首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The growth and botulinic toxin production of Clostridium argentinense G 89 HT in co-culture with Pseudomonas mendocina were studied using two culture systems with carbon sources of rapid and slow utilization. Growth with glucose in homogeneous co-culture presented a dual-phase progression, with the toxin produced in the slow-growing phase. The extended 50 h growth period of the second phase at low specific growth rate was attributed to the combined metabolization of glucose and a complex carbon source of the alginate type produced by P. mendocina under strongly reducing conditions. With dextrin, the co-culture grew at the lower specific growth rate (μ = 0.03 h−1) for a period lasting 80 h. This fully enhanced the production of toxin with a specific toxicity 2.5 times higher than with glucose in a homogeneous system and 10.7 higher than that of C. argentinense G 89 HT single culture. The heterogeneous co-culture obtained with a dialysis membrane physically separating both bacteria (thereby eliminating the metabolic interaction) produced the lowest levels of growth and toxin of all the cases analyzed.  相似文献   

2.
3.
Clostridium thermocellum/Clostridium thermolacticum co-culture fermentation has been shown to be a promising way of producing ethanol from several carbohydrates. In this research, immobilization techniques using sodium alginate and alkali pretreatment were successfully applied on this co-culture to improve the bio-ethanol fermentation performance during consolidated bio-processing (CBP). The ethanol yield obtained increased by over 60 % (as a percentage of the theoretical maximum) as compared to free cell fermentation. For cellobiose under optimized conditions, the ethanol yields were approaching about 85 % of the theoretical efficiency. To examine the feasibility of this immobilization co-culture on lignocellulosic biomass conversion, untreated and pretreated aspen biomasses were also used for fermentation experiments. The immobilized co-culture shows clear benefits in bio-ethanol production in the CBP process using pretreated aspen. With a 3-h, 9 % NaOH pretreatment, the aspen powder fermentation yields approached 78 % of the maximum theoretical efficiency, which is almost twice the yield of the untreated aspen fermentation.  相似文献   

4.
5.
The combined effect of water activity (aw) and pH on growth and toxin production by Clostridium botulinum type G strain 89 was investigated. The minimum aw at which growth and toxin formation occurred was 0.965, for media in which the pH was adjusted with either sodium chloride or sucrose. The minimum pH (at the optimum aw) for growth and toxin production of C. botulinum type G was found to be 5.6. Optimum conditions for toxin activation were a trypsin concentration of 0.1%, a pH of the medium of 6.5, and an incubation for 45 min at 37 degrees C. These data did not show evidence of heat-labile spores, since a heat shock of 75 degrees C for 10 min did not significantly decrease the spore count of strain 89G in media at pH 7.0 or 5.6. It was frequently observed that cells grown at reduced aw or pH experienced severe morphological changes.  相似文献   

6.
N-Nitrosodimethylamine (NDMA) is a potent carcinogen and an emerging contaminant in groundwater and drinking water. The metabolism of NDMA in mammalian cells has been widely studied, but little information is available concerning the microbial transformation of this compound. The objective of this study was to elucidate the pathway(s) of NDMA biotransformation by Pseudomonas mendocina KR1, a strain that possesses toluene-4-monooxygenase (T4MO). P. mendocina KR1 was observed to initially oxidize NDMA to N-nitrodimethylamine (NTDMA), a novel metabolite. The use of 18O2 and H(2)18O revealed that the oxygen added to NDMA to produce NTDMA was derived from atmospheric O2. Experiments performed with a pseudomonad expressing cloned T4MO confirmed that T4MO catalyzes this initial reaction. The NTDMA produced by P. mendocina KR1 did not accumulate, but rather it was metabolized further to produce N-nitromethylamine (88 to 94% recovery) and a trace amount of formaldehyde (HCHO). Small quantities of methanol (CH3OH) were also detected when the strain was incubated with NDMA but not during incubation with either NTDMA or HCHO. The formation of methanol is hypothesized to occur via a second, minor pathway mediated by an initial alpha-hydroxylation of the nitrosamine. Strain KR1 did not grow on NDMA or mineralize significant quantities of the compound to carbon dioxide, suggesting that the degradation process is cometabolic.  相似文献   

7.
N-Nitrosodimethylamine (NDMA) is a potent carcinogen and an emerging contaminant in groundwater and drinking water. The metabolism of NDMA in mammalian cells has been widely studied, but little information is available concerning the microbial transformation of this compound. The objective of this study was to elucidate the pathway(s) of NDMA biotransformation by Pseudomonas mendocina KR1, a strain that possesses toluene-4-monooxygenase (T4MO). P. mendocina KR1 was observed to initially oxidize NDMA to N-nitrodimethylamine (NTDMA), a novel metabolite. The use of 18O2 and H218O revealed that the oxygen added to NDMA to produce NTDMA was derived from atmospheric O2. Experiments performed with a pseudomonad expressing cloned T4MO confirmed that T4MO catalyzes this initial reaction. The NTDMA produced by P. mendocina KR1 did not accumulate, but rather it was metabolized further to produce N-nitromethylamine (88 to 94% recovery) and a trace amount of formaldehyde (HCHO). Small quantities of methanol (CH3OH) were also detected when the strain was incubated with NDMA but not during incubation with either NTDMA or HCHO. The formation of methanol is hypothesized to occur via a second, minor pathway mediated by an initial α-hydroxylation of the nitrosamine. Strain KR1 did not grow on NDMA or mineralize significant quantities of the compound to carbon dioxide, suggesting that the degradation process is cometabolic.  相似文献   

8.
The combined effect of water activity (aw) and pH on growth and toxin production by Clostridium botulinum type G strain 89 was investigated. The minimum aw at which growth and toxin formation occurred was 0.965, for media in which the pH was adjusted with either sodium chloride or sucrose. The minimum pH (at the optimum aw) for growth and toxin production of C. botulinum type G was found to be 5.6. Optimum conditions for toxin activation were a trypsin concentration of 0.1%, a pH of the medium of 6.5, and an incubation for 45 min at 37 degrees C. These data did not show evidence of heat-labile spores, since a heat shock of 75 degrees C for 10 min did not significantly decrease the spore count of strain 89G in media at pH 7.0 or 5.6. It was frequently observed that cells grown at reduced aw or pH experienced severe morphological changes.  相似文献   

9.
The ability of spores of one type A and one type B strain of Clostridium botulinum to grow and produce toxin in tomato juice was investigated. The type A strain grew at pH 4.9, but not at pH 4.8; the type B strain grew at pH 5.1, but not at pH 5.0. Aspergillus gracilis was inoculated along with C. botulinum spores into pH 4.2 tomato juice; in a nonhermetic unit, a pH gradient developed under the mycelial mat, resulting in C. botulinum growth and toxin production. In a hermetic unit, mold growth was reduced, and no pH gradient was detected; however, C. botulinum growth and low levels of toxin production (less than 10 50% lethal doses per ml) still occurred and were associated with the mycelial mat. The results of tests to find filterable or dialyzable growth factors were negative. It was demonstrated that for toxin production C. botulinum and the mold had to occupy the same environment.  相似文献   

10.
The ability of spores of one type A and one type B strain of Clostridium botulinum to grow and produce toxin in tomato juice was investigated. The type A strain grew at pH 4.9, but not at pH 4.8; the type B strain grew at pH 5.1, but not at pH 5.0. Aspergillus gracilis was inoculated along with C. botulinum spores into pH 4.2 tomato juice; in a nonhermetic unit, a pH gradient developed under the mycelial mat, resulting in C. botulinum growth and toxin production. In a hermetic unit, mold growth was reduced, and no pH gradient was detected; however, C. botulinum growth and low levels of toxin production (less than 10 50% lethal doses per ml) still occurred and were associated with the mycelial mat. The results of tests to find filterable or dialyzable growth factors were negative. It was demonstrated that for toxin production C. botulinum and the mold had to occupy the same environment.  相似文献   

11.
Summary A sequential co-culture approach was investigated for the conversion of lignocellulosic substrates to butanediol and ethanol. Growth of Clostridium thermocellum on solka floc and aspenwood xylan resulted in the release of extracellular endoglucanase and xylanase enzymes into the culture medium. Low levels of fermentation products were formed and unutilized sugars accumulated in the medium. Inoculation of Klebsiella pneumoniae as a sequential culture resulted in the rapid utilization of the accumulated sugars and the formation of additional fermentation products, including butanediol, ethanol, and acetoin. This approach was applicable to the use of mixed cellulose and hemicellulose substrates, including steam-exploded aspenwood. Further improvement in solvent production from steam-exploded substrates could be obtained by using a fed-batch approach to circumvent the problem of inhibitors associated with the natural substrates.  相似文献   

12.
13.
14.
We found that Clostridium botulinum type A grew well and produced toxin in media with a water activity (a(w)) of 0.972 or 0.965 and a pH of 5.7, but no growth or toxin production was observed at or below an a(w) of 0.949 during incubation at 30 degrees C for 52 to 59 days. a(w) and pH values of media were adjusted to those of cheese spreads commercially produced. Solutes used to adjust a(w) included combinations of NaCl, cheese whey powder, emulsifying salt, sodium tripolyphosphate, and glycerol. In agreement with results obtained for media, toxin was produced in samples of cheese spread (a(w), 0.970; pH, 5.7) at 30 to 70 days of incubation at 30 degrees C.  相似文献   

15.
Donor strains of the Hfr type were isolated using plasmid pRK2013 with transposons Tn10 and B21 as a chromosome-mobilizing factor. The isolated strains were shown to promote transfer of donor chromosome from different origins in different directions during isogenic matings of Pseudomonas mendocina bacteria. The created collection of donors and polyauxotrophic recipient bacteria permitted mapping 26 genetic determinants on the bacterial chromosome and identifying the genome of these microorganisms as a circular DNA molecule.  相似文献   

16.
Biodegradation of methyl violet by Pseudomonas mendocina MCM B-402   总被引:3,自引:0,他引:3  
Pseudomonas mendocina MCM B-402 was found to utilize a triphenylmethane dye, methyl violet as the sole source of carbon when incorporated in synthetic medium. Almost complete decolorization of methyl violet by P. mendocina was observed within 48 h of incubation at ambient temperature (28 ± 2 °C) under aerated culture conditions, when the bacteria were inoculated into Davis Mingioli's synthetic medium at a concentration of 100 mg/l medium. Methyl violet was mineralized to CO2 through three unknown intermediate metabolites and phenol. The decolorization of the dye involved demethylation. Received: 27 November 1998 / Received revision: 2 March 1999 / Accepted: 5 March 1999  相似文献   

17.
Vasilenko SL  Maksimova NP  Titok MA 《Genetika》2003,39(11):1445-1453
Donor strains of the Hfr type were isolated using plasmid pRK2013 with transposons Tn10 and Tn5 as a chromosome-mobilizing factor. The isolated strains were shown to promote transfer of donor chromosome from different origins in different directions during isogenic matings of Pseudomonas mendocina bacteria. The created collection of donors and polyauxotrophic recipient bacteria permitted mapping 26 genetic determinants on the bacterial chromosome and identifying the genome of these microorganisms as a circular DNA molecule.  相似文献   

18.
This study deals with the effects of the initial nitrogen source (NZ Case TT) level and the protocol of glucose addition during the fed‐batch production of tetanus toxin by Clostridium tetani. An increase in the initial concentration of NZ Case TT (NZ0) accelerated cell growth, increased the consumption of the nitrogen source as well as the final yield of tetanus toxin, which achieved the highest values (50–60 Lf/mL) for NZ0 ≥ 50 g/L. The addition of glucose at fixed times (16, 56, and 88 h) ensured a toxin yield (~60 Lf/mL) about 33% higher than those of fed‐batch runs with addition at fixed concentration (~45 Lf/mL) and about 300% higher than those obtained in reference batch runs nowadays used at industrial scale. The results of this work promise to substantially improve the present production of tetanus toxin and may be adopted for human vaccine production after detoxification and purification. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

19.
Of the seven amino acids required by Clostridium botulinum type E, tryptophan is the most essential and may provide the cell with nitrogen. The addition of excess tryptophan (10–20 mM) or other nitrogenous nutrients to minimal growth medium markedly decreased toxin formation but did not affect growth in C. botulinum type E. On the other hand, the addition of an enzymatic digest of casein (NZ Case) stimulated toxin formation and overcame repression by tryptophan. Immunoblots of proteins in culture fluids using antibodies to type E toxin indicated that tryptophan-repressed cultures produced less neurotoxin protein. Inhibitors of neurotoxin did not accumulate in cultures grown in minimal medium supplemented with high tryptophan. The results suggest that tryptophan availability in foods or in the intestine may be important for toxin formation by C. botulinum type E.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号