首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cycloheximide, at a concentration of 10 mug/ml, rapidly blocked protein synthesis in L cells infected with reovirus. When the drug was added before 5 hr postinfection, synthesis of both single- and double-stranded varieties of virus-specific ribonucleic acid (RNA), which normally commences between 6 and 7 hr after infection, was blocked. When the cycloheximide was added at 9 hr after infection, uptake of uridine-H(3) into RNA, for the succeeding 6 hr at least, was similar to that of an infected culture without the drug. This latter uptake of uridine-H(3) in the presence of cycloheximide was largely into single-stranded RNA, since double-stranded RNA synthesis was rapidly and markedly inhibited by the cycloheximide. Single-stranded RNA formed in the presence of cycloheximide was found not to be a precursor of viral progeny, double-stranded RNA. Synthesis of double-stranded RNA in the infected cell probably requires prior synthesis of a new protein, which has a rapid rate of turnover. The possibility that formation of single-stranded RNA is preceded by synthesis of a second new protein is discussed.  相似文献   

2.
Poliovirus RNA directs the synthesis of virus-specific RNA in E. coli as reported previously for poliovirus-induced double-stranded RNA. Synthesis of viral RNA can be followed by conversion of viral RNA into a double-stranded RNase-resistant state, by increase in infectivity and by hybridization of newly synthesized RNA to viral RNA. Virus-specific RNA synthesis occurs also in the presence of inhibitors of protein synthesis indicating that an enzyme is present in E. coli which can use RNA as a template.  相似文献   

3.
The deoxyribonucleic acid (DNA) polymerase(s) of Rous sarcoma virus synthesizes two principal products-single-stranded DNA in the form of a DNA:ribonucleic acid (RNA) hybrid and double-stranded DNA. All of the single-stranded product and 50% of the double-stranded product can be hybridized to 70S viral RNA. These results, in combination with data obtained by analysis of the kinetics of double-stranded DNA synthesis, indicate that the synthesis of double-stranded DNA is a sequel to the synthesis of single-stranded DNA and is dependent upon the latter for the provision of initial template.  相似文献   

4.
The synthesis of vaccinia virus double-stranded ribonucleic acid (RNA) in infected HeLa cells was sensitive to actinomycin D, suggesting that a deoxyribonucleic acid dependent reaction is involved. Some double-stranded RNA was made in the presence of cytosine arabinoside in infected cells. Double-stranded and complementary RNA were synthesized in vitro by using vaccinia cores. These two observations indicate that some of the double-stranded RNA is read from "early" genes. The double-stranded RNA synthesized in vitro had the same properties as that made in vivo. At least 70% of the double-stranded RNA made in vivo was in ribonuclease-resistant form prior to sodium dodecyl sulfate-phenol extraction. In addition, there was a complementary RNA in infected cells which could be converted to double-stranded RNA by annealing.  相似文献   

5.
RNA polymerase activity was assayed in different particle classes of Penicillium stoloniferum virus S. RNA polymerase activity was found to be associated with H particles, which contain double-stranded RNA and single-stranded RNA, but not with L particles, which contain only double-stranded RNA and not with M particles, which contain only single-stranded RNA. In H particles the reaction occurred with the formation of one new molecule of double-stranded RNA (or two complementary single strands of RNA) per virus particle and the production of product particles (P particles), which contained two molecules of double-stranded RNA (or its equivalent). This RNA polymerase is therefore a replicase, which catalyses the synthesis of the two complementary strands of double-stranded RNA in a single virus particle. This is the first report of this type of RNA polymerase system.  相似文献   

6.
Reovirus-directed Ribonucleic Acid Synthesis in Infected L Cells   总被引:25,自引:14,他引:11       下载免费PDF全文
Reovirus replication in L-929 mouse fibroblasts was unaffected by 0.5 mug of actinomycin per ml, a concentration which inhibited cell ribonucleic acid (RNA) synthesis by more than 90%. Under these conditions of selective inhibition, the formation of both single-stranded and double-stranded virus-specific RNA was detected beginning at 6 hr after infection. The purified double-stranded RNA was similar in size and base composition to virus RNA and presumably was incorporated into mature virus. The single-stranded RNA formed ribonuclease-resistant duplexes when annealed with denatured virus RNA but did not self-anneal, thus indicating that it includes copies of only one strand of the duplex. The single-stranded RNA was polyribosome-associated and may function as the virus messenger RNA. Production of both types of virus-induced RNA required protein synthesis 6 to 9 hr after infection. At later times in the infectious cycle, only double-stranded RNA synthesis was dependent on continued protein formation.  相似文献   

7.
8.
In nature, synthesis of both minus- and plus-sense RNA strands of all the known double-stranded RNA viruses occurs in the interior of a large protein assembly referred to as the polymerase complex. In addition to other proteins, the complex contains a putative polymerase possessing characteristic sequence motifs. However, none of the previous studies has shown template-dependent RNA synthesis directly with an isolated putative polymerase protein. In this report, recombinant protein P2 of double-stranded RNA bacteriophage phi6 was purified and demonstrated in an in vitro enzymatic assay to act as the replicase. The enzyme efficiently utilizes phage-specific, positive-sense RNA substrates to produce double-stranded RNA molecules, which are formed by newly synthesized, full-length minus-strands base paired with the plus-strand templates. P2-catalyzed replication is also shown to be very effective with a broad range of heterologous single-stranded RNA templates. The importance and implications of these results are discussed.  相似文献   

9.
The products of the deoxyribonucleic acid (DNA) polymerase associated with Rous sarcoma virus and avian myeloblastosis virus were characterized by correlative analyses with equilibrium centrifugation and stepwise elution from hydroxyapatite. The initial enzymatic product consists of nascent DNA chains which are hydrogen-bonded to 70S viral ribonucleic acid (RNA), whereas the final enzymatic product is double-stranded DNA. Appreciable amounts of free single-stranded DNA were not detected at any point during the course of the enzymatic reaction, but the data in this regard are not decisive. The time course of synthesis of DNA:RNA hybrids and double-stranded DNA has been analyzed. It is concluded that the synthesis of double-stranded DNA is a sequel to and is probably dependent upon the synthesis of DNA:RNA hybrid.  相似文献   

10.
Resistance of bacterial protein synthesis to double-stranded RNA   总被引:1,自引:0,他引:1  
Double-stranded RNA fails to inhibit the formation of translation initiation complexes on R17 bacteriophage RNA, overall synthesis of R17 proteins, or the ability of bacterial initiation factor IF-3 to prevent the association of 30S and 50S ribosomal subunits into single ribosomes. Yet, IF-3 can form complexes with double-stranded RNA. However, IF-3 binds to double-stranded RNA with lower apparent affinity than to either R17 RNA or 30S ribosomal subunits; this may explain the resistance of bacterial protein synthesis to double-stranded RNA.  相似文献   

11.
Reovirus inhibition of cellular DNA synthesis: role of the S1 gene.   总被引:13,自引:9,他引:4       下载免费PDF全文
Type 3 reovirus inhibits L cell DNA synthesis, whereas type 1 reovirus exerts little or no effect on L cell DNA synthesis. By using recombinant viruses containing both type 1 and type 3 double-standard RNA segments, we determined that one double-stranded RNA segment, the reovirus type 3 S1 double-stranded RNA segment which encodes the viral hemagglutinin, segregates with and is responsible for the capacity of reovirus type 3 to inhibit L cell DNA synthesis.  相似文献   

12.
13.
The replication of tobacco mosaic virus (TMV) RNA involves synthesis of a negative-strand RNA using the genomic positive-strand RNA as a template, followed by the synthesis of positive-strand RNA on the negative-strand RNA templates. Intermediates of replication isolated from infected cells include completely double-stranded RNA (replicative form) and partly double-stranded and partly single-stranded RNA (replicative intermediate), but it is not known whether these structures are double-stranded or largely single-stranded in vivo. The synthesis of negative strands ceases before that of positive strands, and positive and negative strands may be synthesized by two different polymerases. The genomic-length negative strand also serves as a template for the synthesis of subgenomic mRNAs for the virus movement and coat proteins. Both the virus-encoded 126-kDa protein, which has amino-acid sequence motifs typical of methyltransferases and helicases, and the 183-kDa protein, which has additional motifs characteristic of RNA-dependent RNA polymerases, are required for efficient TMV RNA replication. Purified TMV RNA polymerase also contains a host protein serologically related to the RNA-binding subunit of the yeast translational initiation factor, eIF3. Study of Arabidopsis mutants defective in RNA replication indicates that at least two host proteins are needed for TMV RNA replication. The tomato resistance gene Tm-1 may also encode a mutant form of a host protein component of the TMV replicase. TMV replicase complexes are located on the endoplasmic reticulum in close association with the cytoskeleton in cytoplasmic bodies called viroplasms, which mature to produce 'X bodies'. Viroplasms are sites of both RNA replication and protein synthesis, and may provide compartments in which the various stages of the virus mutiplication cycle (protein synthesis, RNA replication, virus movement, encapsidation) are localized and coordinated. Membranes may also be important for the configuration of the replicase with respect to initiation of RNA synthesis, and synthesis and release of progeny single-stranded RNA.  相似文献   

14.
15.
The in vitro product of mouse leukemia virus deoxyribonucleic acid (DNA) polymerase can be separated into two fractions by sedimentation in sucrose gradients. These two fractions were analyzed for their content of single-stranded DNA, double-stranded DNA, and DNA-ribonucleic acid (RNA) hybrid by (i) digestion with enzymes of known specificity and (ii) equilibrium centrifugation in Cs(2)SO(4) gradients. The major fraction early in the reaction contained equal amounts of single-stranded DNA and DNA-RNA hybrid and little double-stranded DNA. The major fraction after extensive synthesis contained equal amounts of single-and double-stranded DNA and little hybrid. In the presence of actinomycin D, the predominant product was single-stranded DNA. To account for these various forms of DNA, we postulate the following model: the first DNA synthesis occurs in a replicative complex containing growing DNA molecules attached to an RNA molecule. Each DNA molecule is displaced as single-stranded DNA by the synthesis of the following DNA strand, and the single-stranded DNA is copied to form double-stranded DNA either before or after release of the single strand from the RNA. Actinomycin blocks this conversion of single-to double-stranded DNA.  相似文献   

16.
Fructose 6-phosphate (1.4 mM – 3.0 mM) effectively prevents the inhibition of protein synthesis in unfractionated rabbit reticulocyte lysates by the presence of double-stranded RNA (poly rI:poly rC, 1 μg/ml). Glucose 6-phosphate, but not fructose 1,6-diphosphate, is equally as effective as fructose 6-phosphate. The data suggest that fructose 6-phosphate prevents the formation of a protein synthesis inhibitor induced by double-stranded RNA.  相似文献   

17.
The deoxyribonucleic acid (DNA) polymerase of Rous sarcoma virus synthesizes both single- and double-stranded DNA, utilizing the ribonucleic acid (RNA) of the viral genome as the initial template. Results of pulse-chase experiments indicate that the single-stranded DNA serves as unconserved template and precursor for the synthesis of double-stranded DNA. The latter reaction is apparently initiated in association with the viral RNA and may involve a partially double-stranded intermediate form.  相似文献   

18.
19.
Labelled RNA extracted from human peripheral lymphocytes was digested with DNase and RNase and chromatographed on cellulose columns. The results show that a significant proportion of the RNA synthesized in both unstimulated and PHA-stimulated human lymphocytes is in an RNase-resistant form with the properties of double-stranded RNA (ds-RNA). The proportion of total labelled cell RNA which appears in double-stranded form in unstimulated lymphocytes is much greater than in PHA-stimulated cells, presumably due to the much larger synthesis of ribosomal RNA in the latter cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号