首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Any investigation of the genetic structure of populations involves the analysis of a large number of samples and therefore benefits from the use of rapid, inexpensive, and automated methods to assign individuals to a particular genotype. We developed a high throughput SNuPE (single nucleotide primer extension) assay to assess polymorphic base variations at three loci (PC‐IGS, rDNA‐ITS, and gvpA‐IGS) in the genome of the cyanobacterium Nodularia spumigena. Using a 96‐capilliary sequencer, analysis of thirteen 96‐well plates can be performed in the same electrophoretic run, allowing the throughput of 1248 samples in 75 min. The SNuPE method can be broken down into two stages. The first stage comprises amplification of a DNA fragment containing the polymorphic sequence and its purification from un‐incorporated PCR reagents. The second stage involves the annealing and extension of a third primer, the SNuPE primer, the 3′ end of which immediately precedes the variable site in the template. This primer is extended with a single fluorescently labeled dideoxy nucleotide by DNA polymerase, followed by characterization of the extended primers on a DNA sequencing instrument. The length of the extended primer is used to define the locus, and the incorporated fluorescent dideoxy nucleotide gives the identity of the nucleotide at each polymorphic site. Details of this technique and its application to study the genetic structure of Nodularia populations are described.  相似文献   

2.
We describe the application of two different fluorescence-based techniques (ddNTP primer extension and single-strand conformation polymorphism (SSCP)) to the detection of single nucleotide polymorphisms (SNPs) by capillary electrophoresis. The ddNTP primer extension technique is based on the extension, in the presence of fluorescence-labeled dideoxy nucleotides (ddNTP, terminators), of an unlabeled oligonucleotide primer that binds to the complementary template immediately adjacent to the mutant nucleotide position. Given that there are no unlabeled dNTPs, a single ddNTP is added to its 3' end, resulting in a fluorescence-labeled primer extension product which is readily separated by capillary electrophoresis. On the other hand, the non-radioisotopic version of SSCP established in this study uses fluorescent dye to label the PCR products, which are also analyzed by capillary electrophoresis. These procedures were used to identify a well-defined SNP in exon 7 of the human p53 gene in DNA samples isolated from two human cell lines (CEM and THP-1 cells). The results revealed a heterozygous single-base transition (G to A) at nucleotide position 14071 in CEM cells, proving that both fluorescence-based ddNTP primer extension and SSCP are rapid, simple, robust, specific and with no ambiguity in interpretation for the detection of well-defined SNPs.  相似文献   

3.
Single-nucleotide primer extension (SNuPE) is an emerging tool for parallel detection of DNA sequences of different target microorganisms. The specificity and sensitivity of the SNuPE method were assessed by performing single and multiplex reactions using defined template mixtures of 16S rRNA gene PCR products obtained from pure bacterial cultures. The mismatch discrimination potential of primer extension was investigated by introducing different single and multiple primer-target mismatches. The type and position of the mismatch had significant effects on the specificity of the assay. While a 3′-terminal mismatch has a considerable effect on the fidelity of the extension reaction, the internal mismatches influenced hybridization mostly by destabilizing the hybrid duplex. Thus, carefully choosing primer-mismatch positions should result in a high signal-to-noise ratio and prevent any nonspecific extension. Cyclic fluorescent labeling of the hybridized primers via extension also resulted in a significant increase in the detection sensitivity of the PCR. In multiplex reactions, the signal ratios detected after specific primer extension correlated with the original template ratios. In addition, reverse-transcribed 16S rRNA was successfully used as a nonamplified template to prove the applicability of SNuPE in a PCR-independent manner. In conclusion, this study demonstrates the great potential of SNuPE for simultaneous detection and typing of various nucleic acid sequences from both environmental and engineered samples.Fast detection, differentiation, and identification of bacteria are crucial tasks in clinical, food, and environmental microbiology. Cultivation-independent tools not only save time compared to cultivation-based techniques but also allow access to the difficult-to-cultivate part of a microbial community. Molecular detection methods are usually based on hybridization of oligonucleotide probes to signature sequences (phylogenetically informative regions) in the nucleic acids (RNA or DNA) of the target microorganisms. Verification of the hybridization event can be accomplished by detection of hybridized labeled probes in situ (e.g., fluorescence in situ hybridization [FISH]) or ex situ (dot blot hybridization). Combining two specific oligonucleotides in a PCR increases the sensitivity of specific detection, while real-time monitoring of the amplification product formed allows quantification of the original template (for a review, see reference 17). Multiple detection can be achieved by using more than one primer pair targeting several loci in multiplex PCR assays (for a review, see reference 32). However, the main disadvantages of FISH are its restricted capability for parallel analysis of several target groups in the same sample and limitations in probe design due to differences in accessibility of the probes to their target sites (3, 7). Moreover, detection of slowly growing bacteria with low ribosome contents requires labor-intensive techniques (30, 36). Multiplex PCR also has limitations for multiplexing and challenges for primer design (32).Recently, single-nucleotide primer extension (SNuPE) was proposed as a fast, semiquantitative multiplex detection tool for analyzing sequence variants. This method is frequently used for determination of single-nucleotide polymorphisms and benefits from the fidelity of dideoxynucleoside triphosphate (ddNTP) incorporation catalyzed by a DNA polymerase. When primer extension takes place on a solid support, the method is called minisequencing (35, 37), while a reaction in solution is referred to as SNuPE (34) or single-base extension (15). These methods were originally developed for routine medical diagnosis of genetic disorders (23, 35) or for use in forensic research (38). Different versions of the primer extension technique have also been used recently for fast identification and genotyping of microbial strains (9, 31). Recent studies showed that detection of a hybridization event via labeling of the hybridized primer in the extension reaction is possible. However, the use of this method as a detection tool in applied and environmental microbiology has not been fully exploited so far. Rudi and coworkers were the first workers who used a minisequencing approach with PCR products from environmental DNA to detect toxic cyanobacteria by labeling only one of the four ddNTPs used in the reaction (27). Multiplexing was accomplished by hybridizing the labeled products to complementary oligonucleotides in an array format. In combination with antibody-based chromogenic visualization, genetic profiles of cyanobacterial diversity (28), microbial communities in vegetable salads (25), and Listeria strains (26) were obtained. However, this approach is labor-intensive and time-consuming and requires specific equipment; furthermore, the primer is restricted to certain positions since only one terminator nucleotide is labeled.An alternative strategy for multiplexing in solution benefits from incorporation of four differently labeled ddNTPs and attachment of mobility modifiers to the different primers. Subsequent separation using capillary electrophoresis and laser-induced fluorescence detection results in a very fast assay that is easy to interpret. Determination of the incorporated nucleotide provides additional proof of the assay specificity or may even provide extra phylogenetic information. The first application of primer extension with four differently labeled ddNTPs in environmental microbiology was the use of this method by Wu and Liu (41) for multiplex detection of different Bacteroides spp. This study also addressed different methodological issues and aspects, such as the effects of noncomplementary tail length, annealing temperature, cycle number, and primer-to-template ratio on extension efficiency. In a previous study, Nikolausz et al. (19) reported development and application of a multiplex SNuPE assay for detection and typing of “Dehalococcoides” sp. sequences obtained from chloroethene-contaminated groundwater samples. However, there still has not been a systematic evaluation of factors that affect primer design and the discriminatory power of primer extension. Moreover, quantitative aspects of the method have not been thoroughly addressed so far.The present study focused on these crucial issues by investigating the effects of the type, number, and position of primer mismatches on the extension efficiency and hence the specificity. Furthermore, quantitative aspects of SNuPE were investigated in a model community experiment by using defined template mixtures of 16S rRNA gene PCR products or reverse-transcribed RNA.  相似文献   

4.
Gestl EE  Eckert KA 《Biochemistry》2005,44(18):7059-7068
The importance of DNA polymerase-DNA minor groove interactions on translesion synthesis (TLS) was examined in vitro using variants of exonuclease-deficient Klenow polymerase and site-specifically modified DNA oligonucleotides. Polymerase variant R668A lacks primer strand interactions, while variant Q849A lacks template strand interactions. O(6)-Methylguanine (m6G) and abasic site TLS was examined in three stages: dNTP insertion opposite the lesion, extension from a terminal lesion-containing base pair, and the dissociation equilibrium of the polymerase from the lesion-containing template. Less than 5% TLS was observed at the insertion step for either variant on the lesion-containing templates. While extensive TLS was observed for WT polymerase on the m6G template, only incorporation opposite the lesion was observed for the R668A variant. Loss of the template strand interaction, Q849A, resulted in the inability to insert dNTPs opposite either the m6G or abasic lesion. For both variants, extension of purine-containing m6G primer-templates was increased relative to WT polymerase. We observed similar extension efficiencies for all variants, relative to WT, using abasic template-primers. Polymerase dissociation/reassociation was studied through the use of a competitor primer/template complex. Dissociation for WT polymerase increased 2-fold and 3-fold, respectively, for m6G and abasic lesion-containing templates, relative to the natural template. Variants lacking DNA minor groove interactions displayed increased dissociation from DNA templates, relative to WT polymerase, but do not display an increased level of lesion-induced polymerase dissociation. Our results indicate that the primer and template strand interactions of the Klenow polymerase with the DNA minor groove are critical for maintaining the DNA-polymerase complex during translesion synthesis.  相似文献   

5.
8-chloro-2'-deoxyadenosine (8-Cl-dAdo) was incorporated into synthetic DNA oligonucleotides to determine its effects on DNA synthesis by the 3'-5' exonuclease-free Klenow fragment of Escherichia coli DNA Polymerase I (KF-). Single nucleotide insertion experiments were used to determine the coding potential of 8-Cl-dAdo in a DNA template. KF- inserted TTP opposite 8-Cl-dAdo in the template, but with decreased efficiency relative to natural deoxyadenosine. Running-start primer extensions with KF- resulted in polymerase pausing at 8-Cl-dAdo template sites during DNA synthesis. The 2'-deoxyribonucleoside triphosphate analogue, 8-Cl-dATP, was incorporated opposite thymidine (T) approximately two-fold less efficiently than dATP.  相似文献   

6.
Accurate and fast genotyping of single nucleotide polymorphisms (SNPs) is of significant scientific importance for linkage and association studies. We report here an automated fluorescent method we call multiplex automated primer extension analysis (MAPA) that can accurately genotype multiple known SNPs simultaneously. This is achieved by substantially improving a commercially available protocol (SNaPshot). This protocol relies on the extension of a primer that ends one nucleotide 5'of a given SNP with fluorescent dideoxy-NTPs (minisequencing), followed by analysis on an ABI PRisMS 377 Semi-Automated DNA Sequencer Our modification works by multiplexing the initial reaction that produces the DNA template for primer extension and/or multiplexing several primers (corresponding to several SNPs) in the same primer extension reaction. Then, we run each multiplexed reaction on a single gel lane. We demonstrate that MAPA can be used to genotype up to four SNPs simultaneously, even in compound heterozygote samples, with complete accuracy (based on concordance with sequencing results). We also show that primer design, unlike the DNA template purification method, can significantly affect genotyping accuracy, and we suggest useful guidelines for quick optimization.  相似文献   

7.
Yagi Y  Ogawara D  Iwai S  Hanaoka F  Akiyama M  Maki H 《DNA Repair》2005,4(11):1252-1269
In translesion synthesis (TLS), specialized DNA polymerases (pols) facilitate progression of replication forks stalled by DNA damage. Although multiple TLS pols have been identified in eukaryotes, little is known about endogenous TLS pols and their relative contributions to TLS in vivo because of their low cellular abundance. Taking advantage of Xenopus laevis oocyte cells, with their extraordinary size and abundant enzymes involved in DNA metabolism, we have identified and characterized endogenous TLS pols for DNA damage induced by ultraviolet (UV) irradiation. We designed a TLS assay which monitors primer elongation on a synthetic oligomer template over a single UV-induced lesion, either a cys-syn cyclobutane pyrimidine dimer (CPD) or a pyrimidine (6-4) pyrimidone photoproduct. Four distinct TLS activities (TLS1-TLS4) were identified in X. laevis oocyte extracts, using three template/primer (T/P) DNA substrates having various sites at which primer extension is initiated relative to the lesion. TLS1 and TLS2 activities appear to be sequence-dependent. TLS3 and TLS4 extended the primers over the CPD in an error-free manner irrespective of sequence context. Base insertion opposite the CPD of the T/P substrate in which the 3'-end of the primer is placed one base upstream of the lesion was observed only with TLS3. TLS3 and TLS4 showed primer extension with similar efficiencies on the T/P substrate whose 3'-primer terminal dinucleotide (AA) was complementary to the CPD lesion. Investigations with antibodies and recombinant pols revealed that TLS3 and TLS4 were most likely attributable to pol eta and pol kappa, respectively. These results indicate that error-free insertion in CPD bypass is due mainly to pol eta (TLS3) in the extracts, and suggest that pol kappa (TLS4) may assist pol eta (TLS3) in error-free extension during CPD bypass.  相似文献   

8.
The precise mapping and quantification of DNA methylation as an epigenetic parameter during development and in diseased tissues is of great importance for functional genomics. Here we describe a rapid, quantitative method to assess methylation levels at specific CpG sites using PCR products of bisulfite-treated genomic DNA. Using single nucleotide primer extension (SNuPE) assays in combination with ion pair reverse phase high performance liquid chromatography (IP RP HPLC) separation techniques, methylated and unmethylated CpGs can be discriminated and quantified based on the different masses and hydrophobicities of the extended primer products. The assay is linear, highly reproducible and several sites can be measured simultaneously in one reaction. It can be semi-automated and eliminates the need for cloning and sequencing of individual bisulfite PCR products.  相似文献   

9.
Reliable quantification by PCR requires careful experimental design and conditions, often involving sampling of the PCR reactions at different time points or amplifying multiple dilutions of a standard DNA. We describe here an accurate, quantitative and easily automatizable solid-phase method based on competetive PCR. The PCR products are analyzed by solid-phase minisequencing after capture of biotinylated PCR products in streptavidin-coated microtiter wells and single-nucleotide extension of a specific detection primer by a radioactively labelled nucleotide. The results are expressed as numeric cpm-values, and the incorporated label expresses the relative amount of sequence variants in the original template mixture. We have applied the method to determination of allele frequencies in pooled DNA samples, of mitochondrial heteroplasmy, of gene copy numbers, and to forensic DNA analysis.  相似文献   

10.
J Voisey  G J Hafner  C P Morris  A van Daal  P M Giffard 《BioTechniques》2001,31(5):1122-4, 1126, 1128-9
Linear dsDNA composed of tandem repeats may be exponentially amplified by the strongly strand-displacing Bst DNA polymerase (large fragment) and two primers specific for opposite strands. When the repetitive DNA is derivedfrom rolling circle replication of a circular template, the reaction is termed cascade rolling circle amplification (CRCA). We have developed a variant of CRCA in which one primer is attached to the surface of a microwell and the other is labeled, thus enabling detection of amplified material using an ELISA-like protocol. The circular template is derived by annealing and ligation of a padlock on target DNA. It was found that there was good correlation between the synthesis of amplified material and signal. The specificity of the reaction with respect to single-nucleotide polymorphisms was investigated, and it was found that Bst DNA polymerase is prone to extension from primers with mismatched 3' ends. Reliable single nucleotide specificity was only obtained when pre-synthesized amplified material was interrogated by competitive primer extension.  相似文献   

11.
A rapid method is described to efficiently perform site-directed mutagenesis based on overlap extension polymerase chain reaction (OE-PCR). Two template DNA molecules in different orientations relative to only one universal primer were amplified in parallel. By choosing a high dilution of mutagenic primers it was possible to run an overlap extension PCR in only one reaction without purification of intermediate products. This method which we have named one-step overlap extension PCR (OOE-PCR) can in principle be applied to every DNA fragment which can be cloned into a multiple cloning site of any common cloning vector.  相似文献   

12.
Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) is a technique that can be used for rapid quantitation of methylation at individual CpG sites. Treatment of genomic DNA with sodium bisulfite is used to convert unmethylated Cytosine to Uracil while leaving 5-methylcytosine unaltered. Strand-specific PCR is performed to generate a DNA template for quantitative methylation analysis using Ms-SNuPE. SNuPE is then performed with oligonucleotide(s) designed to hybridize immediately upstream of the CpG site(s) being interrogated. Reaction products are electrophoresed on polyacrylamide gels for visualization and quantitation by phosphorimage analysis. The Ms-SNuPE technique is similar to other quantitative assays that use bisulfite treatment of genomic DNA to discriminate unmethylated from methylated Cytosines (i.e., COBRA, pyrosequencing). Ms-SNuPE can be used for high-throughput methylation analysis and rapid quantitation of Cytosine methylation suitable for a wide range of biological investigations, such as checking aberrant methylation changes during tumorigenesis, monitoring methylation changes induced by DNA methylation inhibitors or for measuring hemimethylation. Approximately two to four CpG sites can be interrogated in up to 40 samples by Ms-SNuPE in less than 5 h, after PCR amplification of the desired target sequence and preparation of PCR amplicons.  相似文献   

13.
Cyclobutane thymine dimers (T-T) comprise the majority of DNA damage caused by short wavelength ultraviolet radiation. These lesions generally block replicative DNA polymerases and are repaired by nucleotide excision repair or bypassed by translesion polymerases in the nucleus. Mitochondria lack nucleotide excision repair, and therefore, it is important to understand how the sole mitochondrial DNA polymerase, pol γ, interacts with irreparable lesions such as T-T. We performed in vitro DNA polymerization assays to measure the kinetics of incorporation opposite the lesion and bypass of the lesion by pol γ with a dimer-containing template. Exonuclease-deficient pol γ bypassed thymine dimers with low relative efficiency; bypass was attenuated but still detectable when using exonuclease-proficient pol γ. When bypass did occur, pol γ misincorporated a guanine residue opposite the 3'-thymine of the dimer only 4-fold less efficiently than it incorporated an adenine. Surprisingly, the pol γ exonuclease-proficient enzyme excised the incorrectly incorporated guanine at similar rates irrespective of the nature of the thymines in the template. In the presence of all four dNTPs, pol γ extended the primer after incorporation of two adenines opposite the lesion with relatively higher efficiency compared with extension past either an adenine or a guanine incorporated opposite the 3'-thymine of the T-T. Our results suggest that T-T usually stalls mitochondrial DNA replication but also suggest a mechanism for the introduction of point mutations and deletions in the mitochondrial genomes of chronically UV-exposed cells.  相似文献   

14.
Yu L  Hu G  Howells L 《BioTechniques》2002,33(4):938-941
The commonly used DNA polymerase assay is based on the detection of incorporated radiolabeled nucleotides in a DNA elongation reaction. It is laborious, radioactive, and can be highly variable. Here we report a nonradioactive fluorescence-based assay. The method consists of Cydye-labeled nucleotides, biotinylated primer, and a streptavidin-coated microplate. The assay is found to have sensitivity and dynamic range comparable to the classical radioactive method. Moreover, it has the advantages of being simple, stable, nonradioactive, and suitable for high-throughput applications. We have also found that, to ensure efficient measurement of the enzyme activity, the template DNA used in this method should have a sequence that avoids the incorporation of the fluorescence-labeled nucleotide in a consecutive way.  相似文献   

15.
A new MALDI-TOF based detection assay was developed for analysis of single nucleotide polymorphisms (SNPs). It is a significant modification on the classic three-step minisequencing method, which includes a polymerase chain reaction (PCR), removal of excess nucleotides and primers, followed by primer extension in the presence of dideoxynucleotides using modified thermostable DNA polymerase. The key feature of this novel assay is reliance upon deoxynucleotide mixes, lacking one of the nucleotides at the polymorphic position. During primer extension in the presence of depleted nucleotide mixes, standard thermostable DNA polymerases dissociate from the template at positions requiring a depleted nucleotide; this principal was harnessed to create a genotyping assay. The assay design requires a primer- extension primer having its 3'-end one nucleotide upstream from the interrogated site. The assay further utilizes the same DNA polymerase in both PCR and the primer extension step. This not only simplifies the assay but also greatly reduces the cost per genotype compared to minisequencing methodology. We demonstrate accurate genotyping using this methodology for two SNPs run in both singleplex and duplex reactions. We term this assay nucleotide depletion genotyping (NUDGE). Nucleotide depletion genotyping could be extended to other genotyping assays based on primer extension such as detection by gel or capillary electrophoresis.  相似文献   

16.
DNA synthesis by avian myeloblastosis virus was studied using poly(C) as template and modified oligo(dG) as primer. The addition of one noncomplementary base to the 3'-end of the primer has no important effect on synthesis. The mispaired base is incorporated into the product and the apparent Km (for primer) and the V of the reaction remain unchanged. This confirms the absence of a 3' leads to 5'-exodeoxynuclease activity using a template that is transcribed faithfully rather than one that can undergo a slippage reaction.  相似文献   

17.
1,N(2)-Etheno(epsilon)guanine is a mutagenic DNA lesion derived from lipid oxidation products and also from some chemical carcinogens. Gel electrophoretic analysis of the products of primer extension by Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) indicated preferential incorporation of A opposite 3'-(1,N(2)-epsilon-G)TACT-5', among the four dNTPs tested individually. With the template 3'-(1,N(2)-epsilon-G)CACT-5', both G and A were incorporated. When primer extension was done in the presence of a mixture of all four dNTPs, high pressure liquid chromatography-mass spectrometry analysis of the products indicated that (opposite 3'-(1,N(2)-epsilon-G)CACT-5') the major product was 5'-GTGA-3' and the minor product was 5'-AGTGA-3'. With the template 3'-(1,N(2)-epsilon-G)TACT-5', the following four products were identified by high pressure liquid chromatography-mass spectrometry: 5'-AATGA-3', 5'-ATTGA-3', 5'-ATGA-3', and 5'-TGA-3'. An x-ray crystal structure of Dpo4 was solved (2.1 A) with a primer-template and A placed in the primer to be opposite the 1,N(2)-epsilon-G in the template 3'-(1,N(2)-epsilon-G)TACT 5'. The added A in the primer was paired across the template T with classic Watson-Crick geometry. Similar structures were observed in a ternary Dpo4-DNA-dATP complex and a ternary Dpo4-DNA-ddATP complex, with d(d)ATP opposite the template T. A similar structure was observed with a ddGTP adjacent to the primer and opposite the C next to 1,N(2)-epsilon-G in 3'-(1,N(2)-epsilon-G)CACT-5'. We concluded that Dpo4 uses several mechanisms, including A incorporation opposite 1,N(2)-epsilon-G and also a variation of dNTP-stabilized misalignment, to generate both base pair and frameshift mutations.  相似文献   

18.
Microsatellite DNA sequences are ubiquitous in the human genome, and mutation rates of these repetitive sequences vary with respect to DNA sequence as well as length. We have analyzed polymerase-DNA interactions as a function of microsatellite sequence, using polypyrimidine/polypurine di- and tetranucleotide alleles representative of those found in the human genome. Using an in vitro primer extension assay and the mammalian DNA polymerase alpha-primase complex, we have observed a polymerase termination profile for each microsatellite that is unique to that allele. Interestingly, a periodic termination profile with an interval size (9-11 nucleotides) unrelated to microsatellite unit length was observed for the [TC](20) and [TTCC](9) templates. In contrast, a unit-punctuated polymerase termination profile was found for the longer polypurine templates. We detected strong polymerase pauses within the [TC](20) allele at low reaction pH which were eliminated by the addition of deaza-dGTP, consistent with these specific pauses being a consequence of triplex DNA formation during DNA synthesis. Quantitatively, a strand bias was observed in the primer extension assay, in that polymerase synthesis termination is more intense when the polypurine sequence serves as the template, relative to its complementary polypyrimidine sequence. The HSV-tk forward mutation assay was utilized to determine the corresponding polymerase alpha-primase error frequencies and specificities at the microsatellite alleles. A higher microsatellite polymerase error frequency (50x10(-4) to 60x10(-4)) was measured when polypurine sequences serve as templates for DNA synthesis, relative to the polypyrimidine template (18x10(-4)). Thus, a positive correlation exists between polymerase alpha-primase pausing and mutagenesis within microsatellite DNA alleles.  相似文献   

19.
The degenerate primer-based sequencing Was developed by a synthesis method(DP-SBS)for high-throughput DNA sequencing,in which a set of degenerate primers are hybridized on the arrayed DNA templates and extended by DNA polymerase on microarrays.In this method,adifferent set of degenerate primers containing a give nnumber(n)of degenerate nucleotides at the 3'-ends were annealed to the sequenced templates that were immobilized on the solid surface.The nucleotides(n 1)on the template sequences were determined by detecting the incorporation of fluorescent labeled nucleotides.The fluorescent labeled nucleotide was incorporated into the primer in a base-specific manner after the enzymatic primer extension reactions and nine-base length were read out accurately.The main advanmge of the DP-SBS is that the method only uses very conventional biochemical reagents and avoids the complicated special chemical reagents for removing the labeled nucleotides and reactivating the primer for further extension.From the present study,it is found that the DP-SBS method is reliable,simple,and cost-effective for laboratory-sequencing a large amount of short DNA fragments.  相似文献   

20.
Utting M  Hampe J  Platzer M  Huse K 《BioTechniques》2004,37(1):66-7, 70-3
In Pyrosequencing, a DNA strand complementary to a single-stranded DNA (ssDNA) template is synthesized, whereby each incorporated nucleotide yields detectable light, and the light intensity is proportional to the incorporated nucleotides. Correct data interpretation (i.e., signal-to-noise ratio of light intensities) is hampered by artifacts due to the formation of secondary structures of single-stranded templates. Critical among these is the looping back of the template's nonbiotinylated 3' end to itself In the resulting structure, the 3' end functions as a primer, the extension of which results in background signals. We present two ways of preventing the self-priming of a template's 3' end: (i) the use of a modified oligonucleotide, called blOligo, which is complementary to the template's 3' end and (ii) the extension of the template's 3' end with a ddNMP. In contrast to unprotected 3' ends of ssDNA templates, causing inconsistent results, we show that protecting the 3' end of an ssDNA template using either blOligos or ddNMP enables the correct interpretation of signals and results in reliable quantification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号