  相似文献   

19.
Meal stimulated plasma neurotensin like immunoreactivity (NTLI) was compared during saline or atropine infusion in six volunteers over six hours. Plasma gastrin and pancreatic polypeptide were also measured to compare the timing of their release to that of NTLI. Like plasma gastrin and PP, plasma NTLI rose rapidly following the meal, rising from 27±7 pmol/1 to a peak of 45±8 pmol/1 at 20 minutes (p < 0.05). Also, like that of pancreatic polypeptide, the release of NTLI was biphasic. Sixty minutes after the meal, plasma NTLI had returned to basal values, followed by a rise to a prolonged peak of 64±10 pmol/1 between 90–180 minutes (p < 0.05) returning once more to basal values by 240 minutes. Following atropine, basal plasma NTLI fell from 22±4 pmol/1 to 11±2 pmol/1 (p < 0.05), but rose to basal levels 30–60 minutes after the meal, where it remained unaltered for the remainder of the study. We conclude that both basal and meal stimulated plasma NTLI are inhibited by cholinergic blockade. Further, the similar temporal relationship between plasma NTLI and pancreatic polypeptide in the late phase of the meal response, suggests that a component of NTLI may mediate part of the intestinal phase of pancreatic polypeptide release.  相似文献   

20.
The present study was designed to determine if orally administered somatostatin can reduce the postprandial rise in plasma triglycerides, gastrin, gut glucagon-like immunoreactivity (GLI) and the pancreatic hormones insulin and glucagon. Ten overnight fasted dogs were fed a fat-protein meal with or without 2 mg synthetic somatostatin, followed by another 2 mg somatostatin 90 min later. After the meal with somatostatin, postprandial plasma triglyceride levels were significantly lower for 5 hours, GLI levels for 3.5 hours and gastrin levels for 1 hour compared to the controls. Plasma insulin, glucagon and somatostatin-like immunoreactivity was not different from the control experiments. It is concluded that orally administered somatostatin lowers the postprandial levels of triglycerides, GLI and gastrin in dogs. This may have therapeutic implications for the management of gastrointestinal and metabolic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号