首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Abstract I show that three parametric-bootstrap (PB) applications that have been proposed for phylogenetic analysis, can be misleading as currently implemented. First, I show that simulating a topology estimated from preliminary data in order to determine the sequence length that should allow the best tree obtained from more extensive data to be correct with a desired probability, delivers an accurate estimate of this length only in topological situations in which most preliminary trees are expected to be both correct and statistically significant, i.e. when no further analysis would be needed. Otherwise, one obtains strong underestimates of the length or similarly biased values for incorrect trees. Second, I show that PB-based topology tests that use as null hypothesis the most likely tree congruent with a pre-specified topological relationship alternative to the unconstrained most likely tree, and simulate this tree for P value estimation, produce excessive type I error (from 50% to 600% and higher) when they are applied to null data generated by star-shaped or dichotomous four-taxon topologies. Simulating the most likely star topology for P value estimation results instead in correct type-I-error production even when the null data are generated by a dichotomous topology. This is a strong indication that the star topology is the correct default null hypothesis for phylogenies. Third, I show that PB-estimated confidence intervals (CIs) for the length of a tree branch are generally accurate, although in some situations they can be strongly over- or under-estimated relative to the “true” CI. Attempts to identify a biased CI through a further round of simulations were unsuccessful. Tracing the origin and propagation of parameter estimate error through the CI estimation exercise, showed that the sparseness of site-patterns which are crucial to the estimation of pivotal parameters, can allow homoplasy to bias these estimates and ultimately the PB-based CI estimation. Concluding, I stress that statistical techniques that simulate models estimated from limited data need to be carefully calibrated, and I defend the point that pattern-sparseness assessment will be the next frontier in the statistical analysis of phylogenies, an effort that will require taking advantage of the merits of black-box maximum-likelihood approaches and of insights from intuitive, site-pattern-oriented approaches like parsimony.  相似文献   

2.
Phylogenetic mixtures model the inhomogeneous molecular evolution commonly observed in data. The performance of phylogenetic reconstruction methods where the underlying data are generated by a mixture model has stimulated considerable recent debate. Much of the controversy stems from simulations of mixture model data on a given tree topology for which reconstruction algorithms output a tree of a different topology; these findings were held up to show the shortcomings of particular tree reconstruction methods. In so doing, the underlying assumption was that mixture model data on one topology can be distinguished from data evolved on an unmixed tree of another topology given enough data and the "correct" method. Here we show that this assumption can be false. For biologists, our results imply that, for example, the combined data from two genes whose phylogenetic trees differ only in terms of branch lengths can perfectly fit a tree of a different topology.  相似文献   

3.
The use of supraspecific terminal taxa to represent groups of species in phylogenetic analyses can result in changes to inferred relationships as compared to a complete species level analysis. These changes in topology result from interactions among (1) the cladistic status of the supraspecific taxa; (2) the method used to represent the taxa as single terminals, and (3) incongruence in the data set. We examine the effects of using supraspecific terminal taxa using a parallel analysis of hypothetical examples and an actual data matrix for the true seals (Mammalia: Phocidae). Incongruence among characters can produce changes in topology by shifting the ‘balance of power’ among groups of characters when supraspecific taxa are represented as single terminals. In the absence of homoplasy, the correct topology is maintained. Of the three methods for representing supraspecific taxa, the ‘ancestral’ method, which explicidy infers the common ancestor of the group corresponding to the taxon, performed the best, always maintaining the correct topology when monophyletic taxa were represented. This agrees with theoretical predictions. The ‘democratic’ and ‘exemplar’ methods, which represent the higher level taxon through a survey of all or one of its extant constituent species, respectively, were not as effective in maintaining the correct topology. Although both occasionally provided correct answers, their occurrences were largely unpredictable. The success of the exemplar method varies with the species selected. The simultaneous representation of two or more higher level taxa produced interactive effects where the resultant topology included different clades than when the taxa were collapsed individually. Interactive effects occurred with all three methods, albeit to a lesser degree for the ancestral method. Changes in topology were observed regardless of whether the higher group was monophyletic or not, but were more prevalent when it was paraphyletic. Unfortunately, there does not seem to be a reliable way to determine when a paraphyletic group has been included in the analysis (e.g. through bootstrap values or indices measuring homoplasy). The implications of these findings for phylogenetic analyses of molecular data are also discussed.  相似文献   

4.
Summary A method for molecular phylogeny construction is newly developed. The method, called the stepwise ancestral sequence method, estimates molecular phylogenetic trees and ancestral sequences simultaneously on the basis of parsimony and sequence homology. For simplicity the emphasis is placed more on parsiomony than on sequence homology in the present study, though both are certainly important. Because parsimony alone will sometimes generate plural candidate trees, the method retains not one but five candidates from which one can then single out the final tree taking other criteria into account.The properties and performance of the method are then examined by simulating an evolving gene along a model phylogenetic tree. The estimated trees are found to lie in a narrow range of the parsimony criteria used in the present study. Thus, other criteria such as biological evidence and likelihood are necessary to single out the correct tree among them, with biological evidence taking precedence over any other criterion. The computer simulation also reveals that the method satisfactorily estimates both tree topology and ancestral sequences, at least for the evolutionary model used in the present study.  相似文献   

5.
Quantification of the success of phylogenetic inference in simulations   总被引:1,自引:0,他引:1  
For phylogenetic simulation studies, the accuracy of topological reconstruction obtained from different data matrices or different methods of phylogenetic inference generally needs to be quantified. Two components of performance within this context are: (1) how the inferred tree topology matches or conflicts with the correct tree topology, and (2) the branch support assigned to both correctly and incorrectly resolved clades. We present a method (averaged overall success of resolution) that incorporates both of these components. Branch support is incorporated in the averaged overall success of resolution by linearly scaling the observed support relative to that conferred by uncontradicted synapomorphies. We believe that this method represents an improvement relative to the commonly used approaches of quantifying the percentage of clades that are correctly resolved in the inferred trees or presenting the Robinson–Foulds distance between the inferred trees and the correct tree. In contrast to Bremer support, the averaged overall success of resolution may be applied equally well to distance, likelihood and parsimony analyses. © The Willi Hennig Society 2006.  相似文献   

6.
Phylogenetic inference based on matrix representation of trees.   总被引:14,自引:0,他引:14  
Rooted phylogenetic trees can be represented as matrices in which the rows correspond to termini, and columns correspond to internal nodes (elements of the n-tree). Parsimony analysis of such a matrix will fully recover the topology of the original tree. The maximum size of the represented matrix depends only on the number of termini in the tree; for a tree derived from molecular sequences, the represented matrix may be orders of magnitude smaller than the original data matrix. Representations of multiple trees (which may or may not have identical termini) can readily be combined into a single matrix; columns of discrete-character-state data can be added and, if desired, weighted differentially. Parsimony analysis of the resulting composite matrix yields a hybrid supertree which typically provides greater resolution than conventional consensus trees. Use of this method is illustrated with examples involving multiple tRNA genes in organelles and multiple protein-coding genes in eukaryotes.  相似文献   

7.
Interest in methods that estimate speciation and extinction rates from molecular phylogenies has increased over the last decade. The application of such methods requires reliable estimates of tree topology and node ages, which are frequently obtained using standard phylogenetic inference combining concatenated loci and molecular dating. However, this practice disregards population‐level processes that generate gene tree/species tree discordance. We evaluated the impact of employing concatenation and coalescent‐based phylogeny inference in recovering the correct macroevolutionary regime using simulated data based on the well‐established diversification rate shift of delphinids in Cetacea. We found that under scenarios of strong incomplete lineage sorting, macroevolutionary analysis of phylogenies inferred by concatenating loci failed to recover the delphinid diversification shift, while the coalescent‐based tree consistently retrieved the correct rate regime. We suggest that ignoring microevolutionary processes reduces the power of methods that estimate macroevolutionary regimes from molecular data.  相似文献   

8.
Accuracy of phylogenetic trees estimated from DNA sequence data   总被引:4,自引:1,他引:3  
The relative merits of four different tree-making methods in obtaining the correct topology were studied by using computer simulation. The methods studied were the unweighted pair-group method with arithmetic mean (UPGMA), Fitch and Margoliash's (FM) method, thd distance Wagner (DW) method, and Tateno et al.'s modified Farris (MF) method. An ancestral DNA sequence was assumed to evolve into eight sequences following a given model tree. Both constant and varying rates of nucleotide substitution were considered. Once the DNA sequences for the eight extant species were obtained, phylogenetic trees were constructed by using corrected (d) and uncorrected (p) nucleotide substitutions per site. The topologies of the trees obtained were then compared with that of the model tree. The results obtained can be summarized as follows: (1) The probability of obtaining the correct rooted or unrooted tree is low unless a large number of nucleotide differences exists between different sequences. (2) When the number of nucleotide substitutions per sequence is small or moderately large, the FM, DW, and MF methods show a better performance than UPGMA in recovering the correct topology. The former group of methods is particularly good for obtaining the correct unrooted tree. (3) When the number of substitutions per sequence is large, UPGMA is at least as good as the other methods, particularly for obtaining the correct rooted tree. (4) When the rate of nucleotide substitution varies with evolutionary lineage, the FM, DW, and MF methods show a better performance in obtaining the correct topology than UPGMA, except when a rooted tree is to be produced from data with a large number of nucleotide substitutions per sequence.(ABSTRACT TRUNCATED AT 250 WORDS)   相似文献   

9.
The shape of evolution: systematic tree topology   总被引:2,自引:0,他引:2  
Three hypotheses that predict probabilities associated with various tree shapes, or topologies, are compared with observed topology frequencies for a large number of 4, 5, 6 and 7-member trees. The united data on these n-member trees demonstrate that both the equiprobable and proportional-to-distinguishable-types hypotheses poorly predict tree topologies, while all observed topology frequencies are similar to predictions of a simple Markovian dichotomous branching hypothesis. Differences in topology frequencies between phenetic and non-phenetic trees are observed, but their statistical significance is uncertain. Relative frequencies of highly asymmetrical topologies are larger, and those of symmetrical topologies are smaller, in phenetic than in non-phenetic trees. The fact that a simple Markovian branching process, which assumes that each species has an equal probability of speciating in each time period, can predict tree topologies offers promise. Refinement of Markovian branching hypotheses to include the possibility of multiple furcations, differential speciation and extinction rates for different groups of organisms as well as for a single group through geological time, hybrid speciation, introgression, and lineage fusion will be necessary to produce realistic models of lineage diversification.  相似文献   

10.
We have developed a pruning algorithm for likelihood estimation of a tree of populations. This algorithm enables us to compute the likelihood for large trees. Thus, it gives an efficient way of obtaining the maximum-likelihood estimate (MLE) for a given tree topology. Our method utilizes the differences accumulated by random genetic drift in allele count data from single-nucleotide polymorphisms (SNPs), ignoring the effect of mutation after divergence from the common ancestral population. The computation of the maximum-likelihood tree involves both maximizing likelihood over branch lengths of a given topology and comparing the maximum-likelihood across topologies. Here our focus is the maximization of likelihood over branch lengths of a given topology. The pruning algorithm computes arrays of probabilities at the root of the tree from the data at the tips of the tree; at the root, the arrays determine the likelihood. The arrays consist of probabilities related to the number of coalescences and allele counts for the partially coalesced lineages. Computing these probabilities requires an unusual two-stage algorithm. Our computation is exact and avoids time-consuming Monte Carlo methods. We can also correct for ascertainment bias.  相似文献   

11.
Since branch lengths provide important information about the timing and the extent of evolutionary divergence among taxa, accurate resolution of evolutionary history depends as much on branch length estimates as on recovery of the correct topology. However, the empirical relationship between the choice of genes to sequence and the quality of branch length estimation remains ill defined. To address this issue, we evaluated the accuracy of branch lengths estimated from subsets of the mitochondrial genome for a mammalian phylogeny with known subordinal relationships. Using maximum-likelihood methods, we estimated branch lengths from an 11-kb sequence of all 13 protein-coding genes and compared them with estimates from single genes (0.2-1.8 kb) and from 7 different combinations of genes (2-3.5 kb). For each sequence, we separated the component of the log-likelihood deviation due to branch length differences associated with alternative topologies from that due to those that are independent of the topology. Even among the sequences that recovered the same tree topology, some produced significantly better branch length estimates than others did. The combination of correct topology and significantly better branch length estimation suggests that these gene combinations may prove useful in estimating phylogenetic relationships for mammalian divergences below the ordinal level. Thus, the proper choice of genes to sequence is a critical factor for reliable estimation of evolutionary history from molecular data.  相似文献   

12.
Characters of the newly discovered larvae of the South African Cliff Water Beetle Aspidytes niobe were examined and integrated into a data matrix including all families of Dytiscoidea as well as Haliplidae. Fifty-three morphological characters of adults and larvae were analysed separately and combined with molecular data from six nuclear and mitochondrial genes. The phylogeny of the group is reconstructed for the study of the evolution of swimming behaviour and larval feeding habits, as well as the shift in diversification rates leading to the two most speciose lineages. The parsimony analysis of all equally weighted morphological and molecular characters combined resulted in a single well supported tree with the topology (Noteridae (Hygrobiidae ((Aspidytidae, Amphizoidae) Dytiscidae))), in agreement with the molecular data alone, but in contradiction to the morphological data, which favoured a topology in which Hygrobiidae is sister to Dytiscidae. The exclusion of third codon positions of the three protein coding genes resulted in a topology identical to that obtained with the morphological data alone, but the use of Bayesian probabilities or the amino acid sequence resulted in the same topology as that of the tree obtained with parsimony using all equally weighted characters. We concluded that interactions of third codon positions with the other data are complex, and their removal is not justified. There was a significant increase in the diversification rate at the base of the richest families (Noteridae and Dytiscidae), which could be associated with the development of simultaneous stroke and higher swimming performance, although data on the swimming behaviour of some basal groups of Noteridae are incomplete. The presence of larval mandibular sucking channels may have contributed to the diversification of Dytiscidae and the species-rich noterid genera Hydrocanthus and Canthydrus .  相似文献   

13.
The relative efficiencies of the maximum-likelihood (ML), neighbor- joining (NJ), and maximum-parsimony (MP) methods in obtaining the correct topology and in estimating the branch lengths for the case of four DNA sequences were studied by computer simulation, under the assumption either that there is variation in substitution rate among different nucleotide sites or that there is no variation. For the NJ method, several different distance measures (Jukes-Cantor, Kimura two- parameter, and gamma distances) were used, whereas for the ML method three different transition/transversion ratios (R) were used. For the MP method, both the standard unweighted parsimony and the dynamically weighted parsimony methods were used. The results obtained are as follows: (1) When the R value is high, dynamically weighted parsimony is more efficient than unweighted parsimony in obtaining the correct topology. (2) However, both weighted and unweighted parsimony methods are generally less efficient than the NJ and ML methods even in the case where the MP method gives a consistent tree. (3) When all the assumptions of the ML method are satisfied, this method is slightly more efficient than the NJ method. However, when the assumptions are not satisfied, the NJ method with gamma distances is slightly better in obtaining the correct topology than is the ML method. In general, the two methods show more or less the same performance. The NJ method may give a correct topology even when the distance measures used are not unbiased estimators of nucleotide substitutions. (4) Branch length estimates of a tree with the correct topology are affected more easily than topology by violation of the assumptions of the mathematical model used, for both the ML and the NJ methods. Under certain conditions, branch lengths are seriously overestimated or underestimated. The MP method often gives serious underestimates for certain branches. (5) Distance measures that generate the correct topology, with high probability, do not necessarily give good estimates of branch lengths. (6) The likelihood-ratio test and the confidence-limit test, in Felsenstein's DNAML, for examining the statistical of branch length estimates are quite sensitive to violation of the assumptions and are generally too liberal to be used for actual data. Rzhetsky and Nei's branch length test is less sensitive to violation of the assumptions than is Felsenstein's test. (7) When the extent of sequence divergence is < or = 5% and when > or = 1,000 nucleotides are used, all three methods show essentially the same efficiency in obtaining the correct topology and in estimating branch lengths.(ABSTRACT TRUNCATED AT 400 WORDS)   相似文献   

14.
Because of the stochastic way in which lineages sort during speciation, gene trees may differ in topology from each other and from species trees. Surprisingly, assuming that genetic lineages follow a coalescent model of within-species evolution, we find that for any species tree topology with five or more species, there exist branch lengths for which gene tree discordance is so common that the most likely gene tree topology to evolve along the branches of a species tree differs from the species phylogeny. This counterintuitive result implies that in combining data on multiple loci, the straightforward procedure of using the most frequently observed gene tree topology as an estimate of the species tree topology can be asymptotically guaranteed to produce an incorrect estimate. We conclude with suggestions that can aid in overcoming this new obstacle to accurate genomic inference of species phylogenies.  相似文献   

15.
Phylogenetic test of the molecular clock and linearized trees   总被引:30,自引:7,他引:23  
To estimate approximate divergence times of species or species groups with molecular data, we have developed a method of constructing a linearized tree under the assumption of a molecular clock. We present two tests of the molecular clock for a given topology: two-cluster test and branch-length test. The two-cluster test examines the hypothesis of the molecular clock for the two lineages created by an interior node of the tree, whereas the branch-length test examines the deviation of the branch length between the tree root and a tip from the average length. Sequences evolving excessively fast or slow at a high significance level may be eliminated. A linearized tree will then be constructed for a given topology for the remaining sequences under the assumption of rate constancy. We have used these methods to analyze hominoid mitochondrial DNA and drosophilid Adh gene sequences.   相似文献   

16.
The most commonly used measure of evolutionary distance in molecular phylogenetics is the number of nucleotide substitutions per site. However, this number is not necessarily most efficient for reconstructing a phylogenetic tree. In order to evaluate the accuracy of evolutionary distance, D(t), for obtaining the correct tree topology, an accuracy index, A(t), was proposed. This index is defined as D'(t)/square root of[D(t)], where D'(t) is the first derivative of D(t) with respect to evolutionary time and V[D(t)] is the sampling variance of evolutionary distance. Using A(t), namely, finding the condition under which A(t) gives the maximum value, we can obtain an evolutionary distance which is efficient for obtaining the correct topology. Under the assumption that the transversional changes do not occur as frequently as the transitional changes, we obtained the evolutionary distances which are expected to give the correct topology more often than are the other distances.   相似文献   

17.
A central task in the study of molecular evolution is the reconstruction of a phylogenetic tree from sequences of current-day taxa. The most established approach to tree reconstruction is maximum likelihood (ML) analysis. Unfortunately, searching for the maximum likelihood phylogenetic tree is computationally prohibitive for large data sets. In this paper, we describe a new algorithm that uses Structural Expectation Maximization (EM) for learning maximum likelihood phylogenetic trees. This algorithm is similar to the standard EM method for edge-length estimation, except that during iterations of the Structural EM algorithm the topology is improved as well as the edge length. Our algorithm performs iterations of two steps. In the E-step, we use the current tree topology and edge lengths to compute expected sufficient statistics, which summarize the data. In the M-Step, we search for a topology that maximizes the likelihood with respect to these expected sufficient statistics. We show that searching for better topologies inside the M-step can be done efficiently, as opposed to standard methods for topology search. We prove that each iteration of this procedure increases the likelihood of the topology, and thus the procedure must converge. This convergence point, however, can be a suboptimal one. To escape from such "local optima," we further enhance our basic EM procedure by incorporating moves in the flavor of simulated annealing. We evaluate these new algorithms on both synthetic and real sequence data and show that for protein sequences even our basic algorithm finds more plausible trees than existing methods for searching maximum likelihood phylogenies. Furthermore, our algorithms are dramatically faster than such methods, enabling, for the first time, phylogenetic analysis of large protein data sets in the maximum likelihood framework.  相似文献   

18.
Liu L  Pearl DK 《Systematic biology》2007,56(3):504-514
The desire to infer the evolutionary history of a group of species should be more viable now that a considerable amount of multilocus molecular data is available. However, the current molecular phylogenetic paradigm still reconstructs gene trees to represent the species tree. Further, commonly used methods of combining data, such as the concatenation method, are known to be inconsistent in some circumstances. In this paper, we propose a Bayesian hierarchical model to estimate the phylogeny of a group of species using multiple estimated gene tree distributions, such as those that arise in a Bayesian analysis of DNA sequence data. Our model employs substitution models used in traditional phylogenetics but also uses coalescent theory to explain genealogical signals from species trees to gene trees and from gene trees to sequence data, thereby forming a complete stochastic model to estimate gene trees, species trees, ancestral population sizes, and species divergence times simultaneously. Our model is founded on the assumption that gene trees, even of unlinked loci, are correlated due to being derived from a single species tree and therefore should be estimated jointly. We apply the method to two multilocus data sets of DNA sequences. The estimates of the species tree topology and divergence times appear to be robust to the prior of the population size, whereas the estimates of effective population sizes are sensitive to the prior used in the analysis. These analyses also suggest that the model is superior to the concatenation method in fitting these data sets and thus provides a more realistic assessment of the variability in the distribution of the species tree that may have produced the molecular information at hand. Future improvements of our model and algorithm should include consideration of other factors that can cause discordance of gene trees and species trees, such as horizontal transfer or gene duplication.  相似文献   

19.
The rate at which a given site in a gene sequence alignment evolves over time may vary. This phenomenon--known as heterotachy--can bias or distort phylogenetic trees inferred from models of sequence evolution that assume rates of evolution are constant. Here, we describe a phylogenetic mixture model designed to accommodate heterotachy. The method sums the likelihood of the data at each site over more than one set of branch lengths on the same tree topology. A branch-length set that is best for one site may differ from the branch-length set that is best for some other site, thereby allowing different sites to have different rates of change throughout the tree. Because rate variation may not be present in all branches, we use a reversible-jump Markov chain Monte Carlo algorithm to identify those branches in which reliable amounts of heterotachy occur. We implement the method in combination with our 'pattern-heterogeneity' mixture model, applying it to simulated data and five published datasets. We find that complex evolutionary signals of heterotachy are routinely present over and above variation in the rate or pattern of evolution across sites, that the reversible-jump method requires far fewer parameters than conventional mixture models to describe it, and serves to identify the regions of the tree in which heterotachy is most pronounced. The reversible-jump procedure also removes the need for a posteriori tests of 'significance' such as the Akaike or Bayesian information criterion tests, or Bayes factors. Heterotachy has important consequences for the correct reconstruction of phylogenies as well as for tests of hypotheses that rely on accurate branch-length information. These include molecular clocks, analyses of tempo and mode of evolution, comparative studies and ancestral state reconstruction. The model is available from the authors' website, and can be used for the analysis of both nucleotide and morphological data.  相似文献   

20.
Alignment of nucleotide and/or amino acid sequences is a fundamental component of sequence‐based molecular phylogenetic studies. Here we examined how different alignment methods affect the phylogenetic trees that are inferred from the alignments. We used simulations to determine how alignment errors can lead to systematic biases that affect phylogenetic inference from those sequences. We compared four approaches to sequence alignment: progressive pairwise alignment, simultaneous multiple alignment of sequence fragments, local pairwise alignment and direct optimization. When taking into account branch support, implied alignments produced by direct optimization were found to show the most extreme behaviour (based on the alignment programs for which nearly equivalent alignment parameters could be set) in that they provided the strongest support for the correct tree in the simulations in which it was easy to resolve the correct tree and the strongest support for the incorrect tree in our long‐branch‐attraction simulations. When applied to alignment‐sensitive process partitions with different histories, direct optimization showed the strongest mutual influence between the process partitions when they were aligned and phylogenetically analysed together, which makes detecting recombination more difficult. Simultaneous alignment performed well relative to direct optimization and progressive pairwise alignment across all simulations. Rather than relying upon methods that integrate alignment and tree search into a single step without accounting for alignment uncertainty, as with implied alignments, we suggest that simultaneous alignment using the similarity criterion, within the context of information available on biological processes and function, be applied whenever possible for sequence‐based phylogenetic analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号