首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that a single G protein-coupled receptor can regulate different effector systems by signaling through multiple subtypes of heterotrimeric G proteins. In LD2S fibroblast cells, the dopamine D2S receptor couples to pertussis toxin (PTX)-sensitive Gi/Go proteins to inhibit forskolin- or prostaglandin E1-stimulated cAMP production and to stimulate calcium mobilization. To analyze the role of distinct Galphai/o protein subtypes, LD2S cells were stably transfected with a series of PTX-insensitive Galphai/o protein Cys --> Ser point mutants and assayed for D2S receptor signaling after PTX treatment. The level of expression of the transfected Galpha mutant subunits was similar to the endogenous level of the most abundant Galphai/o proteins (Galphao, Galphai3). D2S receptor-mediated inhibition of forskolin-stimulated cAMP production was retained only in clones expressing mutant Galphai2. In contrast, the D2S receptor utilized Galphai3 to inhibit PGE1-induced (Gs-coupled) enhancement of cAMP production. Following stable or transient transfection, no single or pair set of mutant Galphai/o subtypes rescued the D2S-mediated calcium response following PTX pretreatment. On the other hand, in LD2S cells stably transfected with GRK-CT, a receptor kinase fragment that specifically antagonizes Gbeta gamma subunit activity, D2S receptor-mediated calcium mobilization was blocked. The observed specificity of Galphai2 and Galphai3 for different states of adenylyl cyclase activation suggests a higher level of specificity for interaction of Galphai subunits with forskolin- versus Gs-activated states of adenylyl cyclase than has been previously appreciated.  相似文献   

2.
RGS (regulators of G-protein signaling) proteins comprise a large family that modulates heterotrimeric G-protein signaling. This protein family has a common RGS domain and functions as GTPase-activating proteins for the alpha-subunits of heterotrimeric G-proteins located at the plasma membrane. RGS8 was identified as a neuron-specific RGS protein, which belongs to the B/R4 subfamily. We previously showed that RGS8 protein was translocated to the plasma membrane from the nucleus on coexpression of GTPase-deficient Galphao (GalphaoQL). Here, we first examined which subtypes of Galpha can induce the translocation of RGS8. When the Galphai family was expressed, the translocation of RGS8 did occur. To investigate the mechanism of this translocation, we generated a mutant RGS8 with reduced affinity to Galphao and an RGS-insensitive (RGS-i) mutant of GalphaoQL. Co-expression experiments with both mutants revealed that disruption of the Galpha-RGS8 interaction abolished the membrane-translocation of RGS8 despite the apparent membrane localization of RGS-i GalphaoQL. These results demonstrated that RGS8 is recruited to the plasma membrane where G-proteins are activated mainly by direct association with Galpha.  相似文献   

3.
The true function of Merkel cells (MCs) is still enigmatic, though the localization of various kinds of neurotransmitter-like substances in MCs has been revealed by immunohistochemistry. Most of the neurotransmitters act on target cells via seven-transmembrane receptors coupled to heterotrimeric G proteins. The heterotrimeric G proteins include various subfamilies that contribute to different signal transduction pathways. Therefore investigation of specific types of G proteins in MCs and related axon terminals (MC-axon terminals) should contribute to the elucidation of the function of MCs. In this study, we investigated the expression patterns of alpha-subunit isoforms of G proteins in MC-neurite complexes of the rat and monkey by enzymatic and fluorescence immunohistochemistry. MC-axon terminals of the rat and monkey showed positive immunoreactions of Galphao and Galphai1. Those of the monkey also showed a weak immunoreaction of Galphas. On the other hand, MCs of both animals showed positive immunoreactions of Galphao, Galphai1, Galphaq, and Galphaz. In addition, MCs of the monkey showed weak immunoreactions of Galphas. Galphao- and Galphai1-like immunoreactions in the MC-axon terminals suggest that MCs suppressively regulate receptive functions of type I mechanosensory nerve terminals. On the other hand, the localization of Galpha-subunits in MCs suggests that these cells are regulated with hormones, neurotransmitter-like substances, or growth factors.  相似文献   

4.
L Ma  X Xu  S Cui    D Sun 《The Plant cell》1999,11(7):1351-1364
The role of heterotrimeric G proteins in pollen germination, tube growth, and signal transduction of extracellular calmodulin (CaM) was examined in lily pollen. Two kinds of antibodies raised against animal Gzalpha, one against an internal sequence and the other against its N terminus, cross-reacted with the same 41-kD protein from lily pollen plasma membrane. This 41-kD protein was also specifically ADP ribosylated by pertussis toxin. Microinjection of the membrane-impermeable G protein agonist GTP-gamma-S into a pollen tube increased its growth rate, whereas microinjection of the membrane-impermeable G protein antagonist GDP-beta-S and the anti-Galpha antibody decreased pollen tube growth. The membrane-permeable G protein agonist cholera toxin stimulated pollen germination and tube growth. Anti-CaM antiserum inhibited pollen germination and tube growth, and this inhibitory effect was completely reversed by cholera toxin. The membrane-permeable heterotrimeric G protein antagonist pertussis toxin completely stopped pollen germination and tube growth. Purified CaM, when added directly to the medium of plasma membrane vesicles, significantly activated GTPase activity in plasma membrane vesicles, and this increase in GTPase activity was completely inhibited by pertussis toxin and the nonhydrolyzable GTP analogs GTP-gamma-S and guanylyl-5'-imidodiphosphate. The GTPase activity in plasma membrane vesicles was also stimulated by cholera toxin. These data suggest that heterotrimeric G proteins may be present in the pollen system where they may be involved in the signal transduction of extracellular CaM and in pollen germination and tube growth.  相似文献   

5.
To investigate the coupling selectivity of G proteins and G protein-coupled receptors (GPCRs), we developed a reconstitution system made up of GPCR and heterotrimeric G proteins on extracellular baculovirus particles (budded virus (BV)). BV released from Sf9 cells infected with a recombinant baculovirus coding for human leukotriene B4 receptor (BLT1) cDNA exhibited a high level of BLT1 expression (27.3 pmol/mg of protein) and specific [3H]leukotriene B4 binding activity (Kd = 3.67 nm). The apparent low affinity of the expressed BLT1 is thought to be due to relative non-availability of the Galphai isoform, which couples to BLT1, in BV. Co-infection of heterotrimeric G protein recombinant viruses led to co-expression of BLT1 and G protein subunits on BV. A guanosine-5'-(beta,gamma-imido)triphosphate-sensitive, high affinity ligand binding was observed in the BLT1 BV co-expressing Galphai1beta1gamma2 (Kd = 0.17 nm). A relatively large amount of high affinity receptor protein was recovered in the co-expressing BV fraction (6.81 pmol/mg of protein). A combination of BLT1 and Galphai1 without Gbeta1gamma2 did not exhibit high affinity ligand binding on BV, indicating the low background environment for the GPCR-G protein coupling in this BV reconstitution system. To test other G proteins for coupling, various Galpha subunits were combinatorially expressed in BV with BLT1 and Gbeta1gamma2. The BLT1 BV co-expressing GalphaoAbeta1gamma2 exhibited a comparably high affinity ligand binding as well as ligand-stimulated guanosine 5'-3-O-(thio)triphosphate binding to Galphai1beta1gamma2. Co-expression of other Galpha isoforms such as Galphas, Galpha11, Galpha14, Galpha16, Galpha12, or Galpha13 did not exhibit any significant effects on ligand binding affinity in this system. These results reveal that BLT1 and coupled trimeric G proteins were functionally reconstituted on BV and that Galphao as well as Galphai couples to BLT1. This expression system should prove highly useful for pharmacological characterization, biosensor chip applications, and also drug discovery directed at highly important targets of the membrane receptor proteins.  相似文献   

6.
Regulators of G protein signaling (RGS) modulate G protein activity by functioning as GTPase-activating proteins (GAPs) for alpha-subunits of heterotrimeric G proteins. RGS14 regulates G protein nucleotide exchange and hydrolysis by acting as a GAP through its RGS domain and as a guanine nucleotide dissociation inhibitor (GDI) through its GoLoco motif. RGS14 exerts GDI activity on Galphai1, but not Galphao. Selective interactions are mediated by contacts between the alphaA and alphaB helices of the Galphai1 helical domain and the GoLoco C terminus (Kimple, R. J., Kimple, M. E., Betts, L., Sondek, J., and Siderovski, D. P. (2002) Nature 416, 878-881). Three isoforms of Galphai exist in mammalian cells. In this study, we tested whether all three isoforms were subject to RGS14 GDI activity. We found that RGS14 inhibits guanine nucleotide exchange on Galphai1 and Galphai3 could, but not Galphai2. Galphai2 be rendered sensitive to RGS14 GDI activity by replacement of residues within the alpha-helical domain. In addition to the contact residues in the alphaA and alphaB helices previously identified, we found that the alphaA/alphaB and alphaB/alphaC loops are important determinants of Galphai selectivity. The striking selectivity observed for RGS14 GDI activity in vitro points to Galphai1 and Galphai3 as the likely targets of RGS14-GoLoco regulation in vivo.  相似文献   

7.
Heterotrimeric G-proteins at the plasma membrane serve as switches between heptahelical receptors and intracellular signal cascades. Likewise endomembrane associated G-proteins may transduce signals from intracellular compartments provided they consist of a functional trimer. Using quantitative immunoelectron microscopy we found heterotrimeric G-protein subunits Galpha2, Galpha(q/11), Gbeta2 and Gbeta5 to reside on secretory granules in chromaffin cells of rat adrenal glands.Thus rat chromaffin granules are equipped with functional G-proteins that consist of a specific alpha-, beta- and probably gamma-subunit combination. Serotonin uptake into a crude rat chromaffin granule preparation was inhibited by activated Galphao2 (10 nM) to nearly the same extent as by GMppNp (50 microM) whereas GDPbetaS was ineffective. The data support the idea that vesicular G-proteins directly regulate the transmitter content of secretory vesicles. In this respect Galphao2 appears to be the main regulator of vesicular momoamine transporter activity.  相似文献   

8.
9.
Dopamine receptor signaling   总被引:13,自引:0,他引:13  
  相似文献   

10.
Lyssand JS  Bajjalieh SM 《FEBS letters》2007,581(30):5765-5768
Receptors that signal through heterotrimeric [corrected] GTP binding (G) proteins mediate the majority of intercellular communication. Recent evidence suggests that receptors acting through G proteins also transfer signals across the nuclear membrane. Here we present cell fractionation and immunolabeling data showing that the heterotrimeric [corrected] G protein subunit Galphai is associated with mitochondria. This finding suggests that G protein receptor signaling may be a feature common to all membranes.  相似文献   

11.
Calcium-regulated exocytosis is required for cell membrane resealing   总被引:15,自引:7,他引:8       下载免费PDF全文
《The Journal of cell biology》1995,131(6):1747-1758
Using confocal microscopy, we visualized exocytosis during membrane resealing in sea urchin eggs and embryos. Upon wounding by a laser beam, both eggs and embryos showed a rapid burst of localized Ca(2+)- regulated exocytosis. The rate of exocytosis was correlated quantitatively with successfully resealing. In embryos, whose activated surfaces must first dock vesicles before fusion, exocytosis and membrane resealing were inhibited by neurotoxins that selectively cleave the SNARE complex proteins, synaptobrevin, SNAP-25, and syntaxin. In eggs, whose cortical vesicles are already docked, vesicles could be reversibly undocked with externally applied stachyose. If cortical vesicles were undocked both exocytosis and plasma membrane resealing were completely inhibited. When cortical vesicles were transiently undocked, exposure to tetanus toxin and botulinum neurotoxin type C1 rendered them no longer competent for resealing, although botulinum neurotoxin type A was still ineffective. Cortical vesicles transiently undocked in the presence of tetanus toxin were subsequently fusion incompetent although to a large extent they retained their ability to redock when stachyose was diluted. We conclude that addition of internal membranes by exocytosis is required and that a SNARE-like complex plays differential roles in vesicle docking and fusion for the repair of disrupted plasma membrane.  相似文献   

12.
Chinese hamster embryonic fibroblasts (IIC9 cells) express the Galpha subunits Galphas, Galphai2, Galphai3, Galphao, Galpha(q/11), and Galpha13. Consistent with reports in other cell types, alpha-thrombin stimulates a subset of the expressed G proteins in IIC9 cells, namely Gi2, G13, and Gq as measured by an in vitro membrane [35S]guanosine 5'-O-(3-thio)triphosphate binding assay. Using specific Galpha peptides, which block coupling of G-protein receptors to selective G proteins, as well as dominant negative xanthine nucleotide-binding Galpha mutants, we show that activation of the phosphatidylinositol 3-kinase/Akt pathway is dependent on Gq and Gi2. To examine the role of the two G proteins, we examined the events upstream of PI 3-kinase. The activation of the PI 3-kinase/Akt pathway by alpha-thrombin in IIC9 cells is blocked by the expression of dominant negative Ras and beta-arrestin1 (Phillips-Mason, P. J., Raben, D. M., and Baldassare, J. J. (2000) J. Biol. Chem. 275, 18046-18053, and Goel, R., Phillips-Mason, P. J., Raben, D. M., and Baldassare, J. J. (2002) J. Biol. Chem. 277, 18640-18648), indicating a role for Ras and beta-arrestin1. Interestingly, inhibition of Gi2 and Gq activation blocks Ras activation and beta-arrestin1 membrane translocation, respectively. Furthermore, expression of the Gbetagamma sequestrant, alpha-transducin, inhibits both Ras activation and membrane translocation of beta-arrestin1, suggesting that Gbetagamma dimers from Galphai2 and Galphaq activate different effectors to coordinately regulate the PI 3-kinase/Akt pathway.  相似文献   

13.
A subfamily of regulators of G protein signaling (RGS) proteins consisting of RGS6, -7, -9, and -11 is characterized by the presence of a unique Ggamma-like domain through which they form obligatory dimers with the G protein subunit Gbeta5 in vivo. In Caenorhabditis elegans, orthologs of Gbeta5.RGS dimers are implicated in regulating both Galphai and Galphaq signaling, and in cell-based assays these dimers regulate Galphai/o- and Galphaq/11-mediated pathways. However, initial studies with purified Gbeta5.RGS6 or Gbeta5.RGS7 showed that they only serve as GTPase activating proteins for Galphao. Pull-down assays and co-immunoprecipitation with these dimers failed to detect their binding to either Galphao or Galphaq, indicating that the interaction might require additional factors present in vivo. Here, we asked if the RGS7.Gbeta5 complex binds to Galphaq using fluorescence resonance energy transfer (FRET) in transiently transfected mammalian cells. RGS7, Gbeta5, and Galpha subunits were tagged with yellow variants of green fluorescent protein. First we confirmed the functional activity of the fusion proteins by co-immunoprecipitation and also their effect on signaling. Second, we again demonstrate the interaction between RGS7 and Gbeta5 using FRET. Finally, using both FRET spectroscopy on cell suspensions and microscopy of individual cells, we showed FRET between the yellow fluorescence protein-tagged RGS7.Gbeta5 complex and cyan fluorescence protein-tagged Galphaq, indicating a direct interaction between these molecules.  相似文献   

14.
15.
The phagocyte NADPH oxidase consists of multiple protein subunits that interact with each other to form a functional superoxide-generating complex. Although the essential components for superoxide production have been well characterized, other proteins potentially involved in the regulation of NADPH oxidase activation remain to be identified. We report here that the Galphai subunit of heterotrimeric G proteins is a novel binding partner for p67phox in transfected HEK293T cells and peripheral blood polymorphonuclear leukocytes. p67phox preferably interacted with inactive Galphai. Expression of p67phox caused a dose-dependent decrease in intracellular cyclic AMP concentration, suggesting altered function of Galphai. We identified a fragment of p67phox, consisting of the PB1 domain and the C-terminal SH3 domain, to be critical for the interaction with Galphai. Because these domains are involved in the interaction with p47phox and p40phox, the relationship between the respective binding events was investigated. Wild-type Galphai, but not its QL mutant, could promote the interaction between p67phox and p47phox. However, the interaction between p67phox and p40phox was not affected by either Galphai form. These results provide the first evidence for an interaction between p67phox and an alpha subunit of heterotrimeric G proteins, suggesting a potential role for Galphai in the regulation or activation of NADPH oxidase.  相似文献   

16.
alpha-latrotoxin (LTX) stimulates massive release of neurotransmitters by binding to a heptahelical transmembrane protein, latrophilin. Our experiments demonstrate that latrophilin is a G-protein-coupled receptor that specifically associates with heterotrimeric G proteins. The latrophilin-G protein complex is very stable in the presence of GDP but dissociates when incubated with GTP, suggesting a functional interaction. As revealed by immunostaining, latrophilin interacts with G alpha q/11 and G alpha o but not with G alpha s, G alpha i or G alpha z, indicating that this receptor may couple to several G proteins but it is not promiscuous. The mechanisms underlying LTX-evoked norepinephrine secretion from rat brain nerve terminals were also studied. In the presence of extracellular Ca2+, LTX triggers vesicular exocytosis because botulinum neurotoxins E, Cl or tetanus toxin inhibit the Ca(2+)-dependent component of the toxin-evoked release. Based on (i) the known involvement of G alpha q in the regulation of inositol-1,4,5-triphosphate generation and (ii) the requirement for Ca2+ in LTX action, we tested the effect of inhibitors of Ca2+ mobilization on the toxin-evoked norepinephrine release. It was found that aminosteroid U73122, which inhibits the coupling of G proteins to phospholipase C, blocks the Ca(2+)-dependent toxin's action. Thapsigargin, which depletes intracellular Ca2+ stores, also potently decreases the effect of LTX in the presence of extracellular Ca2+. On the other hand, clostridial neurotoxins or drugs interfering with Ca2+ metabolism do not inhibit the Ca2(+)-independent component of LTX-stimulated release. In the absence of Ca2+, the toxin induces in the presynaptic membrane non-selective pores permeable to small fluorescent dyes; these pores may allow efflux of neurotransmitters from the cytoplasm. Our results suggest that LTX stimulates norepinephrine exocytosis only in the presence of external Ca2+ provided intracellular Ca2+ stores are unperturbed and that latrophilin, G proteins and phospholipase C may mediate the mobilization of stored Ca2+, which then triggers secretion.  相似文献   

17.
Syntrophins are components of the dystrophin-glycoprotein complex of the plasma membrane in muscular and neuronal cells, and recruit signaling proteins such as neuronal nitric oxide synthase via their multiple protein-protein interaction motifs. In this study, we found that alpha1-syntrophin binds to various subtypes of guanine nucleotide-binding protein alpha subunits (Galpha). A pull-down analysis using full-length recombinant alpha1-syntrophin and MS analysis showed that alpha1-syntrophin was coprecipitated with several isoforms of Galpha proteins in addition to known binding partners such as dystrobrevin and neuronal nitric oxide synthase. Further analysis using recombinant Galpha isoforms showed that alpha1-syntrophin associates with at least Galphai, Galphao, Galphas and Galphaq subtypes. The region of alpha1-syntrophin required for its interaction with Galphas was determined as the N-terminal half of the first pleckstrin homology domain. In addition, the syntrophin unique domain of alpha1-syntrophin was suggested to contribute to this interaction. In COS-7 cells, downregulation of alpha1-syntrophin by RNAi resulted in enhanced cAMP production and cAMP response element-binding protein phosphorylation induced by isoproterenol treatment. These results suggest that alpha1-syntrophin provides a scaffold for the Galpha family of heterotrimeric G proteins in the brain to regulate the efficiency of signal transduction evoked by G-protein-coupled receptors.  相似文献   

18.
Diverse extracellular signals regulate seven transmembrane-spanning receptors to modulate cellular physiology. These receptors signal primarily through activation of heterotrimeric guanine nucleotide binding proteins (G proteins). A major determinant of heterotrimeric G protein signaling in vivo and in vitro is the intrinsic GTPase activity of the Galpha subunit. RGS (regulator of G protein signaling) domain-containing proteins are GTPase accelerating proteins specific for Galpha subunits. In this article, we describe the use of the ribose-conjugated fluorescent guanine nucleotide analog BODIPYFL-GTP as a spectroscopic probe to measure intrinsic and RGS protein-catalyzed nucleotide hydrolysis by Galphao. BODIPYFL-GTP bound to Galphao exhibits a 200% increase in fluorescence quantum yield. Hydrolysis of BODIPYFL-GTP to BODIPYFL-GDP reduces the quantum yield to 27% above its unbound value. We demonstrate that BODIPYFL-GTP can be used as a rapid real-time probe for measuring RGS domain-catalyzed GTP hydrolysis by Galphao. We demonstrate the effectiveness of this assay in the analysis of loss-of-function point mutants of both Galphao and RGS12. This assay should be useful in screening for and analyzing RGS protein inhibitory compounds.  相似文献   

19.
The recently discovered family of RGS (regulators of G protein signaling) proteins acts as GTPase activating proteins which bind to alpha subunits of heterotrimeric G proteins. We previously showed that a brain-specific RGS, RGS8 speeds up the activation and deactivation kinetics of the G protein-coupled inward rectifier K+ channel (GIRK) upon receptor stimulation (Saitoh, O., Kubo, Y., Miyatani, Y., Asano, T., and Nakata, H. (1997) Nature 390, 525-529). Here we report the isolation of a full-length rat cDNA of another brain-specific RGS, RGS7. In situ hybridization study revealed that RGS7 mRNA is predominantly expressed in Golgi cells within granule cell layer of cerebellar cortex. We observed that RGS7 recombinant protein binds preferentially to Galphao, Galphai3, and Galphaz. When co-expressed with GIRK1/2 in Xenopus oocytes, RGS7 and RGS8 differentially accelerate G protein-mediated modulation of GIRK. RGS7 clearly accelerated activation of GIRK current similarly with RGS8 but the acceleration effect of deactivation was significantly weaker than that of RGS8. These acceleration properties of RGS proteins may play important roles in the rapid regulation of neuronal excitability and the cellular responses to short-lived stimulations.  相似文献   

20.
GAIP is a regulator of G protein signaling (RGS) that accelerates the rate of GTP hydrolysis by some G protein alpha subunits. In the present studies, we have examined the structural basis for the ability of GAIP to discriminate among members of the Galphai family. Galphai1, Galphai3, and Galphao interacted strongly with GAIP, whereas Galphai2 interacted weakly and Galphas did not interact at all. A chimeric G protein composed of a Galphai2 N terminus and a Galphai1 C terminus interacted as strongly with GAIP as native Galphai1, whereas a chimeric N-terminal Galphai1 with a Galphai2 C terminus did not interact. These results suggest that the determinants responsible for GAIP selectivity between these two Galphais reside within the C-terminal GTPase domain of the G protein. To further localize residues contributing to G protein-GAIP selectivity, a panel of 15 site-directed Galphai1 and Galphai2 mutants were assayed. Of the Galphai1 mutants tested, only that containing a mutation at aspartate 229 located at the N terminus of Switch 3 did not interact with GAIP. Furthermore, the only Galphai2 variant that interacted strongly with GAIP contained a replacement of the corresponding Galphai2 Switch 3 residue (Ala230) with aspartate. To determine whether GAIP showed functional preferences for Galpha subunits that correlate with the binding data, the ability of GAIP to enhance the GTPase activity of purified alpha subunits was tested. GAIP catalyzed a 3-5-fold increase in the rate of GTP hydrolysis by Galphai1 and Galphai2(A230D) but no increase in the rate of Galphai2 and less than a 2-fold increase in the rate of Galphai1(D229A) under the same conditions. Thus, GAIP was able to discriminate between Galphai1 and Galphai2 in both binding and functional assays, and in both cases residue 229/230 played a critical role in selective recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号